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Optical Properties of Fluffy Particles
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Abstract. For particles grown in the two limiting cases of coagulation
(ballistic particle-cluster agglomeration and ballistic cluster-cluster ag-
glomeration), lower and upper limits of the extinction at wavelengths
from 1 fim to 1 mm are derived. The particle sizes are in the Rayleigh
limit and the number of constituent grains in each particle is constant.
Effective medium theories, the discrete dipole approximation and the dis-
crete multipole method are applied to compute the optical behaviour of
the coagulated particles. The spectral representation for inhomogeneous
media is employed to investigate topology effects systematically.

!• Introduction

The question of how fluffy particles behave in their interaction with electro-
magnetic radiation is of interest for many different fields in physical, biological,
medical, and also environmental sciences. For the different branches of astro-
physics, the optical properties of fluffy particles are of topical interest, because
almost all observations of processes where interplanetary or interstellar dust is
involved are "optical" observations. That the interplanetary as well as the in-
terstellar dust grains are inhomogeneous and have irregular shapes/structures
is widely accepted for theoretical reasons and proved by in-situ observations of
interplanetary dust particles collected in the upper earth atmosphere.

The theoretical modeling of the optical properties of inhomogeneous and
irregular dust grains is quite complicated. Nevertheless, the progress in that
field made in the last two decades is encouraging. Now, several methods are
available all of which have their range of applicability. We tested the methods
which should be well suited to calculate the extinction of small dust aggregates
consisting of spherical sub-grains touching each other at one point. The test
particles were grown in the two limiting cases of coagulation: ballistic particle-
cluster agglomeration (BPCA; which results in rather spherical aggregates with
dense cores) and ballistic cluster-cluster agglomeration (BCCA; which results in
very fluffy aggregates with an open structure). In addition, we derived upper
and lower limits for the extinction of "real" aggregates, i.e. aggregates where the
sub-grains contact each other at finite areas.
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2. Methods

Here, we outline the basics of the spectral representation for inhomogeneous
media. This method allows the study of the influence of the dust grain morphol-
ogy on the optical properties in a systematic way. In doing this, we only touch
on the other methods which are used to calculate the optical behaviour of the
aggregates. For more details and also for the characterization of the aggregates,
we refer to Stognienko et al. (1995) and Henning et al. (1995).

In the concept of effective medium theories (EMTs) an aggregate with its
complicated morphology is thought to be replaced by a homogeneous spherical
grain with a effective dielectric function eeff. In the so called differential effec-
tive medium theory (DEMT) £eff is considered to be radius dependent. The
replacement can be considered as an orientation or ensemble average for the
aggregates and is justified if the scale of inhomogeneity within the aggregates
is small compared to the wavelength. The quantity 6eff is often defined by the
requirement that the forward scattering amplitude, i.e. the extinction, of the
the "effective" particle mimics the extinction of the aggregates. This leads to
the well-known Garnett mixing rule (often incorrectly called Maxwell-Garnett)
and the Bruggeman mixing formula (denoted by EMT in the following). Both
rules contain the volume filling factor of the aggregate material and its dielectric
function. These rules can also be applied locally, i.e. for radially varying filling
factors.

The spectral representation (Bergman 1978) relates €eff of a two-component
system to the dielectric functions 6j of the components, their filling factors f\
(with / i + h = 1)? and the spectral functions g\ in a rigorous way:

lJo7^dn)' ' = r^M' (1)

which can also be formulated with the spectral function #2 f° r the second
component. The functions g\ also have to obey the two moment-equations

1 and J j ngi{n) dn ={l - / i ) /3 .
The interpretation of Eq. 1 is as follows: All possible geometric resonances

of a two-phase composite (e.g. the aggregate matter and vacuum) occur if the
complex quantity t assumes only real values with the real part in the interval
0,1]. With the integration over n, one scans all possible resonance positions.

Whether a resonance occurs or not is determined by the spectral function g\{n)
which carries all topological information. Therefore, the spectral representation
clearly distinguishes between the influence of the geometrical quantities and that
of the dielectric properties of the components on the effective behaviour of the
system.

In spite of the elegance of the spectral representation, there exists no gen-
eral way to compute the spectral function for a given system. Only for certain
topologies was a determination of the spectral function performed. The discrete
multipole method (DMM) in the formulation by Hinsen (1992) results in the
spectral functions for hard-sphere systems. The DMM is the static limit ver-
sion of the generalized Mie theory (see e.g. Xu & Gustafson 1996) and includes
multipole-orders as high as possible for the expansion of the potential outside
the spheres. The DMM is, therefore, superior to the discrete dipole approxima-
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tion (DDA) which is often used in the literature to model aggregates of spheres
by replacing each sphere with one dipole (see e.g. Kozasa et al. 1992).

Because Eq. 1 relates the volume filling factors and the dielectric functions
to £efj, analytic expressions for g(n) for a given mixing rule can be derived.
Therefore, we are able to compare the spectral functions which correspond to
the mixing rules with the spectral functions computed with the DMM.

A detailed comparison is, however, not necessary, because of the denomina-
tor in the integrand of Eq. 1- If the complex quantity t has a value far from the
real interval [0,1] in the complex plane, Eq. 1 reduces to eeff = /i*i + (1 — fi)€2
and, therefore, the spectral functions, i.e. the morphology of the aggregates or
the used mixing rules, are of no interest. This is just the situation we have for
many astrophysically interesting materials. Only some metals or materials like
amorphous carbon and graphite have \t\ «0 at far infrared and sub-mm wave-
lengths. In this case, only the behaviour of the spectral functions at n «0 is of
interest.

The special surface mode at n =0 describes the so called percolation of
the system. The percolation strength go is defined by the decomposition of
g(n) into gT{Ti) + goS(n). The quantity go can be considered as the fraction
of the component that contributes to the dc conductivity of the system if the
component is a conductor and the second component an insulator. The EM
and the DMM give #j =0 which is correct for the considered aggregates because

T

they consist of sub-grains touching each other at one point only. However, this
is not very realistic because we know that the sub-grains in "real" aggregates
are physically percolated, i.e. the sub-grains contact each other at finite areas.

Ossenkopf (1991) models the percolation of "real" aggregates by introducing
effective shape factors into various mixing rules. We denote this modified rules
with an appended "-0" . For another modeling of go we refer to Henning
Stognienko (1996). Including an upper limit of #0 into g(n) obtained with the
DMM leads to the modified spectral function (MSF).

3. Results

The results of our calculations are shown in Fig. 1, where €eff was estimated with
various mixing rules and with Eq. 1 using the MSF and the spectral function
obtained with the DMM. The extinction cross section per compact volume is
calculated as 3fcIm[^ffT2], where k = 2?r/A is the wavenumber. The (averaged)
radius of the aggregates was assumed to be a =0.1 /im.

In the computations by the DDA and the DMM, averages are taken over
eight clusters and three perpendicular directions of each cluster with respect to
the incoming wave. Three perpendicular orientations gives the correct extinction
value in the static limit (k —•O) and are sufficient for the DDA calculations,
because the aggregate sizes are well within the Rayleigh limit (ka «Cl). The
radially varying as well as the averaged filling factors are obtained for the same
eight aggregates and used in the DEMT and the EMT calculations, respectively.

We found that the extinction limits (denoted by the DMM and the MSF
graphs) strongly depend on the refractive indices used and on the topology of
the aggregates and that the porosity of the particles is not the most important
parameter.
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Figure 1. Extinction cross section per compact volume for two types
of aggregates (see sample aggregates in the margin) consisting of amor-
phous carbon (optical constants after Preibisch et al. 1993) computed
with different EMTs, the DDA, DMM, and MSF. The curves are listed
in the same order as they appear at 1000 /xm. Note that the graphs
labeled with Mie correspond to the Garnett mixing rule and to homo-
geneous compact spheres with the same mass as the aggregates.
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For particles composed of amorphous carbon, the enhancement of the ex-
tinction with respect to the extinction value for compact spheres of the same
mass is between 2 and 1000 at 1 mm wavelength. For silicate particles (not
shown), the enhancement of the extinction is in the range 1.5-3.5 at 1 mm
wavelength.
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