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CENTRES FOR NEAR-RINGS: APPLICATIONS TO
COMMUTATIVITY THEOREMS

by HOWARD E. BELL
(Received 15th September 1978)

1. Introduction
Let R be an arbitrary near-ring and define the multiplicative centre Z(R) by
Z(R) ={a € R|ax = xa for all x € R}. ’

In previous papers (2,3,5) we have established additive or multiplicative com-
mutativity for various near-rings R in which selected elements were restricted to lie in
Z(R); the near-rings involved were usually distributively-generated (d-g) and were
frequently assumed to have a multiplicative identity element as well.

In this paper we first prove a commutativity theorem involving Z(R), without the
assumption that R is d-g. We then introduce two other notions of centre, incorporat-
ing additive and multiplicative commutativity simultaneously, and use these in the
formulation of commutativity theorems. Some of our results are for d-g near-rings,
others for more general classes.

2. Definitions and terminology

Basic near-ring definitions are as in (3); in particular, we assume left distributivity,
so that x0 =0 for all x € R. If 0x =0 for all x € R, we call R zero-symmetric; if ab =0
implies ba =0, we call R zero-commutative. The near-ring R will be called periodic if
for each x € R, there exist distinct positive integers m = m(x) and n = n(x) for which
x™=x"

As above, we denote the multiplicative centre by Z(R), or simply Z. The additive
group of R will be denoted by (R, +) and its centre by §(R). The set of nilpotent
elements of R will be written as N or N(R), the set of distributive elements of R as D
or D(R); and for arbitrary subsets S of R, the right and two-sided annihilators of S
will be written as A,(S) and A(S). For arbitrary x, y € R, the additive and multi-
plicative commutators x+y—x—y and xy—yx will be denoted, respectively, by
(x, y) and [x, y].

If R has 1, then the symbol n will denote both a positive integer and the near-ring
element obtained by adding 1 the indicated number of times; in particular, for x € R,
xn is the n-th power of x in (R, +). Even if R does not have 1, the symbol xn will
have the same meaning.
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3. An additive commutativity theorem for periodic near-rings

Theorem 1. Let R be a periodic near-ring with multiplicative identity 1, and
suppose that N(R) C Z(R). Then (R, +) is abelian.

Proof. Note first that R is zero-symmetric—a fact we use without explicit
mention. The proof of Lemma 1 of (5) shows that N is a normal subgroup of (R, +),
and that RN C N; we now wish to show that (x + u)y —xy € N for all x, y € R and all
u € N, so that N is an ideal. For such x, y and u, let v = (x + 4)y — xy; and recall that
A,(x) is an ideal for arbitrary x € Z(R). Now if u" =0, u"'v =0; and since u"'€
Z(R), we have vu"'=0, hence u € A,(vu""?) and vu""?v =0 = v?u""2. Repeating the
argument finitely many times ultimately yields v»” =0, so our argument that N is an
ideal is complete.

Since we wish to use the subdirect-sum structure theory, we need to know that
homomorphic images of R inherit the hypothesis that nilpotent elements are multi-
plicatively central. To show this, note that R = R/N has no non-zero nilpotent
elements and hence is zero-commutative; therefore, if x € R and if we choose m, n
such that n >m and x" = x™, we get 0 =xx™H(x" ™ — x) = x""m+ixm Y xrmHl_ x)=
XM (xm M — x)x = x™Y(xmH - x)xr = xmY(xn "t~ x)2. An obvious repetition
shows that R has the x” = x property, hence for each x in R there exist arbitrarily
large n for which x — x" € N. We can now carry out the proof of Lemma 1(d) in (4) to
show that if S = R/I is any homomorphic image of R, nilpotent elements of S are of
form u + I for u nilpotent in R, hence N(S) C Z(S).

To prove our theorem, we now need consider only the case of subdirectly
irreducible R. Moreover, since 1+ 1 € Z(R) implies (R, +) is abelian, we assume that
1+ 1& N. We begin by showing that 1 is the only non-zero idempotent of R. Note that
since there exists n > 1 for which x — x" € Z(R), R is zero-commutative (3, Lemma
3(A)); hence if e is a non-zero idempotent, 1 — ¢ is an idempotent orthogonal to it. It is
easy to show that Re = A(1 —e¢) and R(1 —e)= A(e), so that in particular Re and
R(1 - e) are both ideals of R. Since their intersection is trivial, the subdirect irreduci-
bility of R forces one of them to be trivial, hence e = 1.

Now every element of R has an idempotent power (4, Lemma 1(a)); thus, every
non-nilpotent element of R is invertible and R/N is a near-field. Since (R/N, +) is
therefore abelian, additive commutators in R are nilpotent—a fact which permits a
trivial modification of the proofs of Lemmas 4 and 5 of (3), yielding the result that
distributive elements of R commute additively with each other.

Our next step is to show that if » € R and b= 1, then b =1 or b = —1. Since it is
known that near-fields have this property (8, 9), the fact that R/N is a near-field shows
that b— 1€ N or b+ 1€ N; we may assume that not bothof b —1and b + 1 are in N,
for otherwise 1+1=1+b—(—1+b) € N. Suppose first that b—1€ N. Then (b—
DB+1)=MB-Db+b—1=b(b-1)+b-1=>b*—1=0; and since b + 1 is invertible,
we get b =1. Now consider the case b+ 1€ N. Note that b+ 1 and 1, both being
distributive, commute additively; therefore, b commutes additively with 1. It follows
that (b+ DB -D=@B+Db—-(b+D=bb+1D)—-(b+1)=b*+b—-1-b=b*-1=0;
and since b — 1 is invertible, we have b = —1.

We complete the proof by borrowing a computational trick from the end of (9).
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Specifically, if h is any invertible element of R, then b =(—h)h'#1 and b?=1;
hence b=-1 and hence h commutes multiplicatively with —1. Since nilpotent
elements also commute with —1, we have —1 € Z and hence (R, +) is abelian.

4. The common centre

The common centre Z.(R) is defined to be Z(R)N§(R). It is a natural set to
consider, but seemingly not so useful as the centre to be introduced in Section 5.

Theorem 2. (I) Let R be a near-ring such that for each x € R, there is an integer
n(x)>1 for which x — x"® € Z.(R). Then the set N is an ideal of R.

(IT) Suppose, moreover, that each homomorphic image of R without zero-divisors
has a non-trivial distributive element. Then (R, +) is nilpotent of class at most 2.

Proof. (I) It is clear that 0" =0 for all n > 1; and since 0—-0" € Z_.(R) for some
such n, we have 0 € Z.(R) and hence R is zero-symmetric. The proof of Lemma 3(A)
in (3) may therefore be carried over to show that R is zero-commutative. Referring
again to (3), we obtain from Lemma 1 and the proof of Lemma 3(B) the result that N
is an ideal.

(II) The near-ring R=R/N has no non-zero nilpotent elements, hence is a
subdirect sum of homomorphic images R, with no non-zero divisors of zero (see (2),
Lemma 3). Then, using the fact that distributive idempotents are multiplicatively
central, we can adapt the procedure of (1), Section 3 to embed each R, in a near-field.
Thus (R/N, +) is abelian, so (x, y) € N for all x, y € R. From the definition of Z.(R),
we get a sequence (n;, n,,...) of integers greater than 1, for which x —x™ x™—
x™m™ . are all in §(R); thus N C §(R), and hence all (x, y) belong to §(R).

The following theorem extends Theorem 1, and also the theorem of (5). Its
proof—though not its statement—is contained in (5).

Theorem 3. Let R be a periodic d-g near-ring with N C Z.(R). Then R is a
commutative ring.

5. The strong common centre
The strong common centre, which we shall denote by Zy(R), is defined to be
{x € Z(R)|{x} U xR C §(R)}.

One of its advantages is indicated by the following theorem.
Theorem 4. If R is any d-g near-ring, Zy(R) is a commutative subring of R.

Proof. Let a, b € Z,(R); note that if ¢ is distributive or anti-distributive, then
(a — b)t = at — bt. Represent the arbitrary element rER as t,+1t,+- -+, where
each ¢ is either distributive or anti-distributive.

Clearly a-—be§(R); moreover (a—b)r=(a—-b)Zt;=3(a—b)t;=3at,—bt,E
§(R). Since each at; and bt; is in §(R), and since a, b € Z(R), this last sum can be
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re-written as tat+ta+---+ta +(—tkb-tk_|b—' . '—t|b)=(t|+' --+tk)a—(t|+
-+ 4)b=r(a—>b), and it has now been shown that a — b € Zy(R). Since it is
immediate from the definition that ab € Zy(R), and since multiplicatively com-
mutative near-rings are distributive, our proof is complete.

Theorem 5. Let R be a d-g near-ring and n>1 a fixed positive integer. If
x —x" € Zy(R) for all x ER, then R is a commutative ring.

Proof. One consequence of Theorem 4 is the existence of infinitely many positive
integers n for which x —x" EZO(R);/fhus N C Zy(R). By the proof of Theorem 2,
additive commutators are in N ; theréfore each element commutes additively with its
conjugates, and we easily obtain

x—y—-x+y=—x+y+x-—yforal x,yER

Multiplying this equation on the left by an arbitrary d € D(R), and then making the
substitution x=r, y=-—s for elements r,s € D(R), we get (d2)(r,s)=0 for all
d, r, s € D(R); and utilising the fact that (r, s) € Z(R) now gives

d((r, s)2)=0for all d, r, s € D(R).
Since R is d-g, this translates as

(r, s)2 € A(R) for all r, s € D(R). (D

Let d be an arbitrary element of D(R). Since d —d" and d2 - (d2)" are both in
Zy(R), Theorem 4 implies that d"(2" —2) = d"(2j) € Zs(R), hence is multiplicatively
central. Thus,
(x + y)(d"(2j)) = x(d"(2))) + y(d"(2))) for all x, y ER.

Using distributivity of d”, we get

((x +y)2)) = y(2)) — x(2j))d" = 0. 2

Let R, be the factor near-ring R/A(d"); then R, is a near-ring inheriting all the
original hypotheses on R. Let D(R)) be the set of distributive elements of R, which
are images of elements of D(R) under the canonical homomorphism. In view of (1)
and (2), R, has the properties

(x+y)2)=x2))+yR2j)=0for all x,y ER, 3)
and
(r, s)2=0 for all r, s € D(R)). 4
It follows from (4) and the fact that additive commutators are in §(R,) that
(r, s2) =0 for all r, s € D(R)), )
and that
(r+s)2=(s+rQ2forall r,s € D(R)). (6)
From (3) we have
(r + $)(2j) = r(2j) + s(2j) for all r, s € D(R)); )
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applying (5) and (6) and some additive cancellation yields

G+nNZji—-D=rRj—D+s2j-1),
(s+rN2j—-3)+(r+s2=rRj—2D)+s2j—-2)+r+s,
G+nNRj—4)+s+r+r+s=rRj-2)+s2j-2),

(r+s)2ji—4)=rQRj—4)+s2j—4) for all r, s € D(R)). ®)

Now (8) has the same form as (7), hence by repeating the argument and noting that

j=(@2"—-2)/2 was odd, we ultimately get (r + 5)2 = r2 + s2. Thus, elements of D(R))
commute and (R;, +) is abelian.

Returning to the original near-ring R, we now have (x, y)d" =0 for all x, y € R and

all d € D(R); and since d — d" € Zy(R), the definition of Zy(R) shows directly that

(x, yd —d") =0 as well. Thus (x, y)d =0 for all x, y € R and d € D(R); and since R
is distributively-generated, we have

(x,y) € A(R) for all x,y ER. 9

Otherwise expressed, (9) states that (xR, +) is abelian for each x € R; and we shall use
this result to show that

(x—x")y=xy—x"y forall x,y ER. (10)
Specifically, let y=gs,+s,+ .-+ s, where each s; is either distributive or anti-
distributive; then, since (—x")s; = —x"s; = x(—x""'s,)€ xR foreachi= 1, ..., k, we get
(x =x")y =(x —x")Zs; = Z(x — x")s; = Z(xs; + (—=x")s5;) = xZ5; + X" (=S —Sp-1— " * " = 51)

= xy + x"(—y) = xy — x"y, and (10) is proved.

Before proceeding, we recall Frohlich’s classical theorem (6) that a distributively-
generated near-ring R is distributive if and only if (R?, +) is abelian. Since (R/A(R), +)
is abelian by (9), R/A(R) is therefore a ring, which is multiplicatively commutative by
a well-known theorem of Herstein (7); thus

wlx, y] =[x, ylw =0 for all x,y, wER. (1)
It follows, in particular, that
x?y = xyx for all x,y ER. (12)

We now write x = 35; for appropriate distributive and anti-distributive elements s;,
and write yx =[y, x]+ xy. Note that [y,x]€ N by (11), and recall that N C Z«(R).
Thus, using (11) we obtain yx?= ([y, x]+ xy)x = Z([y, x] + xy)s; = 2xys;—that is,

yx?=xyx for all x,y ER. (13)
It follows from (12) and (13) that
x"y = yx" for all x,y ER. (14)

From x — x" € Zy(R), we get (x —x")y = y(x — x"); and (10) can be invoked to yield
xy—x"y =yx—yx". Applying (14) now yields multiplicative commutativity of R,
hence distributivity as well; and Frohlich’s theorem shows that (R? +) is abelian.
Thus, for each x € R both x — x" and x" commute additively with R?, hence so does x.
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Therefore R?>C §(R); and since x — x" € §(R) for each x € R, we see that §(R)=R.
This completes the proof.

A natural conjecture is that the restriction to fixed n in the hypotheses of Theorem
5 can be dropped. The following theorem is a step in that direction.

Theorem 6. Let R be a d-g near-ring in which (R, +) is a torsion group; and
suppose that for each x € R, there exists an integer n(x)>1 for which x—x"®¢€
Zy(R). Then R is a commutative ring.

Proof. Let d € D(R) and let dk =0, where k=2% and j is odd; we assume
without loss that g = 1. Then d(2j) € N C Zy(R); and beginning just before equation
(2), we may simply repeat the remainder of the proof of Theorem 5, with obvious
trivial modifications.

Experience to date would suggest the following conjecture: if R is an arbitrary
near-ring with 1, and if for each x €R there is an integer n(x)>1 for which
x —x"® & Z(R), then (R, +) is abelian. The following theorem—the final one in this
paper—is the best we have been able to achieve in this direction.

Theorem 7. Let n be a positive even integer and R a near-ring with 1 such that
x—x"e€ Z, foreach x € R. Then (R, +) is abelian.

Proof. Taking x =2 and —2 in turn shows that

—2"—-2€Zyand 2-2" € Z,, (15)
using the fact that each of these is multiplicatively central gives
x(2"+2)+y2"+2)=(y+x)2"+2) forall x,y ER (16)
and
x(2"=2)+y2"-2)=(y+x)(2"—2) for all x,y ER. a7n
Now (15) shows that x(2" —2) and x(2" +2) € §(R) for each x € R, hence
x(4) € §(R) for all xER. (18)
Combining (16), (17) and (18) yields
x(@D+y@d)=(y+x)4) forall x,y ER. (19)

By repeating the above argument for 3 and —3 we get x(6) € §(R); hence, in view of
(18) we have

x(2) €E§(R) for all x ER. (20)

It now follows from (16), (19) and (20) that x(2)+ y(2) = (x + y)(2) for all x,y € R—
that is, (R, +) is abelian.
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