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THE PROFILE NEAR QUENCHING TIME FOR THE SOLUTION
OF A SINGULAR SEMILINEAR HEAT EQUATION*

by JONG-SHENQ GUO and BEI HU
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We study the profile near quenching time for the solutions of the first and second initial boundary value
problems (IBVP) for a semilinear heat equation. Under certain conditions, one-point quenching occurs for
both first and second IBVPs. Furthermore, we derive the asymptotic self-similar quenching rate for both
problems.

1991 Mathematics subject classification: 35B35, 35B40, 35K55.

1. Introduction

In this paper we consider the following semilinear heat equation:

du tfu b du 1 ,

with the initial condition

u(x, 0) = uo(x) for x e (0, a), (1.2)

where a > 0 is a constant. Throughout this paper, we assume that

b<\, P>0, and 0 < uo(x) < 1 - c0 (0 < x < 1) (1.3)

for some c0 > 0.
Denote the operator £ by

b
C[u] = ut-uxx--ux.

Then the adjoint operator of £[u] = 0 is given by
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438 JONG-SHENQ GUO AND BEI HU

The above equation arises in many applications in stochastic processes. For example,
the function v is the density function for a Markov process which is the limit of a
sequence of random walks. Here b is some limit of the second conditional moment (cf.
[17]). It is the Fokker-Planck equation of a singular diffusion in which b is related to
the drift (cf. [7]). Also, Cu = 0 is equivalent to the following degenerate elliptic-
parabolic equation

b+l

introduced by Fichera (cf. [8]), through the transformation

x2

z = —,w(z,t) = u(x,t).

For more references about the operator £, we refer the reader to the paper of
Alexiades [1].

The system (1.1)-(1.2) is supplemented with either the Dirichlet boundary
conditions

u(0, t) = u(a, t) = 0 f o r f > 0 , (1.4)

or the Dirichlet and Neumann boundary conditions

u(0, t) = 0, ^ (a, t) = 0 for t > 0. (1.5)

Throughout this paper, we shall refer to the system (1.1)—(1.2), (1.4) as the First
IBVP, and the system (l.l)-(l.2), (1.5) as the Second IBVP.

We shall assume that the initial datum «o(x) is smooth, say, C3[0, a], and satisfies

»o'W + ^u^(x) + ( i M
1

w ) < , > O for x 6(0, a). (1.6)

For the First IBVP, we assume that there exists c* e (0, a) such that

uo(O) = O, uQ(a) = 0, (1.7)

i4,(x)>0 f o r O < x < c ' , u(,(x)<0 for c* < x < a. (1.8)

For the Second IBVP, we assume that

0, ut,(a) = 0, (1.9)

> 0 for 0 < x < a. (1.10)
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The solution to either First or Second IBVP is unique (see [1]). We say that a
solution quenches if its maximum reaches 1 at some finite time. Let T be the quenching
time. A point c is said to be a quenching point if there is a sequence {(xn, tn)} such that
xn -> c, tn ->• T, and u(xn, tn) -+ 1 as n -+ oo.

The quenching problem for parabolic equations has been studied by many authors,
since the work of Kawarada [15] in 1975. We refer the reader to the survey papers
Chan [3,4] and Levine [18,19] for more references.

The quenching may or may not occur, depending on the length a and the initial
datum. Throughout this paper, we assume that the quenching occurs at t — T. Under
the assumptions (1.6), (1.7) or (1.9), we have

ut(x, t) > 0 for 0 < x < a, 0 < t < T, (1.11)

for either First or Second IBVP. We state our results in terms of the following
theorems.

Theorem 1.1 (First IBVP). Let the assumptions (1.6), (1.7) and (1.8) be in force.
Then we have the following:

(i) There is exactly one quenching point.

(ii) If the quenching point x — cis away from the boundary x — 0 and x = a, then we
have

\im[l-u(x,t)](T-tr=(P+iy, l

t-*T p + 1

uniformly for \x — c\ < C*jT - tfor any positive constant C.

(iii) In particular, for 0 < /? < 1 the quenching point is away from the boundary x = 0
and x = a and therefore (ii) holds in this case.

Theorem 1.2 (Second IBVP). Under the assumptions (1.6), (1.9) and (1.10), there is
exactly one quenching point which occurs necessarily at x = a. Moreover,

uniformly for 0 < a — x < C\jT — tfor any positive constant C.

The new feature of our system is the presence of the convection term involving the
coefficient b/x. It is degenerate at x = 0, and the presence of this term invalidates any
direct reflection argument used in [10] for zero-set analysis for ux. We shall prove,
under certain assumptions, that quenching will not occur at the boundary x •=• 0, and
therefore the coefficient b/x is not degenerate at the quenching point. To prove the
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single-point-quenching for the First IBVP, we modify the reflection technique, and
use a delicate argument in Lemmas 2.2 and 2.3. All of the modifications are necessary
to take care of the asymmetric term introduced by reflecting the b/x term.

We shall give the proof of Theorem 1.1 in Sections 2 and 3. The proof of Theorem
1.2 will be given in Section 4.

2. The first IBVP

Let QT = (0, a) x (0, T). The following lemma is crucial for studying the quenching
set. Since no boundary condition is needed in the lemma, it is valid for both the First
and Second IBVPs.

Lemma A. Suppose that ux > 0 (or ux < 0) in the set Q — (d, e) x (t0, T), where
0 < d < e < a and 0 < t0 < T. Suppose also that u, > 0 in the set Q. Then any point c in
[d, e) (or (d, e], respectively) cannot be a quenching point.

Proof. We only consider the case that ux > 0 in Q. Suppose that there is a
quenching point c e [d, e). Recall that u, > 0 in QT. Then we have

limu(x, t) = l (2.12)

uniformly for x in compact subset of (c, e). Take any /, m so that c < I < m < e. We
consider the function

J(x, t) = ux(x, t) - nh(x)

in S = (I, m) x (t,, T), where the function h(x) is given by

( (* - If, l<x<l + S
k(x), l + d<x<m-5

(m — x)2, m — S < x < m,
with n > 0, 8 > 0, and t, e (t0, T) to be determined. Here the function k(x) is chosen
so that h e C2(l, m). We compute that

J, - Jxx -^Jx -

where

P = (h" + ^ ' ) + [/JO - «)-'-' - ^ ] *. (2.14)

We claim that P > 0 in S.
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For / < x < I + 5, we have

For b > 0, it follows from (2.12) that P > 0 in S if t, is chosen sufficiently close to T.
For b < 0, since (x — /)/x < 5//, it follows that P > 0 in S if 5 is chosen sufficiently
small.

Similarly, for m — 5 < x < m, we have

It is trivial that P > 0 in S if b < 0. For 0 < b < 1, we also have P > 0 in S if <5 is
chosen so that 5 < m — 5 and tx is chosen sufficiently close to T.

Finally, for 1 + 5 < x <m — 5, we note that the quantities k'/k and fc"/^ ̂ r e bounded.
Hence

is non-negative if t, is chosen sufficiently close to T.
Fix t,, we can choose r\ so small that J > 0 on the parabolic boundary of S. Hence

it follows from the maximum principle that J > 0 in S, i.e.,

ux(x, t) > r\h{x) in S.

Integrating this inequality from / to m, we reach a contradiction and the lemma
follows. •

We begin the study of the First IBVP with a stronger assumption in place of (1.8),
namely,

i4(x)>0 f o r O < x < c ' , t4(x)<0 fo rc*<x<a . (2.15)

This assumption will be removed at the end of this section.

Lemma 2.1. Let (2.15) be in force. Then for each t e [0, T), there is exactly one point
x = s(t), such that ux(s(t), t) = 0. Furthermore, s e C°°(0, T).

Proof. For each fixed t e [0, T), u(-, t) attains its maximum at an interior point
x = s(t), on which we must have ux(s(t), t) = 0.

We now prove that there is at most one point on which ux = 0. Notice that this is
certainly true for t = 0. Take x = c*/2 so that ux(c'/2, 0) > 0. By continuity, ux(c*/2, t) > 0
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for 0 < t < 5. Notice that ux satisfies the equation

by the maximum principle,

ux(x, t) > 0 for (x, 0 e (0, c*/2) x (0, 5).

(Notice that the equation is singular at x = 0; however, we can always approximate
this system with a nonsingular system and then apply the maximum principle.)
Furthermore, the number of zeros of ux will not increase in the interval x e [c*/2, a] for
t € [0,8) (see, for example, [2,6]). Since the number of zero of ux remains 1 for
t e [0, <5), it follows (see [2,6]) that

uxx(s(t), t) ^ 0 for 0 < t < d,

(if it equals 0 for some t e (0, 5), then the number of zeros of ux must decrease by 1,
which is not the case here) where x = s(t) is the zero of ux, which coincides with the
maximum of u(-, t). Since the solution to the parabolic PDE is C00, we have proved that
s e C°°(0, 8). It is clear that this process can be continued beyond t = S. Now let
(0, T") be the maximal interval on which the lemma is valid, then T* > 5. It is clear
that

ux(x, t) > 0 for 0 < x < s(t), 0 < t < T'

ux(x, t) < 0 for s(t) < x < a, 0 < t < T*.

We claim that T* = T. Suppose that this is not true, then the previous procedure can
be continued beyond t = T*, provided

liminfs(0>0. (2.16)
t-»r«-o

Thus, in order to establish the lemma for all 0 < t < T, it suffices to establish a lower
bound for s(t).

For any small r\ > 0, we let v(x) = Kx2a, where 0 < a < min ( i , 1 ^ ) and K is a
constant. Since «(x, t) is bounded for 0 < t < T — t] (although the bound may depend
on r(), we can take K = K^ to be large enough so that

Kip>\, uo(x)<v(x),

(1 - uy" < 2aX^2°-2(l - b - 2a) for (x, t) € (0, TJ) x (0, T - f/).

Then D(X) is a supersolution in (0, ̂ ) x (0, T — rj) and by the maximum principle

u(x, 0 < Kx2" for (x, t) e (0, ^) x (0, T - rf).
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It follows that

K[s(t)]2° > «(s(t), 0 = m a x u(x, t)>u(^,t)>u(^,5) for 0 < t < T - r\.
xe[0,a] \2 / \2 /

as long as x = s(t) is still well defined. This lower bound for s(t), together with the
continuation argument, implies that T* > T — t\, for any r\ > 0. Since r\ is arbitrary, the
lemma holds. •

Recall that

ux{x, t) > 0 for 0 < x < s(t), 0 < t < T,

ux(x, t) < 0 for s(t) < x < a, 0 < t < T.

The main lemma of this section is the following.

Lemma 2.2. Let (2.15) be in force. Then the limit ofs(t) as t -> T - 0 exists.

Proof. If this is not true, then

0 < a, = lim inf s(t) < a2 = limsups(t) < a. (2.17)
t—T-o i-r-o

We first prove that any x*e[a,,a2] is a quenching point. In fact, for each
x* e(a,,a2). the curve x — s(t) intersects with x = x* infinitely many times. On the
intersection sequence, w(x*, tj) = u(s(tj), tt) takes its maximum, and hence converges to 1
as tj-*- T — 0. Since u, > 0, we conclude that

lim u(x*, 0 = 1 for x* e (alta2).
!-»T-0

We now take x* to be a, + e and a^ — e. It is clear that w(x, t) > min [w(a, + e, t).
w(oj — e, t)]. Hence,

lim w(x, t) = 1
t->r-o

uniformly for x e[a{ + e, a2 — e], for any e > 0. Moreover, by Lemma A, any point in
[0, aWld!, a2] is not a quenching point.

Now take a3 = —!• + —-, a4 = (a3 + fl2)/2 and a5 = (a3 + a4)/2, then

0 < a, < a3 < a5 < a4 < a2 < a.

«i a3 o4 a2

1 • •-+-• • j *• x
O
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We take tj -*• T — 0 so that s(tj) < at + £ for a small e > 0. Consider the function

w(x, t) — u(x, t) - u(2a(t) - x, t) for b{t) < x < a(t), t} < t < T, (2.18)

where b(t) — max(2a(0 -a,a5- (a2 - fli)/2), and a{t) = a5 + K(t - tj). It is clear that

w, - wxx -1 Wx + q(x, t)w = -ux(2a(t) - x, t) T* + 2g(£_x + 2K\. (2.19)

We take K to be large enough so that [j + ^ r j + 2/C] > 0 in {b{t) < x < a(t),
tj <t <T}. We then take tj to be sufficiently close to T so that

a3 < a(t) < a4 for tj < t < T.

Clearly, w = 0 on x = a(t).
Since b(tj) > a, + e > s{tj), we have wx(x, tj) = ux(x, tj) + ux{2a(tj) — x, tj) < 0 for

b{tj) < x < a(tj) and hence w(x, tj) > w(a(tj), tj) = 0 for x e {b(tj), a{tj)).
Finally, on {x = b(t)}, if b(t) = 2a(f) - a, then clearly w(b(t), t) > 0. On the other hand

if b(t) = a5 — (a2 - aO/2, then x = b(t) (for all tj < t < T) are quenching points of u(x, t)
and therefore u(b(t), i) is uniformly close to 1. On the other hand 1 — u(2a(t) — b(i), i)
remains uniformly away from 0. Thus we conclude that w(b(t), t) > 0, for all t} < t < T.

Since a3 < a(t) < a4, the curve x = s(t) must intersect the line segment x = a(t)
infinitely many times. Let t* be the first time of such an intersection, i.e.,

s(t) < a(t) for tj <t <t', s ( f ) = a(tm).

T h e n by definition of s(t), we have ux(2a(t) - x, t) < 0, for b(t) < x < a(i), tj<t<t*.
It follows by the maximum principle that w > 0 for b(t) < x < a(t), ts <t <t*. The
strong maximum principle implies that wx(a(t*), t*) < 0, which is a contradiction. •

We have proved that the limit

s* s lim s(t)

exists. By Lemma A, any point other than s* is not a quenching point. Therefore, we
have proved

Lemma 2.3. There is a single point quenching which occurs at x = s*.

The first order term |ux represents convection. Therefore the following result is
natural. We include this result here although it will not be used in the proof of
Theorem 1.1.

Proposition 2.4. Ifb>0, then x = a is not a quenching point. Ifb<0, then x = 0 is
not a quenching point.
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Proof. We consider two different cases.

Case 1. b > 0.
In this case, we claim that

(2.20)

Thus Lemma 2.3 implies that x = a is not a quenching point.
Let

T
w(x, 0 = w(x, t) - u(2d -x,t) for Id - a < x < d, — <t < T.

Since d = (s(T/2) + a)/2, we have 2d-a = s(T/2). As in the proof of Lemma 2.2, we have
w(x, t) > 0 on the parabolic boundary of the domain G = {2d — a < x < d, T/2 < t < T).

Clearly,

b [b b 1wt - wxx — wx + <l(x> 0 w = -"x(2d — x, 0 - + -r-j in G. (2.21)
L -I

The right-hand side of the above inequality is non-negative if 2d — x > s(t), which is
valid if d > s(t). By our definition of d, we have d > s{T/2). If the estimate d > s{t) is
not valid for all T/2 < t < T, then there must be a t* e (T/2, T) such that

s(t) <d for j < t < t\ s(f) = d.

It follows from the maximum principle that w > 0 in G D [t < t*}. The strong maximum
principle implies that wx(d, t*) < 0, which is a contradiction to ux(s(t*), t*) = 0. There-
fore s(t) < d for T/2 < t < T and (2.20) follows.

Case 2. fc < 0. In this case a similar argument (the singularity at x = 0 does not
cause any problem) shows that

S(t) >
 SHIQ for | < t < T, (2.22)

which implies that x = 0 is not a quenching point. •

Since u, > 0,

tfu b du du , s_»
^ + xYx = Yt-it-u)

> -(1 - u)"p for t > 0, 0 < x < a.
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Since ux < 0 for s(t) < x < a, the above inequality implies

u b i

< - I (1 - uypux dt, (2.23)

< / (1 ~ 9) dg for s(0 < x < a.

It follows that (using Gronwall's inequality in the case b < 0),

ufr, 0 < 2 f-̂ rl ' [^'(l-gyedg for s(t)<x<a. (2.24)

Similarly, since ux < 0 for 0 < x < s(0, we have

- u\(x, t) - / - u2M, t)d£< (1 - si)'3 dg for 0 < x < s(t),
*• Jx C Ju(x,l)

which leads to

nax(0,2*)

— / (l-gy'dg for0<x<5(0. (2.25)

£*).<)
(1 — g)~p dg is bounded if /? < 1. Thus we have

-.-.0

Lemma 2.5. I/O < /? < 1, /Ae/z x = 0 and x = a are not quenching points.

Proof. If x = a is a quenching point, then by Lemma 2.3, lim,^T_os(t) = a.
Therefore (2.24) implies that

\ux(x, 01 < C for s(t) < x < a, T - t « 1.

Therefore

1 = lim sup [u(s(0, 0 - "fa. 0J ̂  l i m SUP C ( a - s(0) = 0,
I-.T-0 <->T-0

which is a contradiction.
Similarly, (2.25) implies that

'Vtx, 01 < C for 0 < x < s(0.
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Since b < 1, we have

C
«(s(0, 0 < /

Jo
»-»«. dx'

0 X'""1-"'"'

which implies that x = 0 is not a quenching point. •

To end this section, we shall establish our theorems without assuming (2.15). We
state this in terms of the following lemma.

Lemma 2.6. (2.15) is valid for u(x, e)for some small e. i.e., there exists c* € (0, a) such
that

ux(x, e) > 0 for 0 < x < c*. ux(x, e) < 0 for c* < x < a. (2.26)

Proof. By approximating the initial datum with the initial datum satisfying (2.15),
we find that ux(x, e) will change sign at most once. The solution u(x, t) is analytic in x
in the interior of the domain. Since ux(x, e) is analytic in x and ux(x, e) # 0, the lemma
follows. •

3. Asymptotic behaviour for the first IBVP

Assume that quenching does not occur at the boundary. Let c € (0, a) be the
quenching point. We define the similarity transformation as in [11,12],

4 ^ , * = - log (T - 0. wCy, s) = (1 - u(x, 0) (T - t)~\ (3.27)y 4 ^
V i — t

where y — 1/(1 + jS). Then w satisfies

ywy + yw w~fi + + ^ wy in Wt, (3.28)

w(y, s) = e" for y = -ce"2, (a - c)e"2 and s > s0, (3.29)

where Wx = {{y, s) | 0 < c + ye'"2 <a,s> s0] and s0 = - log (T).

Lemma 3.1. There is a positive constant A such that w > A in Wu

Proof. Recall that u, > 0 in QT. Since the quenching point is away from the
boundary, there exist a > 0 and 8 > 0 sufficiently small such that u,(x, t)>a on the
parabolic boundary of Q = (5, a — 8) x (8, T). Following [10], we consider the
function

J(x, 0 = u,(x, t) - i,(l - w)-' in Q
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for some positive constant n. By applying the maximum principle, we conclude that
J(x, t) > 0 in Q. Thus the lemma follows. •

Next, we estimate the first derivative of w as follows.

Lemma 3.2. There are positive constants Bx, B2, and B3 such that

\Wy(y,s)\<Bl iffi>\; (3.30)

\Wy(y, 5)| < B2W(1-»/2CK, s)if p< 1; (3.31)

|wy(y, s)\ < B,[l + log w(y, s)] if 0 = 1 (3.32)

forall(y,s)e Wv

Proof. For j? > 1, (2.24)-(2.25) imply that

u\(x, t) < C{[\ - u{s{t), t)]1"' - [1 - «(x, I)]1"'}

< C[l - u(s(t), t)]'"' for ^ < x < a, 0 < t < T,

for some positive constant C. Thus

w,(y, s) = ux(x, t) (T - 0'/2"y < C[min w(y, s)]('-«/2 < C,
y

and (3.30) follows.
Similarly, if 0 < 1, then (2.24)-(2.25) imply that

u2(x, t) < C[l - u(x, t)]'"' for |x - c| < £, 0 < t < T,

and (3.31) follows immediately.
For 0 = 1, (2.24M2.25) imply that

^ J ^ ^ for |x-c |<£ ,0<t<r .

Thus (notice that now y = 1/2),

w(y, s)
wy(y,s) = ux(x,t)<C\og—

Since w(j;, s) is uniformly bounded below, (3.32) follows. •

The following lemma plays the same role as the nondegeneracy lemma for the
corresponding blowup problem ([13, Lemma 3.7]). Here we shall use straightforward
Holder estimates.
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Lemma 3.3. We have

w(0, s)<C for s0 <s < oo. (3.33)

Proof. Take <5 to be small so that c e [23, a - 25]. By Lemma 3.1,

(1 - u(x, 0)~" < C(T - 0""' for 5 < x < a - 5,0 < t < T.

Since y/? = 0/(1 + 0) < 1 and ux is estimated by (2.24)-(2.25), the function

f(x, t) = -ux + [1 - w(x, OF"

satisfies

|/(x, 01 < C(T - tre, yp = -J— < 1. (3.34)

Let

where

v(x,t)= f f G(x -y,t- x)f(y, z) dy dz,
Jo Ji

The estimate (3.34) implies that v is Holder continuous (see [16, Chapter V, Theorem
1.1, p. 419]). For any T/2 < t, < t2 < T,

v(c,tl)-v(c,t2) = Jl +J2+JJt

where

Jx= C f G(c -y,t2- x)f(y, x) dy dx,
J i\-i>i-t\) J t

Ji= f f G(c - y, t, - t)/(y. T) ̂  it,
yi,-(i2-i,)J«

and

J3 = T ('2 "' f [G{c - y, t, - T) - G(c - y, t, - r)]/Cy. x)dyix.
Jo Ji
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Using the bound from (3.34), it is not hard to show that

I-/, I + \J2\ < C{[(T - t, + (t2 - t,))F - (T - t2f] < C(t2

and by the mean value theorem,

•<i-('2-'i)

t2)

- < • > / '
~ "

< C(t2 -

< c(t2 - I,)1"" = C(t2 - tj.

Combining the estimates for Jlt J2 and J}, we obtain

He, t.) - u(c, t2)l < C|t, - t2|». (3.35)

Clearly,

(u - »), - (u - t;)xx = 0 for (x, t) 6 (*, a - 5) x (0, T).

Thus the standard parabolic estimates imply that

max |(u — v),\ < C < oo.

T/2<t<T

Combining this inequality with (3.35), we obtain

«(c, t2) - u(c, t) < C(t2 - t)y, for t<t2<T. (3.36)
Notice that u = (u — v) + v where both (u — v) and v are Holder continuous on
[25, a — 28] x [T/2, T]. The point x = c is a quenching point, therefore by continuity
lim^j-.,,u(c, t) = l- Letting t2 -*• T — 0 in (3.36), we conclude that

1 - «(c, 0 < C(T - t)y, for t < T.

Rewrite this inequality in terms of w, the lemma follows. •
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For all three cases of /?, Lemmas 3.2 and 3.3 imply that w(y, s) < C(l + y2) and
wy{y, s) < C(l + |y|) for some C > 0. Especially, \w, — wyy\ < C(l + y2), for some
constant C > 0. It follows from If interior boundary estimates and embedding theorem
(apply the estimates in the domain [y, y + 1] x [s, s + 1]) that the Holder norm of wy is
bounded by C(l 4- y2) in [0, y] x [s*, oo), for s* sufficiently large. Applying Schauder's
interior boundary estimates, we obtain that wyy, ws and their Holder norms are
bounded by C(l + |y|3).

We now define the energy function (or Lyapunov function) as

£[w](s) = £ p y ^ " F("(y, *))] cV/4 dy, (3.37)

where F(w) is chosen so that F'(w) — yw — w"?. It is easy to compute that

j s EM (s) = - £ wfo, s)e~^ dy + J,(s) + J2(s) + Us), (3.38)

where

= - / y, s)w,(y,
_

= (wy(s, s)ws(s, s) - wy(-s, s)w£-s,

Us) = [%^- F(W(s,s))

We claim that J^s), i — 1, 2, 3, are integrable over (s0, oo). For J1( both wy and w, are
bounded by a polynomial in y, it follows that Ji(s) is bounded by Ce~''* and hence
integrable over (s0, oo). Clearly, J2(s) and J3(s) are integrable over (s0, oo), owing to the
polynomial growth estimates for w, wy and w, as y -*• oo. Therefore, it follows that

4- E[w] (s) < - f w2(y, s)e-^ dy + J(s) (3.39)
ds J_,

with J(s) integrable over (s0, oo).
Now, by applying the energy method of Giga and Kohn [11] (for details see [13,

Theorem 3.10]), we can show that w(y, s) tends to a positive solution wM(j;) of

W — - yW +yw — w~f = 0, —oo < y < oo, (3.40)

such that wM has the same bound as w. Furthermore, u, > 0 implies that w^ satisfies

1
2Jyw — -ywy > 0, —oo < y < oo. (3.41)
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It is proved in ([14, Theorem 2.1]) that any non-constant solution of (3.40) bounded
by a polynomial P(y) must be a slow orbit. It is proved in ([14, Theorem 2.6]) that
for any slow orbit, g(y) = yw(y) — \ywy(y) can not remain positive for all sufficiently
large y. (In fact, V(y) in the proof of ([14, Theorem 2.6]) will go to +oo, if g(y) > 0 for
all large y.) Thus g(y) and g'(y) can not vanish at the same time for all large y,
according to the definition of V{y). Thus (3.41) implies that g(y) > 0 for all large y,
which leads to a contradiction as in the proof of ([14, Theorem 2.6]). Therefore, (3.41)
eliminates any slow orbit. It follows that there is no non-constant solution of (3.40)
bounded by a polynomial and satisfying (3.41). Thus w(y,s) converges to the constant
solution (0 + \)y.

We have established the following quenching rate estimate.

Theorem 3.4. As t -> T, we have

uniformly for \x — c\ < CyjT — tfor any positive constant C.

4. The second IBVP

In this section we study the second IBVP. Recall that ux > 0 in QT (cf. [5, Lemma
1]). Since u is a classical solution in QT, it follows from the strong maximum principle
that ux > 0 in QT. Then the following result is a direct consequence of Lemma A.

Theorem 4.1. Single point quenching holds and this occurs necessarily at x = a.

Since we have u, > 0 and wx(a, t) — 0, the estimate (2.25) is still valid for the second
IBVP, namely,

ra-imax(0,26) f"(a')

« 4 ( x , t ) < 2 - / (\-gf>dg f o rO<x<a . (4.42)

We next study the asymptotic behaviour. Define the similarity transformation by

y = 4 = ^ = . s = - log (T - t), w(y, s) = (1 - u(x, 0) (T - t)"y, (4.43)
v T — t

where y = 1/(1 + ft). Then w satisfies

w, = wyy - - ywy + yw - w~p + _ wy in W2, (4.44)

wy(0, s) = 0, s > s0; w(y, s) = e", y = ae"1, s > s0, (4.45)
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where W2 = {(y, s) | 0 < y < ae"2, s > s0} and s0 - - log(T).
First, we derive a uniform lower bound for w as follows.

Lemma 4.2. There is a positive constant A such that w > A in W2.

Proof. The proof is essentially the same as in Section 3 and is omitted here. •

Since ux(a, t) = 0 and uxx(a, t) < 0, we easily derive from the equation that
w(0, s) < 03 + l)y. Furthermore, since wy(y, s) = ux(x, t) (T - t)1'2'1 and ux > 0 in QT, we
see that wy > 0 for y > 0. Equation (4.42) will give the upper bounds for wy, which
we state in terms of the following lemma.

Lemma 4.3. There are positive constants Bu B2, B3, such that

Wy(y,s)<BiifP>l; (4.46)

wy(y, s) < B2w
il-®'\y, s) if 0 < 1; (4.47)

wy(y, s) < B3(l + log w(y, s)) if p = 1; (4.48)

for all (y, s) € Wo = {(y, s) | 0 < y < (a/2)e'/2, s > s0}.

Proof. For /? > 1, (4.42) implies that

u2
x(x, t) < C{[1 - u{a, t)]1-" - [1 - u(x, t)]1-"}

< C[l - u(a, t)]1"" for ^ < x < a, 0 < t < T,

for some positive constant C. Thus

wy(y, s) = ux(x, t) (T - t)1/2"r < C[w(0, s)f~m < C,

and (4.46) follows.
Similarly, if /? < 1, then (4.42) implies that

u2
x(x, t) < C[\ - u(x, t)]1"' for ^ < x < a, 0 < t < T,

and (4.47) follows immediately.
For /? = 1, (4.42) implies that

t&x, t) < Clog ~ " p Q for ^ < x < a, 0 < t < T.
1 — u(a, t) 2
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Thus (notice that now y = 1/2),

Since w(0,5) is bounded above and below, (4.48) follows. •

Remark 1. As an easy consequence of Lemma 4.3, for ft < 1, we have

0 < 1 - u(x, T - 0) < [C(a - x)]2y

for some positive constant C. This gives the spatial asymptotic estimate of u near the
quenching point x — a at time T. Comparing this estimate with that in [9], it is
certainly not optimal. But the only factor which is missing from the estimate is the
logarithmic factor, which decays to zero much slower than [(a — x)]2y.

Remark 2. The spatial asymptotics of w at t = T obtained in [9] depends heavily on
the asymptotic estimates at the quenching time t = T (Theorems 1.1 and 1.2). So our
Theorems 1.1 and 1.2 are the first step towards obtaining estimates for u(x, T — 0). The
spatial asymptotic behaviour for u(x, T — 0) is the same as that in [9]. In order to obtain
such an estimate, the asymptotic expansion for the next order will be needed, and an
estimate in the variable f = x/[(T - t)\ ln(T - t)\][/2 is also needed. The extra term
introduced from the b/x term decays to zero exponentially fast as s — — In (T — t) -> 00
in the similarity variable equation and therefore is very unlikely to cause any problems
in the parabolic estimates.

We now continue the discussion for the second IBVP. Recall that w(0, s) < (ft + l)v.
For all three cases of /?, Lemma 4.3 implies that w(y, s) < C(l + y2) and wy{y, s) <
C(l + \y\) f° r some C > 0. Moreover, |ws - wyy\ < C(l + y2), for some constant C > 0.
It follows from If interior boundary estimates and embedding theorem (apply the
estimates in the domain [y, y + 1] x [s, s + 1]) that the Holder norm of wy is bounded by
C(l+y2) m [0. y] x ts*> °°)» f°r s* sufficiently large. Applying Schauder's interior
boundary estimates, we obtain that wyy, w, and their Holder norms are bounded by
C{\ + \y\3).

We now define the energy function (or Lyapunov function) as before

(4.49)£[w] (s) = j f p ^ ^ - F(w(y, s))l e-t* dy,

where F(w) is chosen so that F'(vv) = yw - w~". As in the previous section (here we
use the boundary condition wy(0, s) = 0)

j s £[w] (5) = - j 3 w?(y, s)e-^ dy + J(s), (4.50)
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where J(s) is integrable over (s0, oo). Therefore, it follows that

j s EM («) < - j f w?(y. s)g"y 2 / 4 dy + J(s) (4.51)

with J(s) integrable over (s0, oo).
Now, the energy method of Giga and Kohn implies that w(y, s) tends to a positive

symmetric solution w^^) of

W --yW + yw-w-l> = 0 (4.52)

such that Woo n a s the same bound as w with yw^ - ± y(w0O)), > 0. Proceeding as in
Section 3, we obtain the following quenching rate estimate.

Theorem 4.4. As t -+T, we have

uniformly for a — x < C*/T — tfor any positive constant C.

We remark that as far as the quenching rate is concerned the constant b is irrelevant,
as long as the quenching does not occur at x = 0.
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