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Abstract

We study the rank of complex sparse matrices in which the supports of different columns have small
intersections. The rank of these matrices, called design matrices, was the focus of a recent work
by Barak et al. [Rank bounds for design matrices with applications to combinatorial geometry and
locally correctable codes. Proceedings of the 43rd annual ACM symposium on Theory of computing,
STOC 11, (ACM, NY 2011), 519–528] in which they were used to answer questions regarding point
configurations. In this work, we derive near-optimal rank bounds for these matrices and use them
to obtain asymptotically tight bounds in many of the geometric applications. As a consequence of
our improved analysis, we also obtain a new, linear algebraic, proof of Kelly’s theorem, which is
the complex analog of the Sylvester–Gallai theorem.

2010 Mathematics Subject Classification: primary 52C35; secondary 68Q99, 94B65.

1. Introduction

The classical Sylvester–Gallai (SG) theorem states the following: Given any finite
set of points in the Euclidean plane, not all on the same line, there exists a line
passing through exactly two of the points. This result was first conjectured by
Sylvester in 1893 [26] and then proved independently by Melchior in 1940 [21]
and Gallai in 1943 (in an answer to the same question independently posed by
Erdos [10]). The following complex variant of the Sylvester–Gallai theorem was
proved by Kelly [18] in response to a question of Serre: Given any finite set of
points in Cd , not all on the same complex two-dimensional plane, there exists
a line passing through exactly two of the points. The above result is tight over
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the complex numbers, since there are two-dimensional configurations of points
satisfying the condition on triples. The survey by Borwein and Moser [6] gives a
very good overview of the SG theorem, its proofs and the different variants that
have been studied in the past. One application of our techniques, discussed later,
is a new proof of Kelly’s theorem, which is significantly simpler than Kelly’s
original proof and is very different than the recent elementary proof of [9].

In recent years, variants of the SG theorem have been useful in studying
certain structural questions arising in theoretical computer science. Variants of the
SG theorem were useful in understanding the structure of low-depth arithmetic
circuits [8, 17, 24]. Quantitative versions of the SG theorem were shown to be
closely linked to the structure of linear locally correctable codes [2, 4]. These
applications join a growing number of papers in which geometric theorems
regarding point/line arrangements are finding applications in theoretical computer
science. We refer the reader to the recent survey [7] for an overview of some of
these applications.

1.1. Rank of design matrices. Motivated by the application to point
configurations, Barak et al. [2] studied the rank of certain matrices, called
design matrices, and proved lower bounds on their rank. These bounds were then
used to prove quantitative analogs of the SG theorem. Informally, a design matrix
is a matrix in which the supports of different columns are small relative to the
size of each support. This justifies the name ‘design’ used to describe them. We
now define design matrices formally. For a vector v ∈ Fn , where F is a field, we
denote supp(v) = {i ∈ [n] | vi 6= 0}.

DEFINITION 1.1 (Design Matrix). Let A be an m × n matrix over a field F. Let
R1, . . . , Rm ∈ Fn be the rows of A, and let C1, . . . ,Cn ∈ Fm be the columns of A.
We say that A is a (q, k, t)-design matrix if the following hold.

(1) For all i ∈ [m], |supp(Ri)| 6 q .

(2) For all j ∈ [n], |supp(C j)| > k.

(3) For all j1 6= j2 ∈ [n], |supp(C j1) ∩ supp(C j2)| 6 t .

One ‘typical’ setting of the parameters that often arises in applications is when
q is a small constant, m ≈ n2, k ≈ n, and t is a constant. The main result in [2] is
the following rank bound.

THEOREM 1.2 [2]. Let A be an m × n matrix. If A is a (q, k, t)-design matrix,
then

rank(A) > n −
(

qtn
2k

)2

.
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We note here that the difficulty in proving such rank bounds stems partially
from the fact that the only information given is the zero–nonzero pattern of the
matrix. There is no information on the actual values of nonzero entries. For the
aforementioned ‘typical’ setting of the parameters, one get a lower bound of
n−O((n/k)2) on the rank. By improving a key lemma in [2] using a more careful
analysis, we are able to prove the following new bound.

THEOREM 1.3. Let A by an m × n matrix. If A is a (q, k, t)-design matrix, then

rank(A) >
n

1+ q(q−1)mt
nk2

> n −
mtq(q − 1)

k2
.

As a corollary, we get the following.

COROLLARY 1.4. Let A by an m × n matrix. If A is a (q, k, t)-design matrix,
then

rank(A) >
n

1+ q(q−1)t
k

> n −
ntq(q − 1)

k
.

Proof. If m 6 nk, then we are done (substitute m = nk into the bound in
Theorem 1.3). Otherwise, we can remove rows of A until we are left with a new
matrix A′ that has exactly m ′ = nk rows and is such that A′ is also a (q, k, t)-
design matrix (as long as m > nk there has to be a row we can remove and
maintain that each column has at least k nonzeros). Now, apply Theorem 1.3 on
A′ and use the fact that rank(A) > rank(A′).

Here, for the ‘typical’ setting, we get a rank bound of n − O(n/k), which is
asymptotically better then the one obtained in Theorem 1.2.

We also prove a variant of Theorem 1.3 in which q does not appear. Note that, if
each column of A has support of size exactly k, then the total number of nonzero
entries in A is nk. Thus the average size of the support of a row would be nk/m.
In general it can be shown that replacing q with nk/m in Theorem 1.3 would give
a false statement. However, we show that we can replace q with O(nt/k). This
is exactly the average row-support when m = O(k2/t) and, in this regime, the
bound on the rank (which is now independent of q) is tight. (Observe that, for an
m × n matrix that is a (q, k, t) design, if n = Ω(k/t), then m = Ω(k2/t). This
follows by a simple inclusion–exclusion argument on the union of the supports of
any Ω(k/t) columns of A.)

THEOREM 1.5. Let A by an m × n matrix. If A is a (q, k, t)-design matrix with
k 6 nt, then

rank(A) > n −
6mn2t3

k4
.

As before, by replacing m with nk we get the following corollary.
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COROLLARY 1.6. Let A by an m × n matrix. If A is a (q, k, t)-design matrix
with k 6 nt, then

rank(A) > n −
6n3t3

k3
.

Related work. The problem of bounding the rank of matrices with certain patterns
of zeros and nonzeros is not new, and it has been studied in the past in a variety
of contexts. One line of research comes from Hamada’s conjecture [3, 13, 16]. In
this setting, however, the notion of being a design is stricter than the notion we use
in this paper. Another line of research that studies the zero–nonzero patterns of
matrices and their ranks has many applications to graph theory [11]. Rank bounds
on matrices with ‘sign patterns’ of positive and negative entries have also received
a great deal of attention in recent years [12, 22], and it would be interesting to see
if our techniques can say anything meaningful in this setting.

1.2. Square design matrices and monotone rigidity. Theorem 1.5, which
removes the dependence on q , allows us to get meaningful lower bounds on the
rank of square design matrices. The results of [2] did not give anything for such
matrices. Let A be an n × n matrix such that every column has support of size
k ≈
√

n and such that, for every two columns, the size of the intersection of the
supports of the two columns t is O(1). For instance, the zero–nonzero pattern of
the projective plane incidence matrix has this structure. In this case we can obtain
a bound of Ω(n) on the rank of such a matrix—not by applying our rank bound
directly but by applying Theorem 1.5 to the matrix after deleting a linear number
of columns. We note that Theorem 1.5 itself does not give anything for square
matrices and that the gain is obtained by deleting a subset of the columns so that
the change in n affects the overall constants in the bound.

A simple consequence of this result, proved in Section 4, is that, if one takes
the n× n incidence matrix of the projective plane and changes a small number of
1s in the matrix to arbitrary values, then the resulting matrix has high (linear in n)
rank. This can be viewed as a restricted model of the matrix rigidity problem
of Valiant [28]. A matrix is rigid if changing a small number of its positions
cannot decrease its rank by much. Valiant showed that a linear circuit computing
a transformation given by a rigid matrix (say, so that changing n0.01 entries in
each row cannot decrease the rank below n/100) cannot have linear size and
logarithmic depth. Hence, the problem of finding an explicit rigid matrix will
imply circuit lower bounds that are beyond our reach at this point. Our restricted
model allows one to only change positions in the matrix that are nonzero. Even
though this result does not yield any interesting result on circuit lower bounds, we
find it encouraging in that it gives a way to control the rank under some type of
perturbations. The full details are given in Section 4.
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1.3. Configurations with many collinear triples. Given a set of points v1, . . . ,

vn ∈ Cd , we call a line that passes through exactly two of the points of the set an
ordinary line. A line passing through at least three points is called special. We
will use dim(v1, . . . , vn) to denote the dimension of the linear span of v1, . . . , vn ,
and we denote by affine-dim(v1, . . . , vn) the dimension of the affine span of v1,

. . . , vn (that is, the minimum r such that v1, . . . , vn are contained in a shift of a
linear subspace of dimension r ).

The main geometric application studied in [2] was to extend the SG theorem to
configurations of points termed δ-SG configurations.

DEFINITION 1.7 (δ-SG configuration). We say that a set of points v1, v2, . . . ,

vn ∈ Cd is a δ-SG configuration if, for every vi , i ∈ [n], at least δ(n − 1) of
the remaining points lie on special lines through vi .

Setting δ = 1, we can state the original SG theorem as saying that any 1-SG
configuration v1, . . . , vn (over R) has affine-dim(v1, . . . , vn) 6 1 (that is, is
contained in a line). Kelly’s theorem [18] obtains the bound affine-dim(v1, . . . ,

vn) 6 2 for 1-SG configurations over C (the bound 2 is tight in this case). The
following theorem, proved in [2], gives a generalization of Kelly’s theorem to
δ-SG configurations.

THEOREM 1.8 [2]. Let V = {v1, . . . , vn} ⊂ Cd be a δ-SG configuration. Then

affine-dim(v1, . . . , vn) 6 13/δ2.

Moreover, if δ = 1, then affine-dim(v1, . . . , vn) 6 9.

There are two shortcomings of this theorem. The first is the quadratic
dependence on δ. Placing the points on 1/δ lines in general position, one
can construct a δ-SG configuration with dimensionΩ(1/δ). It was left as an open
question in [2] to close this quadratic gap between the lower and upper bounds
on the dimension of δ-SG configurations. The second issue is that one does not
recover Kelly’s theorem from the proof of [2], but only an inferior bound of 9 on
the dimension. We are able to correct both of these issues.

THEOREM 1.9. Let V = {v1, . . . , vn} ⊂ Cd be a δ-SG configuration. Then

affine-dim(v1, . . . , vn) 6 12/δ.

Moreover, if δ = 1, then affine-dim(v1, . . . , vn) 6 2.

There are two known proofs of Kelly’s theorem. Kelly’s original proof,
answering a question by Serre, used deep results from algebraic geometry. An
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elementary proof was recently found by Elkies et al. [9]. Our proof is conceptually
very different from both of these, and uses only elementary linear algebra.

Theorem 5.1 is proved, as in [2], by reduction to the rank bound for design
matrices. One constructs a design matrix whose co-rank bounds the dimension of
the configuration and then applies one of the bounds on the rank of these matrices.

Average-case version. A natural variant on the definition of a δ-SG configuration
is to only require the presence of many pairs of points on special lines (instead
of requiring each point to belong to many such pairs). In [2], the following was
shown.

THEOREM 1.10 [2]. Let V = {v1, . . . , vn} ⊂ Cd be a set of n points such that at
least δn2 (unordered) pairs of them lie on special lines. Then there exists a subset
V ′ ⊂ V such that |V ′| > (δ/6)n and such that V ′ is a δ-SG configuration.

Combining this result with our improved bound on the dimension of δ-SG
configurations, we get the following improvement to a theorem from [2] (we do
not know if this bound is tight).

COROLLARY 1.11. Let V = {v1, . . . , vn} ⊂ Cd be a set of n distinct points.
Suppose that there are at least δn2 unordered pairs of points in V that lie on
a special line. Then there exists a subset V ′ ⊂ V such that |V ′| > (δ/6)n and
affine-dim(V ′) 6 O(1/δ).

1.4. Flats of higher dimension. A k-flat is an affine subspace of dimension k.
Let fl(v1, . . . , vk) denote the flat spanned by these k points (it can have dimension
at most k−1). We call v1, . . . , vk independent if their flat is of dimension k−1, and
say that v1, . . . , vk are dependent otherwise. Considering some fixed finite subset
V ⊂ Cd of size n, we call a k-flat ordinary if its intersection with V is contained
in the union of a (k − 1)-flat and a single point (this agrees with the definition of
an ordinary line when k = 1). A k-flat is elementary if its intersection with V has
exactly k + 1 points. Notice that for k = 1 (when flats are lines) the two notions
of ordinary and elementary coincide.

The next definition generalizes the notion of a δ-SG configuration for higher-
dimensional flats in two different ways (using ordinary/elementary flats). For
k = 1 both definitions coincide.

DEFINITION 1.12 (δ-SGk , δ-SG∗k). The set V is a δ-SG∗k configuration if for
every independent v1, . . . , vk ∈ V there are at least δn points u ∈ V such that
either u ∈ fl(v1, . . . , vk) or the k-flat fl(v1, . . . , vk, u) contains a point w ∈ V
outside fl(v1, . . . , vk) ∪ {u}. The set V is a δ-SGk configuration if for every
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independent v1, . . . , vk ∈ V there are at least δn points u ∈ V such that either u ∈
fl(v1, . . . , vk) or the k-flat fl(v1, . . . , vk, u) is not elementary. Notice that a δ-SG∗k
configuration is also a δ-SGk configuration, and that for k = 1 both are the same.

In [2], the following theorem was proved.

THEOREM 1.13 [2]. Let V and V ∗ be a δ-SGk and a δ-SG∗k configuration,
respectively, in Cd . Then, the following hold.

(1) affine-dim(V ∗) 6 O
(
(k/δ)2

)
.

(2) affine-dim(V ) 6 2Ck
/δ2, where C > 0 is a universal constant.

Prior to their result, the only known bound for configurations with many
special k-flats was a result, proved by Hansen [14] and by Bonnice and
Edelstein [5], which gives a bound of O(k) on the dimension of a 1-SGk (or
1-SG∗k) configuration over the reals. Since Theorem 1.13 is proved in a black-box
manner using the result for δ-SG configurations, we can plug-in our improvement,
given in Theorem 5.1, to obtain the following.

THEOREM 1.14. Let V and V ∗ be a δ-SGk and a δ-SG∗k configuration,
respectively, in Cd . Then:

(1) affine-dim(V ∗) 6 O
(
k/δ

)
.

(2) affine-dim(V ) 6 C k/δ, where C > 0 is a universal constant.

Notice that, whereas the improvement for δ-SG∗k configurations is only
quadratic, the improvement for δ − SGk configurations is exponential (this is
due to the way the basic bound is amplified in the induction on k). The proof of
this theorem is identical to the proof of Theorem 1.13 appearing in [2], only with
Theorem 1.8 replaced by Theorem 5.1. For completeness, we give the details in
Section 5.2.

1.5. A variation on Freiman’s lemma. Consider a finite set A in some abelian
group. One can define the sumset A+ A = {a1+a2 | a1, a2 ∈ A} in a natural way.
A well-known result in additive combinatorics is the following lemma, known as
Freiman’s lemma, which derives structural information on A, given bounds on the
size of A + A (we are not aware of any version of this lemma over the complex
numbers).

LEMMA 1.15 (Freiman’s Lemma. See [27]). Let A be a finite subset of Rd , and
suppose that |A + A| 6 K |A|. Then A is contained in a linear subspace of
dimension at most bK − 1c.
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Clearly, the condition |A + A| 6 K |A| can be replaced by |{(a1 + a2)/2 | a1,

a2 ∈ A}| 6 K |A|, where we replace sums with midpoints. Surprisingly enough,
the original proof of this lemma works also when we replace midpoints with any
point on the line segment connecting the two points. More formally, for two sets
A, B ⊂ Rd and any function f : A × B 7→ Rd , we can define A+ f B = { f (a,
b) | a ∈ A, b ∈ B}. Then, as long as f (a, b) is on the line segment connecting
a, b (and is different from a, b), we get the same conclusion as in Lemma 1.15,
assuming that |A+ f B| 6 K |A|.

Intuitively, our results for δ-SG configurations are of a similar flavor since
the assumption of Freiman’s lemma (in its generalized form just stated) implies
the existence of many pairs of points on special lines. We are able to use our
techniques to derive the following theorem (whose proof appears in Section 6).

THEOREM 1.16. Let A be a finite subset of Cd , and let f : A × A 7→ Cd be any
function such that for all a1 6= a2 ∈ A we have f (a1, a2) = αa1 + (1 − α)a2 for
some α = α(a1, a2) : A×A 7→∈ C\{0, 1} (that is, f (a1, a2) is on the line passing
through a1, a2 minus the two points a1, a2). Suppose that

|A+ f A| 6 K · A.

Then dim(A) 6 O(K 2).

This theorem relaxes the conditions of Freiman’s lemma by allowing (a) points
in complex space and (b) the value of f (a1, a2) to be outside the convex hull of
a1, a2. On the other hand, we get a worse bound of O(K 2) instead of O(K ). We
do not know if this quadratic loss is needed or not.

1.6. Organization. In Section 2, we introduce some preliminaries related to
the technique of matrix scaling. In Section 3, we prove Theorem 1.3, and
Theorem 1.5. The rank bound for square design matrices and the application for
monotone linear circuits is given in Section 4. In Section 5, we prove our main
application, Theorem 5.1. In Section 5.2, we prove the high-dimensional variant.
In Section 6, we prove Theorem 1.16.

2. Preliminaries—matrix scaling

One of the most important ingredients in the proof of the rank bound for design
matrices is the notion of matrix scaling. Informally, the matrix scaling theorem
states that, if a matrix does not have any large zero submatrices, then one can
multiply the rows and columns of the matrix by nonzero scalars so that all the
row sums are equal and all the column sums are equal (assuming the entries are
nonnegative).
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The technique of matrix scaling originated in a paper of Sinkhorn [25] and
has been widely studied since then (see [19] for more background). It was used
in [2] for the first time to study design matrices, and we build upon their work and
extend it.

We first set up some notation. For a complex matrix X , we let X ∗ denote the
matrix X conjugated and transposed. Also we let X i j denote the (i, j) entry of
X . For two complex vectors u, v ∈ Cm , we denote their inner product by 〈u,
v〉 =

∑m
i=1 ui · v j , and let ‖u‖ =

√
〈u, u〉 denote the `2 norm of the complex

vector u.

DEFINITION 2.1 (Matrix Scaling). Let A be an m × n complex matrix. Let ρ ∈
Cm, γ ∈ Cn be two complex vectors with all entries nonzero. We denote by

SC(A, ρ, γ )

the matrix obtained from A by multiplying the (i, j)th element of A by ρi · γ j .
We say that two matrices A, B of the same dimensions are a scaling of each
other if there exist nonzero vectors ρ, γ such that B = SC(A, ρ, γ ). It is easy to
check that this is an equivalence relation. We refer to the elements of the vector
ρ as the row scaling coefficients and to the elements of γ as the column scaling
coefficients. Notice that two matrices which are a scaling of each other have the
same rank and the same pattern of zero and nonzero entries.

Below, we define a property of matrices that gives sufficient conditions for
finding a scaling of a matrix which has certain row and column sums.

DEFINITION 2.2 (Property-S). Let A be an m×n matrix over some field. We say
that A satisfies Property-S if for every zero submatrix of A of size a × b it holds
that

a
m
+

b
n
6 1. (2.1)

For example, a square matrix has Property-S if it has a nonzero generalized
diagonal. Also, notice that this property is maintained under concatenation (say,
putting two matrices with the same number of columns one under the other). The
following theorem is the main tool we will use. Its proof uses ideas from convex
optimization, but we will only need to use it as a black box.

THEOREM 2.3 (Matrix Scaling Theorem, Theorem 3 in [23]). Let A be an m×n
real matrix with nonnegative entries which satisfies Property-S. Then, for every
ε > 0, there exists a scaling A′ of A such that the sum of each row of A′ is at most
1+ ε and the sum of each column of A′ is at least m/n− ε. Moreover, the scaling
coefficients used to obtain A′ are all positive real numbers.
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In our proof we will use the following easy corollary of the above theorem that
appeared in [2]. This corollary is obtained by applying the matrix scaling theorem
to the matrix obtained by squaring all entries of the original matrix.

COROLLARY 2.4 (Corollary from [2]). Let A = (ai j) be an m×n complex matrix
which satisfies Property-S. Then, for every ε > 0, there exists a scaling A′ = (a′i j)

of A such that, for every i ∈ [m],∑
j∈[n]

|a′i j |
2 6 1+ ε,

and, for every j ∈ [n], ∑
i∈[m]

|a′i j |
2 > m/n − ε.

3. Proof of the rank bound

In this section, we will present the proofs for Theorem 1.3 and Theorem 1.5.
The proof follows the same general outline as the one appearing in [2].

Step 1—scaling. Given the design matrix A, we construct a scaling A′ of A where
every column has large `2 norm and every row has small `2 norm. Since A
need not satisfy Property-S, we are not be able to apply Corollary 2.4 directly.
Instead, we first find a matrix B whose rows are chosen from the rows of A, with
repetitions, such that no row is chosen too many times. If each row of A occurs
a maximum of c times in B, then we call B a c-cover of A. We can then apply
Corollary 2.4 to get a scaling of B with equal row norms and equal column norms,
and then use the scaling of B to derive a scaling of A with the desired properties.
In [2], B is taken to be a q-cover of A.

Step 2—obtaining a diagonal dominant matrix. Given the scaling A′ of A, we
consider the matrix M = A′∗A′. Clearly all the diagonal entries of M , which
correspond to the squared `2 norms of the columns of A′, are large. We use the
design properties of A, as well as the properties of the scaling, to show that the
sum of squares of the off-diagonal entries of M is small. Matrices such as M are
called ‘diagonal dominant’, and bounding their rank can be done in various ways
(see, for example, [1]). In this step, our calculation gives a tighter analysis of the
bounds of the entries of M , and we are hence able to obtain stronger rank bounds
compared to [2].

3.1. Covering lemmas. The following lemma is implicit in [2], and it shows
how one can find a cover of a matrix A that satisfies Property-S. Recall that a
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matrix B is a c-cover of A if each row of B is a row of A and each row of A
appears at most c times in B.

LEMMA 3.1. Let A by an m × n matrix over C that is a (q, k, t)-design matrix.
Then there exists an nk × n matrix B that is a q-cover of A, and such that B
satisfies Property-S.

Proof sketch. B is constructed as follows. For each i ∈ [n], we let Bi be a k × n
submatrix of A which has no zeros in the i th column. Let B be the nk × n matrix
which is composed of the concatenation all matrices Bi , i ∈ [n].

We now prove a variant of Lemma 3.1 where every row of A appears at most
6nt/k times in B. In some settings, 6nt/k might be smaller than q, and then this
variant might give a potentially stronger rank bound (as stated in Theorem 1.5).
Observe that this rank bound is independent of the parameter q .

LEMMA 3.2. Let A by an m× n matrix over C that is a (q, k, t) design. Suppose
that k 6 nt. Then there exists an nk× n matrix B that is a 6nt/k-cover of A, and
that satisfies Property-S.

Proof. We split the set of n columns of A into ` sets, where ` 6 d2nt/ke, each of
size at most k/2t . Call these sets S1, S2, . . . , S`. For each Si , we will first construct
a matrix Bi which is an (|Si | · k)× n matrix that will be composed of the rows of
A, where each row appears at most twice. The matrix B will be an nk × n matrix
which is composed of all the matrices Bi , 1 6 i 6 `. In other words, the set of
rows of B is the multiset obtained by taking all the rows of all the Bi .

Informally, the matrix Bi is such that, restricted to the columns in Si , it looks
like k copies of |Si |×|Si | nonzero diagonal matrices stacked on top of one another.
The matrix Bi is constructed as follows. For each column j ∈ Si , there are at least
k/2 rows whose j th coordinate is nonzero but whose j ′th coordinate is zero for
every j 6= j ′ ∈ Si . This is because the intersection of the support of any two
columns has size at most t , and there are at most k/2t columns in Si . Thus the
support of each column can intersect the union of the support of all other columns
in Si in at most k/2 locations. For each column of Si , pick some k/2 rows such
that none of the other columns in Si has support which intersects that row, and
add two copies of each of those rows to the matrix Bi . Do this for each column in
Si . It follows immediately from construction that each row of A appears at most
two times in each Bi .

Since each row of A appears at most two times in each Bi , and B is composed
of 6 d2nt/ke such matrices Bi , each row of A appears at most 2d2nt/ke 6
4nt/k + 2 6 6nt/k times in B (using the bound k 6 nt).
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To see that B satisfies property-S, observe that B can be written as the union
of k square n × n matrices each with nonzero entries on the main diagonal. For
each of the n × n matrices, we would take |Si | rows per set Si , where each row
corresponds to one of the columns in Si , such that none of the other columns in
Si has a nonzero entry in that row.

The next lemma shows that one can use a cover of A to find a good scaling
of A. This lemma is also implicit in [2], and we give the proof sketch only for
completeness.

LEMMA 3.3. Let A by an m × n matrix over C, and let B be an nk × n matrix
that is a c-cover of A, and such that B satisfies Property-S. Then, for every ε > 0,
there exists a scaling A′ of A in which each row of A′ has `2 norm at most

√
1+ ε

and each column of A′ has `2 norm at least
√
(k − ε)/c.

Proof sketch. Fix ε > 0, and apply Corollary 2.4 on B to obtain a scaling B ′ of
B such that the `2 norm of each column is at least

√
k − ε, and the `2 norm of

each row is at most
√

1+ ε. We now use this scaling B ′ of B to obtain the scaling
A′ of A. The scaling of the columns used to get A′ is the same as the scaling
coefficients for the columns of B ′. We pick the scaling coefficients of the rows
of A′ as follows. For each row R that appears in A, we look at the occurrences
R1, R2, . . . , Ri of the same row in B and look at the scaling coefficients for those
rows in B ′. Say the coefficients are s1, s2, . . . , si (i 6 c). Then we take max{s1,

. . . , si} to be the scaling coefficient of row R. If the row R does not appear in B at
all, then we pick the scaling coefficient to be such that the final `2 norm of the row
is 1. One can easily verify that A′ is a scaling of A with each row of A′ having `2

norm at most
√

1+ ε and each column having `2 norm at least
√
(k − ε)/c.

3.2. Proof of Theorems 1.3 and 1.5. Before proving the theorems, we prove
two more lemmas. The first lemma is the main new ingredient in our proof that
enables us to get a tighter bound on the entries of the diagonal dominant matrix
M (see proof outline above).

LEMMA 3.4. Let A be an m × n matrix over C. Suppose that each row of A has
`2 norm < α, and suppose that the supports of every two columns of A intersect
in at most t locations. Let M = A∗A. Then∑

i 6= j

|Mi j |
2 6 tmα4.

Moreover, if we know that the size of the support of every row in A is at most q,
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then ∑
i 6= j

|Mi j |
2 6

(
1−

1
q

)
tmα4.

Proof. For 1 6 i 6 n, let Ci denote the i th column of A. Then, applying the
Cauchy–Schwarz inequality, we see that∑

i 6= j

|Mi j |
2
=

∑
i 6= j

|〈Ci ,C j 〉|
2

=

∑
i 6= j

∣∣∣∣ m∑
k=1

Aki Ak j

∣∣∣∣2

6
∑
i 6= j

t
m∑

k=1

|Aki |
2
|Ak j |

2

6 t
m∑

k=1

( n∑
i=1

|Aki |
2

)2

6 tmα4.

When there are at most q nonzero entries per row, we have

t
m∑

k=1

∑
i 6= j

|Aki |
2
|Ak j |

2
= t

m∑
k=1

( n∑
i=1

|Aki |
2

)2

− t
m∑

k=1

( n∑
i=1

|Aki |
4

)

6 t
m∑

k=1

( n∑
i=1

|Aki |
2

)2

− t
m∑

k=1

1
q

( n∑
i=1

|Aki |
2

)2

=

(
1−

1
q

)
t

m∑
k=1

( n∑
i=1

|Aki |
2

)2

6

(
1−

1
q

)
tmα4.

The second lemma is a variant of a folklore lemma on the rank of diagonal
dominant matrices (see, for example, [1]).

LEMMA 3.5. Let M be an n × n Hermitian matrix such that, for each i ∈ [n],
Mi i > L, where L is some positive real number. Then,

rank(M) >
n2 L2

nL2 +
∑

i 6= j |Mi j |
2
.
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Proof. First, note that, without loss of generality, we can assume that Mi i = L
for all i ∈ [n]. If not, we can replace M with a scaling M ′ of M defined as
M ′i j =

L√
Mi i M j j

· Mi j . Since all scaling coefficients are at most 1, we have∑
i 6= j

|M ′i j |
2 6

∑
i 6= j

|Mi j |
2,

and both matrices M and M ′ have the same rank. To bound the rank of M
(assuming that all diagonal elements are equal to L), we denote its (real) nonzero
eigenvalues by λ1, λ2, . . . , λr , where r = rank(M). Then, using

∑n
i, j=1 |Mi j |

2
=∑r

i=1 λ
2
i and convexity of the square function, we get

n2 L2
= tr(M)2 =

( r∑
i=1

λi

)2

6 r
r∑

i=1

λ2
i = r

n∑
i, j=1

|Mi j |
2

= r
(

nL2
+

∑
i 6= j

|Mi j |
2

)
.

Rearranging, we get the required bound on r .

Proof of Theorem 1.3. Let A be an (q, k, t)-design matrix, and fix some ε > 0.
Using Lemmas 3.1 and 3.3, we obtain a scaling A′ of A where each row of A′

has `2 norm at most
√

1+ ε and each column has `2 norm at least
√
(k − ε)/q.

Let M = A′∗A′. Then Mi i > (k − ε)/q and, by Lemma 3.4,
∑

i 6= j |Mi j |
2 6

(
1−

1
q

)
tm(1+ ε)2. Applying Lemma 3.5 to M , we get that

rank(M) >
n2
(

k−ε
q

)2

n
(

k−ε
q

)2
+

(
1− 1

q

)
tm(1+ ε)2

.

Taking ε to zero and simplifying, we get

rank(M) >
n

1+ q(q−1)mt
nk2

> n − mtq(q − 1)/k2,

where the second inequality follows from the fact that 1/(1 + x) > 1 − x for all
x . Since rank(A) = rank(A′) > rank(M), Theorem 1.3 follows.

Proof of Theorem 1.5. The only change in the proof of Theorem 1.5 is that instead
of Lemma 3.1 we use Lemma 3.2. By Lemmas 3.1 and 3.3, we get a scaling A′ of
A where each row of A′ has `2 norm at most

√
1+ ε and each column has `2 norm
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at least
√
(k − ε)k/6nt . Letting M = A′∗A′ as before, we have Mi i > (k−ε)k/6nt

and, by Lemma 3.4,
∑

i 6= j |Mi j |
2 6

(
1 − 1

q

)
tm(1 + ε)2. Applying Lemma 3.5 as

before, we get
r >

n

1+ 6mnt3

k4

> n − 6mn2t3/k4.

Tight examples for Theorem 1.3. One might hope that the bound of tm in
Theorem 1.3 (where t is the maximum intersection of any two columns) can
be replaced by t̄m, where t̄ is some kind of average of intersections of all
pairs of columns. One attempt towards showing such a statement would be by
introducing another Cauchy–Schwarz inequality after the one used in the proof of
Lemma 3.4. However, this does not seem to help. The resulting bound after the
second Cauchy–Schwarz inequality seems to give a bound of

√∑
i 6= j t2

i j m, which
is worse than tm. To see why max t should not be replaceable with average t in
the final statement of the rank bound is by the example of a square n×n matrix A
with n/s blocks of size s × s arranged along the diagonal. These blocks have all
entries equal to 1, and all entries outside the blocks are zero. Then the rank of this
matrix is n/s. Now, max t equals s. If n is much larger than s, then average t is
much smaller than 1. Now, take this matrix A, randomly pick n/100 columns of
A, and call this new matrix A′. Then we can still have that average t < 1, k = s,
and q = s/100. Plugging it into our rank bound for design matrices (with max
t replaced by average t) will give us a lower bound of Ω(n) on the rank of A′,
whereas we know that the rank of A′ is at most n/s.

4. Rank bound for square design matrices

We start by deriving an easy corollary that bounds the rank of square design
matrices.

THEOREM 4.1. Let A be an n × n matrix that is a (q, k, t)-design matrix. Then
rank(A) = Ω(k4/nt3).

Proof. Delete any n − k4/10nt3 columns of A to get a new matrix A′. Then A′

is an n × k4/10nt3 matrix that is also a (q, k, t) design. Applying Theorem 1.5
to A′, and doing the calculation, we get that rank(A′) > (k4/10nt3

− k4/20nt3).
Thus rank(A) = Ω(k4/nt3).

Note that the incidence matrix of the projective plane of order p is a (p2
+ p+

1) × (p2
+ p + 1) matrix which is a (p, p, 1) design. Thus any square matrix

that has the same zero–nonzero pattern as the incidence matrix of the projective
plane must have linear rank. Such a result was known for the 0–1 valued incidence
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matrix of the projective plane matrix using the argument by Alon [1]. However,
the result above allows us to get a bound on the rank with just the information of
the zero–nonzero pattern. In contrast, over finite fields, the rank of the projective
plane incidence matrix is sublinear in n.

4.1. Monotone rigidity. One of the motivations for proving rank bounds for
matrices, using only information on their support, comes from a longstanding
open problem in complexity theory, known as matrix rigidity. Informally, a matrix
is rigid if one cannot reduce its rank by much by changing a small number of its
entries in each column. More formally, we have the following.

DEFINITION 4.2 (Matrix Rigidity [28]). Let A be an n × n matrix over some
field. We say that A is (r, s)-rigid if A cannot be written as A = L + S with

(1) L a matrix of rank at most r , and

(2) S a matrix with at most s nonzeros per column.

In [28], Valiant showed that, if A is (nα, αn)-rigid (for some constant α > 0),
then a linear circuit (a circuit with fan-in-2 gates, each computing a linear
combination of previously computed gates) computing the mapping x 7→ x t A
cannot have both O(n) size and O(log(n)) depth. Since proving such lower
bounds is beyond the reach of current techniques, constructing an explicit rigid
matrix (over any field) has become a much sought after goal. We refer the reader
to the survey [20] for more background on this longstanding open problem.

Using our results on design matrices, we can construct an explicit matrix that
is highly rigid, as long as one changes only its nonzero entries.

DEFINITION 4.3 (Monotone Rigidity). Let A be an n×n matrix over some field.
We say that A is (r, s)-monotonically rigid if A cannot be written as A = L + S,
with

(1) L a matrix of rank at most r ,

(2) S a matrix with at most s nonzeros per column, and

(3) the support of S contained in that of A (that is, Si j 6= 0 implies that Ai j 6= 0).

The following is an immediate corollary of Theorem 4.1.

COROLLARY 4.4. Let A be an n × n matrix with nonnegative real entries that
is a (q, k, t)-design matrix with k > Ω(

√
n) and t 6 O(1). Then A is (α

√
(n),

αn)-monotonically rigid for some α > 0. For example, one can take A to be the
projective plane incidence matrix.

We observe that this result can be used to derive superlinear lower bounds (via
Valiant’s argument) for monotone circuits, which are circuits that can use linear
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combinations with nonnegative coefficients only. Such lower bounds, however,
can be achieved using much simpler arguments (in fact, much stronger lower
bounds of the form ≈ n1.5). We are not aware, however, of a simple way to
construct monotonically rigid matrices.

5. Proof of the rank bounds for point configurations

We now restate and prove Theorem 5.1. The case of δ = 1 is analyzed in the
next subsection.

THEOREM 5.1. Let V = {v1, . . . , vn} ⊂ Cd be a δ-SG configuration. Then

affine-dim(v1, . . . , vn) 6 12/δ.

Moreover, if δ = 1, then affine-dim(v1, . . . , vn) 6 2.

Proof. Suppose that v1, . . . , vn ∈ Cd are a δ-SG configuration. Let V be the n×d
matrix whose i th row is the vector vi . By shifting the points so that vi 6= 0 for all
i ∈ [n], we have

affine-dim{v1, . . . , vn} = dim{v1, . . . , vn} − 1 = rank(V )− 1.

(The difference of 1 between affine and linear dimension will matter only in the
δ = 1 case.)

Thus we want to upper bound the rank of V . To do so, we will construct an
m × n design matrix A such that AV = 0. Then we will use the design properties
of A to argue that the rank of A must be high, which in turn implies that the rank
of V must be small. The following lemma is implicit in [2], and we include its
proof sketch here for completeness.

LEMMA 5.2. Let v1, v2, . . . , vn be a δ-SG configuration. Let V be the n × d
matrix whose i th row is the vector vi . Then there exists an m × n matrix A such
that A is a (3, 3k, 6)-design matrix with k = dδ(n − 1)e, every row of A has
support of size exactly 3, and such that AV = 0.

Proof sketch. A result of [15] on the existence of diagonal Latin squares implies
that for all r > 3 there exists a set T ⊂ [r ]3 of r 2

− r triples that satisfies the
following properties.

(1) Each triple (t1, t2, t3) ∈ T is of three distinct elements.

(2) For each i ∈ [r ] there are exactly 3(r − 1) triples in T containing i as an
element.

(3) For every pair i, j ∈ [r ] of distinct elements there are at most six triples in T
which contain both i and j as elements.
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Let L denote the set of all special lines in the configuration. Let L i be a subset
of L containing lines passing through vi . For each ` ∈ L, let V` denote the set
of points in the configuration which lie on the line `. Then |V`| > 3, and we
can assign to it a family of triples T` ⊂ V 3

` satisfying the three properties above.
We now construct the matrix A by going over all special lines ` ∈ L, and for
each triple t = (i, j, k) ∈ T` adding as a row of A a vector with three nonzero
coefficients in positions i, j, k, corresponding to the linear dependency among
the collinear vectors vi , v j , vk so that we have AV = 0. We now argue that the
matrix A is a (3, 3k, 6)-design matrix as follows. The number of nonzeros in each
row is exactly three, by construction. For each vi , there are at least k = dδ(n−1)e
points (other than vi ) on special lines through vi . Summing over all of these lines
we get that vi appears in at least 3k triples, and so the i th column of A will contain
at least 3k nonzeros. Every distinct pair of points vi , v j determine a unique line
and so, by construction, can appear in at most six triples together.

Given this lemma and our rank bounds from the previous section, the proof of
Theorem 5.1 follows quite easily.

Proof of Theorem 5.1. By Corollary 1.4,

rank(A) >
n

1+ q(q−1)t
k

>
n

1+ 3·2·6
3dδ(n−1)e

>
n

1+ 12
δn−1

.

Now,
n

1+ 12
δn−1

= n −
12n
δn + 9

> n −
12
δ
.

Hence,

affine-dim{v1, v2, . . . , vn} = rank(V )− 1 6 n − rank(A) <
12
δ
.

5.1. The case of δ = 1: Kelly’s theorem. We now describe how to obtain the
tight bound of 2 on the affine dimension when δ = 1. In this scenario, every pair
of points is on a special line. We start with the following simple claim.

CLAIM 5.3. Let A be an m × n matrix such that A is a (q, k, t)-design matrix
and such that the support of each row in A is exactly q. Then m

(q
2

)
6
(n

2

)
t .

Proof. We count the number of pairs of locations in the matrix which are in the
same row and are both nonzero. Counting once by rows, we get that this quantity
is equal to m

(q
2

)
. On the other hand, counting by columns (going over all pairs of

columns), we get an upper bound of
(n

2

)
t , since two columns intersect in at most t

places.
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Applying Lemma 5.2, we get an m × n matrix A which is a (3, 3(n − 1), 6)-
design matrix. By the above claim we have that m 6 n(n−1). Using Theorem 1.3,
we get that

rank(A) >
n

1+ 3·2·n(n−1)·6
n(3(n−1))2

=
n

1+ 4
n−1

=
n(n − 1)

n + 3
> n − 4.

Hence,
rank(V ) 6 n − rank(A) < 4.

Thus
dim{v1, v2, . . . , vn} = rank(V ) 6 3,

and
affine-dim{v1, v2, . . . , vn} 6 2.

5.2. Proof of high-dimensional variant. We now restate and prove Theo-
rem 1.14.

THEOREM 5.4. Let V and V ∗ be a δ-SGk and a δ-SG∗k configuration,
respectively, in Cd . Then the following hold.

(1) affine-dim(V ∗) 6 O
(
k/δ

)
.

(2) affine-dim(V ) 6 C k/δ, where C > 0 is a universal constant.

Fix some point v0 ∈ V . By a normalization with respect to v0 we mean an
affine transformation N : Cd

7→ Cd which first moves v0 to zero, then picks a
hyperplane H such that no point in V (after the shift) is parallel to H (that is,
has inner product zero with the orthogonal vector to H ), and finally multiplies
each point (other than zero) by a constant such that it is in H . It is easy to see
(see [2]) that, for such a mapping N , we have that v0, v1, . . . , vk are dependent iff
N (v1), . . . , N (vk) are dependent.

We will prove the theorem in two parts (corresponding to the two cases of V
and V ∗). We denote by f (δ, k) the maximum d such that there exists a δ-SG∗k
configuration of dimensions d . We denote by g(δ, k) the maximum d such that
there exists a δ-SGk configuration of dimension d .

Proof for δ-SG∗k configurations. The proof is by induction on k. For k = 1, we
know that f (δ, 1) 6 c/δ, with c > 1 a universal constant. Suppose that k > 1.
We separate the proof into two cases. The first case is when V ∗ is a (δ/(2k))-
SG1 configuration, and we are done, using the bound on k = 1. In the other case,
there is some point v0 ∈ V ∗ such that the size of the set of points on special lines
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through v0 is at most δ/(2k). Let S denote the set of points on special lines through
v0. Thus |S| < δn/(2k). Let N : Cd

7→ Cd be a normalization with respect to v0.
Notice that for points v 6∈ S the image N (v) determines v. Similarly, all points on
some special line map to the same point via N .

Our goal is to show that V ′ = N (V ∗ \ {v0}) is a ((1 − 1/(2k))δ)-SG∗k−1
configuration (after eliminating multiplicities from V ′). This will complete the
proof, since dim(V ∗) 6 dim(V ′)+ 1. Indeed, if this is the case, we have

f (δ, k) 6 max{2c(k/δ), f ((1− 1/(2k))δ, k − 1)+ 1},

and, by induction, we have f (δ, k) 6 4c(k/δ).
Fix v′1, . . . , v

′

k−1 ∈ V ′ to be k − 1 independent points (if no such tuple exists,
then V ′ is trivially a 1-SG∗k−1 configuration). Let v1, . . . , vk−1 ∈ V ∗ be (necessarily
independent) points such that N (vi) = v′i for i ∈ [k − 1]. Thus, there is a set
U ⊂ V ∗ of size at least δn such that for every u ∈ U either u ∈ fl(v0, v1, . . . ,

vk−1) or the k-flat fl(v0, v1, . . . , vk−1, u) contains a point w outside fl(v0, v1, . . . ,

vk−1) ∪ {u}.
Let Ũ = U \ S such that N is invertible on Ũ and

|Ũ | > |U | − |S| > (1− 1/(2k))δn.

Suppose that u ∈ Ũ , and let u ′ = N (u). If u ∈ fl(v0, v1, . . . , vk−1), then u ′ is
in fl(v′1, . . . , v

′

k−1). Otherwise, fl(v0, v1, . . . , vk−1, u) contains a point w outside
fl(v0, v1, . . . , vk−1) ∪ {u}. Let w′ = N (w). We will show that w′ is (a) contained
in the (k − 1)-flat fl(v′1, . . . , v

′

k−1, u ′) and (b) is outside fl(v′1, . . . , v
′

k−1) ∪ {u
′
}.

Property (a) follows, since v0, v1, . . . , vk−1, u, w are dependent, and so v′1, . . . ,
v′k−1, u ′, w′ are also dependent. To show (b), observe first that the points v′1, . . . ,
v′k−1, u ′ are independent (since v0, v1, . . . , vk−1, u are independent), and so u ′ is
not in fl(v′1, . . . , v

′

k−1). We also need to show that w′ 6= u ′, but this follows from
the fact that u 6= w, and so w′ = N (w) 6= N (u) = u ′, since N is invertible on Ũ
and u ∈ Ũ . Since

|N (Ũ )| = |Ũ | > (1− 1/(2k))δn > (1− 1/(2k))δ|V ′|,

the proof is complete.

We now prove the second part of Theorem 1.14.

Proof for δ-SGk configurations. The proof follows by induction on k (the case
k = 1 is given by Theorem 5.1). Suppose that k > 1. Suppose that dim(V ) > g(δ,
k). We want to show that there exist k independent points v1, . . . , vk such that for
at least 1− δ fraction of the points w ∈ V we have that w is not in fl(v1, . . . , vk)
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and the flat fl(v1, . . . , vk, w) is elementary (that is, does not contain any other
point).

Let k ′ = g(1, k − 1). Since we are trying to show by induction that g(δ, k) 6
C k/δ for some absolute constant C , we can pick C so that g(δ, k) > f (δ, k ′+ 1).
Therefore, we can find k ′ + 1 independent points v1, . . . , vk′+1 such that there is
a set U ⊂ V of size at least (1− δ)n such that for every u ∈ U we have that u is
not in fl(v1, . . . , vk′+1) and the (k ′ + 1)-flat fl(v1, . . . , vk′+1, u) contains only one
point, namely u, outside fl(v1, . . . , vk′+1).

We now apply the inductive hypothesis on the set V ∩ fl(v1, . . . , vk′+1) which
has dimension at least k ′ = g(1, k − 1). This gives us k independent points v′1,
. . . , v′k that define an elementary (k − 1)-flat fl(v′1, . . . , v

′

k). (Saying that V is not
1-SGk−1 is the same as saying that it contains an elementary (k − 1)-flat). Joining
any of the points u ∈ U to v′1, . . . , v

′

k gives us an elementary k-flat, and so the
theorem is proved.

6. Proof of the variation on Freiman’s lemma

In this section, we prove Theorem 1.16. Let A and f : A × A 7→ Cd be as in
the statement of the theorem. The proof is divided into two claims.

CLAIM 6.1. There exists a subset A′ ⊂ A with |A| > Ω(|A|/K ) and dim(A′) 6
O(K 2).

Proof. Let B = A+ f A so that for every pair (a, a′) ∈ A × A there exists some
point b ∈ B such that f (a, a′) = b. Thus, on average, a point b ∈ B has |A|2/|B|
pairs of A× A mapping to it via the function f . Let B1 be the set of all points in B
that have at least |A|2/10|B| pairs that map to it. Let S′ be the set of pairs of A×A
that map to some element of B1. Then |S′| > |A|2/2. Consider B2 = B1 ∪ A, and
observe that |B2| 6 O(K |A|). Now, each pair in S′ is on a special line determined
by B2. Thus, by Corollary 1.11, for α = |S′|/|B2|

2, we get that there is a subset
BL D ⊂ B2 of dimension at most O(1/α) = O(K 2) and size bounded by

|BL D| > Ω(α|B2|) > Ω(|A|2/|B2|) > Ω(|A|/K ).

If |BL D ∩ A| > |BL D|/2, then take A′ = BL D ∩ A, and the claim is proved.
Otherwise, consider the set B ′L D = BL D \ A ⊂ B1 so that |B ′L D| > |BL D|/2. Each
point of B ′L D has at least |A|2/10|B| pairs of A× A that map to it via the function
f . For a ∈ A, we denote

M(a) = {a′ ∈ A | f (a, a′) ∈ B ′L D}.
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Then the average of |M(a)| (taken over all a ∈ A) is at least

1
|A|

∑
a∈A

|M(a)| >
|B ′L D| · |A|

2

10|B| · |A|
= Ω(|A|/K 2).

Call a point a ∈ A a heavy point if

|M(a)| >
|B ′L D| · |A|

100|B|
> Ω(|A|/K 2).

Case 1. Some point a∗ ∈ A has

|M(a∗)| >
K |B ′L D| · |A|

100|B|
= Ω(|A|/K ).

In this case, consider the set B ′′L D = B ′L D ∪ {a
∗
}. Clearly this set has dimension

at most dim(B ′L D)+ 1 = O(1/α)+ 1 = O(K 2). Also, the span of B ′′L D contains
the set M(a∗). Thus, there are Ω(A/K ) points of A that are contained in a set of
dimension O(K 2). This completes the proof of this case.

Case 2. In this case, we have that

|M(a)| 6
K |B ′L D| · |A|

100|B|

for all a ∈ A and, in particular, for all heavy points. Therefore, there must be
at least Ω(|A|/K ) heavy points (otherwise, the average of |M(a)| would be too
small). Call the set of heavy points H , so that |H | > Ω(|A|/K ). Pick a1 ∈ H ,
and consider R1 = span(B ′L D ∪ {a1}) ∩ A. Then R1 contains M(a1), which has
sizeΩ(|A|/K 2), and has dimension at most dim(B ′L D)+ 1 = O(K 2). If H 6⊂ R1,
we can pick some a2 ∈ H \ R1 and define R2 = span(B ′L D ∪ {a1, a2}) ∩ A. The
dimension of R2 is at most dim(B ′L D)+2, and its size is at least |R1|+Ω(|A|/K 2),
since M(a2)∩M(a1)= ∅, or else a2 would be in the span of B ′L D∪{a1}. Continuing
in this manner (that is, picking a3, a4, . . .) for at most K steps or until we run out
of elements of H (which has size Ω(|A|/K )), we obtain a subset A′ ⊂ A of
dimension at most O(K 2)+ K = O(K 2) containing at least Ω(A/K ) elements.
This completes the proof of the claim.

CLAIM 6.2. We have dim(A) 6 O(K 2).

Proof. Let A′ ⊂ A be a subset of size Ω(|A|/K ) and dimension O(K 2) given
by the previous claim. Let T be a minimal set in A \ A′ for which span(T ∪ A′)
contains A. Notice that this implies that the points in T are linearly independent
and that

dim(A′ ∪ T ) = dim(A′)+ |T |.
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Observe that, for every a1 6= a2 ∈ T , there do not exist a′1 6= a′2 ∈ A′ and b ∈ B
such that

f (a1, a′1) = f (a2, a′2) = b.

This is because otherwise {a1, a2} ⊆ span(A′ ∪ {b}), which means that dim({a1,

a2} ∪ A′) 6 dim(A′)+ 1, which violates the properties of T . Therefore,

|T | · |A′| 6 |B|.

This gives |T | 6 O(K 2), and so dim(A) 6 dim(A′)+ T = O(K 2).

COROLLARY 6.3. If a set A ⊂ Rn defines at most K |A| directions, then
dim(A) 6 O(K 2).

Proof. Notice that the proof of the above theorem works also if the function f is
allowed to take values in projective space. Since the point at infinity on the line
through a, b is the direction a–b, we get the required consequence.
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