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We systematically study the dissipative anomaly in compressible magnetohydrodynamic
(MHD) turbulence using direct numerical simulations, and show that the total dissipation
remains finite as viscosity diminishes. The dimensionless dissipation rate Cε fits well with
the model Cε = Cε,∞ + D/R−

L for all levels of flow compressibility considered here, where
R−

L is the generalized large-scale Reynolds number. The asymptotic value Cε,∞ describes
the total energy transfer flux, and decreases with increase of the flow compressibility,
indicating non-universality of the dimensionless dissipation rate in compressible MHD
turbulence. After introducing an empirically modified dissipation rate, the data from
compressible cases collapse to a form similar to the incompressible MHD case depending
only on the modified Reynolds number.
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1. Introduction

Dissipative anomaly states that ε, the rate of turbulent energy dissipation (per unit mass)
away from boundaries, remains finite as viscosity tends to zero (Taylor 1935). As a
basic hypothesis of the K41 turbulence theory (Kolmogorov 1941a,b,c; Frisch 1995), it
is of fundamental importance and is often deemed as the ‘zeroth law of turbulence’.
Understanding dissipative anomaly was primarily phenomenological until the pioneering
theoretical study of Onsager (1949). His work established a crucial connection between
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finite dissipation in hydrodynamic (HD) turbulence and the inherent roughness of velocity
field. Onsager’s conjecture was then proved rigorously under different assumptions
(Constantin, Weinan & Titi 1994; Eyink 1994; Duchon & Robert 2000), and extended
to diverse turbulence systems as well, including incompressible magnetohydrodynamic
(IMHD) turbulence (Aluie 2017), incompressible Hall magnetohydrodynamic (MHD)
turbulence (Galtier 2018), and compressible HD turbulence (Eyink & Drivas 2018).

Dissipative anomaly has been well explored by experiments and simulations in HD
turbulence (Sreenivasan 1984, 1998; Kaneda et al. 2003; Pearson et al. 2004; Mazellier
& Vassilicos 2008; Goto & Vassilicos 2009; McComb et al. 2015; Vassilicos 2015;
John, Donzis & Sreenivasan 2021) and IMHD turbulence (Mininni & Pouquet 2009;
Dallas & Alexakis 2014; Linkmann et al. 2015; Linkmann, Berera & Goldstraw 2017;
Bandyopadhyay et al. 2018). In practice, the interest centres on the dimensionless
dissipation rate

Cε = εL/U3 (1.1)

and its asymptotic value Cε,∞ as Reynolds number tends to infinity, where U ,L denote
the characteristic values of velocity and length, respectively. Non-universality of Cε,∞ was
investigated in various turbulent flows, with varying vector field correlations (Linkmann
et al. 2015, 2017) and anisotropy (Bandyopadhyay et al. 2018).

In turbulent flows with more intricate configurations, the energy dissipation properties
can be notably influenced by a variety of phenomena and structures. For instance, in
oceanic or stratified geophysical flows, interactions between eddies, waves, drafts and
fronts in these environments contribute to the complexity of energy dissipation dynamics
(Pearson & Fox-Kemper 2018; Pouquet, Rosenberg & Marino 2019; Marino et al. 2022).
Similarly, in compressible MHD turbulence, the interplay between vortices, shocks and
Alfvén waves adds additional complexity, leading to a significantly expanded parameter
space. As a result, the understanding of dissipative anomaly in compressible MHD
turbulence remains limited.

In this paper, we study the dissipative anomaly in compressible MHD turbulence
by performing direct numerical simulations of forced compressible MHD turbulence,
without background magnetic field and cross-helicity. The compressibility effect on the
dissipative anomaly is explored quantitatively. We propose a unified model that explains
the normalized dissipation rate and its variation with compressibility.

2. Equations and numerical simulations

By introducing the reference scales ρ0 for density, U0 for velocity, B0 for magnetic
induction, L0 for length, T0 for temperature, ρ0U2

0 for pressure, μ0 for dynamic viscosity,
η0 for magnetic diffusivity, and κ0 for thermal conductivity, the compressible MHD
system involves five dimensionless parameters: the Reynolds number Re = ρ0U0L0/μ0,
the magnetic Reynolds number Rem = U0L0/η0, the Mach number M = U0/

√
γ RT0, the

Alfvén Mach number Mm = U0
√

ρ0/B0, and the Prandtl number Pr = μ0Cp/κ0, where
γ = 1.4 denotes the adiabatic index, R the gas constant, and Cp = γ R/(γ − 1) the specific
heat at constant pressure. The dimensionless governing equations are

∂tρ + ∇ · (ρu) = 0, (2.1)

∂t(ρu) + ∇ ·
(

ρuu + ptI − bb
M2

m

)
= ∇ · σ

Re
+ F , (2.2)
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∂tb + ∇ · (ub − bu) = −∇ × (η j)
Rem

, (2.3)

∂tE + ∇ ·
[
(E + pt)u − (u · b)b

M2
m

]
= ∇ · (σ · u)

Re
+ ∇ · (b × η j)

Rem M2
m

+ ∇ · (κ ∇T)

Pr Re (γ − 1)M2

+F · u − Λ, (2.4)

where ρ, u, b and T are the density, velocity, magnetic and temperature fields, respectively.
Here, E = ρu2/2 + p/(γ − 1) + b2/(2M2

m) denotes the total energy, pt = p + b2/(2M2
m)

the total pressure, σ = 2μ(S − θI/3) the viscous stress tensor, S = (∇u + ∇uT)/2
the strain rate tensor, θ = ∇ · u the dilatation, I the unit tensor, and j = ∇ × b the
current density. Closure is achieved using the ideal gas law p = ρT/(γ M2). For
simplicity, we set Pr = 0.704, Prm = Rem/Re = 1 and Mm = 1. The dimensionless
constitutive coefficients μ, κ, η obey Sutherland’s law of air with reference temperature
T0 = 273.15 K, μ = κ = 1.40417T3/2/(T + 0.40417) and η = ν = μ/ρ, where ν is the
kinematic viscosity. To attain a statistically steady state, a large-scale force F and cooling
function Λ are imposed in the momentum and energy equations, respectively.

Direct numerical simulations (DNS) of compressible MHD turbulence are performed
in a periodic (2π)3 cubic domain, using a hybrid compact-WENO scheme (Wang et al.
2010; Yang et al. 2016b). This hybrid scheme, known for its high accuracy and efficiency
in handling shock–turbulence interaction in compressible turbulent flows, generates
negligible numerical dissipation (Yang et al. 2021), thus guarantees the reliability of the
numerical results presented in this study. To control the compressibility, the large-scale
force F modifies the compressive (dilatational) velocity field uc and solenoidal velocity
field us in the first two wavenumber shells. These are defined by the Helmholtz
decomposition (Wang et al. 2012; Yang et al. 2016b, 2017)

u = us + uc, ∇ · us = 0, ∇ × uc = 0. (2.5a–c)

The parameter rc regulates the fraction of the energy input into the compressive field
uc. The limiting conditions rc = 1 and 0 represent pure dilatational and pure solenoidal
forcing, respectively. For more simulation details, see Yang et al. (2016b).

A number of simulations with resolution up to 7683 were performed, and grouped into
eight different series, based on Mach number M and forcing parameter rc. All statistical
quantities are obtained by averaging (denoted by 〈 〉) over 80 snapshots spanning at least
6 large-eddy turnover times, after the flow reaches the statistically steady state. Basic
simulation parameters are the Taylor microscale Reynolds number Rλ = 23–386, the
turbulent Mach number Mt = 0.2–0.69, and δc = u′

c/u′ = 0.36–0.94. The parameter δc
represents the relative magnitude of the compressive velocity and the flow compressibility,
where u′ =

√
〈u2〉/3 and u′

c denote the root mean square (r.m.s.) values of the components
of the vectors u and uc, respectively. All simulations are fully resolved such that
kmaxηu ≥ 2, where kmax is the maximum resolved wavenumber, and ηu denotes the
Kolmogorov length scale. The magnetic and cross helicities remain small in all simulation
cases, to eliminate their impacts and emphasize the compressibility effect.

Simulation parameters are summarized in table 1. More simulation details can be found
in tables I and II of the supplementary material available at https://doi.org/10.1017/jfm.
2024.545. We note that the variations of Mt and δc within each series are small, implying
their weak dependence on Reynolds number. It is also clear that the forcing parameter rc
has little impact on Mt for fixed Mach number, and Mt/M ≈ 2 holds for all cases, whereas
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Series M rc Rλ Mt δc = u′
c/u′

A 0.1 0.10 50–252 0.20–0.21 0.36–0.41
B 0.1 0.50 32–230 0.20–0.21 0.61–0.65
C 0.1 0.90 23–268 0.20–0.24 0.76–0.85
D 0.3 0.10 50–386 0.61–0.64 0.33–0.34
E 0.3 0.50 36–376 0.64–0.68 0.55–0.63
F 0.3 0.75 30–250 0.66–0.69 0.70–0.74
P 0.2 0.85 40–357 0.42–0.45 0.80–0.82
Q 0.2 1.00 42–236 0.44–0.47 0.85–0.94

Table 1. Basic parameters and statistics of simulation series: M denotes the Mach number, rc the forcing
parameter, Rλ = Re 〈ρ〉 u′λ/ 〈μ〉 the Taylor scale Reynolds number, Mt = Mu′/〈√T/3〉 the turbulent Mach
number, and δc = u′

c/u′ the flow compressibility parameter.

the parameter δc obviously increases as rc increases, and is almost independent of Mach
number. Therefore, as in compressible HD turbulence (Donzis & John 2020), the nature
of forcing has to be considered in addition to Rλ and Mt.

3. Results

By analysing selective DNS cases (see figure 1 in the supplementary material), it is found
that the velocity field spectrum follows a classical incompressible k−5/3 law for low to
moderate δc, but shows k−2 behaviour for cases with high δc, due to the shock effects
(Wang et al. 2013; Yang et al. 2016a). This different scaling behaviour suggests that the
large-scale force can strongly influence the cascade process, and implies non-universality
of compressible MHD turbulence associated with the dimensionless parameter δc = u′

c/u′.

3.1. The scaling of the relative dissipation rates
The total dissipation consists of the viscous dissipation εk = Re−1 〈σijSij/ρ〉 and Ohmic
dissipation εm = Re−1

m 〈η j2/ρ〉. Moreover, the viscous dissipation εk can be decomposed
as εk = εs + εc + εn. Here, the first term, εs = Re−1 〈νω2〉, represents contributions by
the solenoidal velocity field us. The second component, εc = (4/3) Re−1 〈νθ2〉, denotes
the dilatational dissipation and is exclusively due to the dilatational motion uc. The mixed
term εn = 2 Re−1 〈ν∇ · (u · ∇u − θu)〉 vanishes if ν is uniform over the whole domain.
The magnitude of εn/εk remains small for all the simulation cases, hence the dissipation
due to dilatational and shear motions can be viewed as decoupled.

The scaling of εc/εs versus the parameter Λc = Ec/Es is shown in figure 1(a), where
Es = 〈ρu2

s /2〉 and Ec = 〈ρu2
c/2〉 denote the turbulent total energy of the solenoidal and

compressive fields, respectively. One can see that all data points follow a simple scaling

εc/εs ≈ Ec/Es ≈ 〈u2
c〉/〈u2

s 〉 = δ2
c/(1 − δ2

c ), (3.1)

especially for the cases with high Reynolds number Rλ ≥ 150. This scaling was also
observed in compressible HD turbulence (Donzis & John 2020).

Figure 1(b) shows the scaling of εm/εk, the ratio of Ohmic to viscous dissipation, as
a function of Λm = Em/Ek, where Em and Ek denote the magnetic and kinetic energy,
respectively. All simulations in our study are mechanically driven; hence the magnetic
energy, maintained by the dynamo process, is much smaller than the kinetic energy (Λm �
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Figure 1. (a) The ratio of dilatational to solenoidal dissipation rate εc/εs versus Λc = Ec/Es, the ratio of
solenoidal to dilatational energy. (b) The ratio of Ohmic to viscous dissipation εm/εk versus Λm = Em/Ek, the
ratio of magnetic to kinetic energy. Here, only simulation cases with Rλ ≥ 50 are taken into account, and the
dashed lines indicate the linear scaling.

0.3 here). However, the magnetic dissipation can surpass the viscous dissipation when
Λm � 0.2, suggesting that the magnetic field is dominated by the strong turbulent shear
motions at small scales, such as current sheets. Moreover, all data points fit well with

εm/εk ≈ gmEm/Ek, (3.2)

with gm ≈ 5.0. This scaling remains robust over two orders of magnitude in εm/εk,
implying that the characteristic time scales of magnetic and kinetic energy dissipation are
of similar order. Figure 1(b) also shows that εm/εk approximately increases as Rλ increases,
implying that the nonlinear dynamo process is more efficient in maintaining small-scale
magnetic field fluctuations at higher Reynolds number than at lower Reynolds number.
Similar conclusions have been reached for IMHD turbulence (Linkmann et al. 2017).

3.2. The normalized total dissipation rate
As used in IMHD turbulence (Linkmann et al. 2015, 2017), the Elsässer variables
z± = u ± vA are introduced, where vA = b/

√
ρ denotes the magnetic fluctuations in

Alfvén velocity unit. The r.m.s. values and integral length scales defined with respect to

the Elsässer variables are Z± =
√

(〈z2±〉 − 〈z±〉2)/3 and L± = π/(2Z2±)
∫ ∞

0 k−1 E±(k) dk,

where E±(k) denotes the Elsässer energy spectrum such that
∫ ∞

0 E±(k) dk = 3Z2±/2. In
analogy with the IMHD case (Linkmann et al. 2015, 2017), we define the dimensionless
dissipation rate C±

ε and the generalized large-scale Reynolds number R±
L as

C±
ε = εL±

(Z±)2Z∓
, R±

L = 〈ρ〉 Z±L∓
〈μ〉 . (3.3a,b)

In our simulations Z+ ≈ Z− and L+ ≈ L− since the cross-helicity Hc = 〈u · b〉 remains
negligible. Then R+

L ≈ R−
L and C+

ε ≈ C−
ε also hold (see figure 2 in the supplementary

material). We focus on the relation between

Cε = (C+
ε + C−

ε

)
/2 (3.4)

and R−
L to explore the dissipative anomaly in this paper.
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Figure 2. The normalized dissipation rate Cε versus the generalized large-scale Reynolds number R−
L for all

simulation series, along with corresponding fitting curves (3.5). Here, the markers and lines are coloured by
the values of compressibility parameter δc.

The model equation

Cε = Cε,∞ + D
R−

L
+ O

[
(R−

L )−2
]

(3.5)

is often used to describe quantitatively the trend of dimensionless dissipation rate
as Reynolds number increases (Linkmann et al. 2015, 2017; McComb et al. 2015;
Bandyopadhyay et al. 2018), where Cε,∞ is the asymptotic value of Cε as R−

L tends to
infinity, and D is the coefficient of the first-order term. As suggested in Linkmann et al.
(2015, 2017), the higher-order terms become important only for low Reynolds number
cases, which is further discussed in the supplementary material.

The dimensionless dissipation rate Cε as a function of generalized large-scale Reynolds
number R−

L is scattered in figure 2 for all simulation cases with R−
L ≥ 150, which fits

well with the model (3.5). Here, the data points and fitting curves are coloured by the
parameter δc to highlight the flow compressibility effect. The asymptotic dissipation rates
Cε,∞ remain positive, hence the dissipative anomaly holds generally in compressible MHD
turbulence, even for flows with high compressibility.

3.3. The compressibility effect on the dissipative anomaly
As shown in figure 2, the compressibility depresses the normalized dissipation rate Cε

at high Reynolds number yet enhances it at low Reynolds number, indicating that Cε,∞
decreases with increasing compressibility, but the coefficient D increases with the increase
of flow compressibility. The estimated values of model coefficients Cε,∞,D and the
corresponding standard errors σC, σD are summarized in table 2. The values of δc, denoting
the mean value of δc within each DNS series, are also reported to clearly show the level of
compressibility of each simulation series. Moreover, the results of incompressible isotropic
driven HD turbulence (McComb et al. 2015) and MHD turbulence (Bandyopadhyay et al.
2018) are included for comparison. (Here, the result from Bandyopadhyay et al. (2018)
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Series δc Cε,∞ σC D σD

A 0.39 0.506 0.007 24.2 2.6
B 0.62 0.370 0.010 46.6 4.2
C 0.82 0.198 0.016 110.6 6.9
D 0.33 0.410 0.012 40.3 5.0
E 0.59 0.351 0.012 64.1 5.1
F 0.73 0.280 0.021 117.1 9.1
P 0.81 0.241 0.016 121.2 7.3
Q 0.89 0.159 0.022 184.7 9.2
HD 0.00 0.468 0.006 18.9 1.3
IMHD 0.00 0.520 0.014 18.0 1.0

Table 2. Summary of estimated values for the asymptotic dimensionless dissipation rate Cε,∞ and model
coefficient D from different simulation series and references. Here, σC, σD refer to the standard errors of
Cε,∞,D in the fitting procedure, respectively, and δc denotes the mean value of δc within each simulation
series. The results of HD turbulence (McComb et al. 2015) and MHD turbulence (Bandyopadhyay et al. 2018)
are included for comparison.

is multiplied by factor 2 due to the different definitions of Cε.) One can see that the
values of Cε,∞ and D of series A (with weak compressibility) are quite close to those
in incompressible cases. Also, the standard errors are significantly small compared to the
estimated values, for all simulation series, indicating the credibility of the fitting model
(3.5). Based on the von Kármán–Howarth (vKH) equation (de Kármán & Howarth 1938;
Chandrasekhar 1951; Politano & Pouquet 1998) that describes the evolution of correlation
functions in turbulence, the asymptotic value Cε,∞ represents the flux of total energy across
scales in a well scale-separated inertial range (Linkmann et al. 2015, 2017; McComb et al.
2015). Our results show that the flow compressibility can strongly depress the energy flux,
and again indicate the non-universality of energy transfer and dissipation processes in
compressible MHD turbulence.

To quantify the compressibility effect on the dissipative anomaly in compressible
MHD (CMHD) turbulence, the asymptotic dimensionless dissipation rate Cε,∞ and model
coefficient D from all simulation series are scattered. Figure 3(a) shows the trend of Cε,∞
versus δc

2 ≈ Ec/Ek, along with the incompressible values. Surprisingly, a simple scaling

Cε,∞ = C0 − C1δc
2 (3.6)

is observed, where C0 = 0.517 ± 0.021 is quite close to the asymptotic value in the
IMHD case, and C1 = 0.436 ± 0.042 denotes the fitting coefficient. Also, the positivity of
the limiting value Cε,∞(δc → 1) = C0 − C1 = 0.081 ± 0.027 suggests that the dissipative
anomaly still holds even in the MHD turbulence with extremely high compressibility.
Figure 3(b) depicts the scaling of D/D0, the normalized model coefficient as flow
compressibility increases, where D0 = 18.0 denotes the model coefficient in the IMHD
case. The plot indicates that the scaling

D/D0 = 1 + D1δc
4 (3.7)

holds approximately, with fitting parameter D1 = 13.5.
Based on the above simple scaling of Cε,∞,D versus δc, the model equation (3.5)

that expresses the dimensionless dissipation rate Cε in terms of the generalized Reynolds
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Figure 3. The trend of the asymptotic normalized dissipation rate Cε,∞ and model coefficient D as flow
compressibility changes: (a) Cε,∞ versus δc

2; (b) D/D0 versus δc
4. The dashed lines indicate the linear

regression, and the error bars represent the standard errors in fitting procedure.
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3000

Figure 4. Modified normalized dissipation rate C′
ε versus modified Reynolds number R′

L for all simulations.
The dashed line corresponds to (3.8), the same form as in the IMHD case.

number R−
L can be transformed into a unified form,

C′
ε = C0 + D0

R′
L
, (3.8)

similar in form to the model for the IMHD case. In particular, the modified dimensionless
dissipation rate C′

ε and the modified large-scale Reynolds number R′
L are defined as

C′
ε = Cε + C1δ

2
c , R′

L = R−
L

1 + D1δ4
c
, (3.9a,b)

in which the correction from compressibility is implemented. To emphasize the efficacy of
this re-scaling, the values of C′

ε and R′
L for all DNS cases are scattered in figure 4. Notably,

all data points, regardless of their level of flow compressibility, collapse along the model
equation (3.8).

However, it is essential to highlight that the aforementioned results cannot be considered
as universal. In particular, the unified model equation was obtained under the specific
conditions of isotropy and zero helicities, and fixed fluid parameters, including Pr = 0.704
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and T0 = 273.15 K. While these conditions and parameters may not alter the qualitative
form of the basic model equation (3.5), the model coefficients Cε,∞,D will likely depend
on various flow parameters and may not follow simple scaling laws similar to (3.6)–(3.7).
For instance, prior studies have showed notable dependencies of the asymptotic dissipation
rate Cε,∞ on cross-helicity, magnetic helicity (Linkmann et al. 2015, 2017) and mean
magnetic field (Bandyopadhyay et al. 2018) in IMHD turbulence. Therefore, in this
study, the unified (3.8) serves as an alternative representation to illustrate the scaling
relations between model coefficients and compressibility parameters, and does not imply
the universality of dissipation in compressible MHD turbulence. We expect that exploring
compressible MHD turbulence under more general configurations may yield further
intriguing findings.

4. Conclusions

In conclusion, by direct numerical simulation, we explored the non-universality in
compressible MHD turbulence, emphasizing the effect of compressibility (which is mainly
controlled by the forcing scheme) on the dissipative anomaly, a feature of substantial
importance in turbulence theory and modelling. By studying the scaling between the ratio
of dissipation rates and the ratio of energy, it is found that the characteristic time scales
of viscous dissipation and magnetic dissipation are of the same order of magnitude, and
a similar result was verified for the kinetic dissipation process induced by dilatation and
shearing processes.

In the compressible MHD turbulence, the dimensionless total dissipation rate Cε

approaches asymptotically a non-zero value Cε,∞ for increasing generalized large-scale
Reynolds number R−

L . That is, as in HD and IMHD turbulence, the dissipative anomaly
is present in compressible MHD turbulence as well. Moreover, the relation between
Cε and R−

L can be described by the simple model equation (3.5). The values of Cε,∞
and model coefficient D of simulation series show obvious differences, suggesting the
non-universality of compressible MHD turbulence induced by different levels of flow
compressibility. Specifically, a decreasing trend was found for Cε,∞ with the increase of
δc, implying that the compressibility can strongly depress the energy flux in compressible
MHD turbulence. It was also found that the model coefficient D would increase
dramatically for enhanced flow compressibility. Further numerical results find that Cε,∞
and D exhibit simple scaling with respect to the compressibility parameter δc. Based on
this finding, we introduced a modified normalized dissipation rate C′

ε and a modified
large-scale Reynolds number R′

L, which incorporate the compressibility effect. In terms
of these, we find the quantitative relation (3.5) transformed into one unified equation
(3.8), in which the asymptotic value and model coefficient correspond to the IMHD
case. These results inform understanding of the relationship between incompressible and
compressible MHD flow models, and provide a quantitative assessment of the influence of
compressibility on energy transfer. Our findings hold potential relevance to various studies
focusing on real physics systems, particularly in plasma turbulence domains like the solar
wind. For instance, our numerical results could provide valuable guidance to simplify the
complex formulations of exact laws in compressible MHD turbulence (Banerjee & Galtier
2013; Andrés & Sahraoui 2017). Moreover, these exact relations are frequently utilized to
estimate energy dissipation and particle heating in spacecraft observations (Sorriso-Valvo
et al. 2007; Wan et al. 2012, 2016; Andrés et al. 2018; Hadid et al. 2018; Simon &
Sahraoui 2021; Yang et al. 2022; Jiang et al. 2023; Marino & Sorriso-Valvo 2023). This
is especially pertinent in collisionless plasmas where classical definitions of viscosity and
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resistivity are inapplicable, making direct dissipation rate calculations from observational
data unfeasible.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.545.
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