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THE integral evaluated in this note was suggested by the famous one connected
with the Poincare polynomials of the classical groups (see (1)).

Let X be an n X n matrix whose elements depend on k parameters. Denote
by 9C a manifold in Euclidean space of dimension n2, with the property that if
X e 3C, then so does A7_ t for 1 ^ / ̂  n, where /_ (is the unit matrix / altered by a
minus sign in the (i, i)th place. Suppose further that there exists on SC a measure
which is invariant under the transformation X-*XI-t. Such manifolds and
measures exist. For example (see (2), § 5), the set of all proper and improper
nxn orthogonal matrices H is such a manifold, the H depending on $n(n— 1)
parameters because of the orthogonality and normality of the columns of H.
Since the set of all H is a compact topological group, an invariant measure
exists.

Theorem. / / dX is an invariant measure on 3C, such that V = I dX exists

and is finite, and if A, B, C are constant nXn matrices, and \ M\ is the deter-
minant of M, then

\A + BXC\dX = V\A\ (1)

Proof. Suppose | C | # 0, and let D = AC'1, then

j \ A + BXC\dX = | C\ \\D + BX\dX.

Since the measure dX is invariant under the transformation X-> A7_;,

= j \D + BX\dX = I \D + BXI--,\dX

j D + BX | + | D + BXI-t \}dX.

Now | D+BX\ and | D+BXI_i \ differ only in their first columns, so their
sum is a determinant \2dt, {D+BX)n.l\, whose first column is twice the
first column, du of | D\ and whose remaining columns (D+BX)n^l, are the
last n-\ columns of | D+BX\. So

J=!\di, (D+BX)n.l\dX.
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Now carry out the transformation Jf-» A7_2 and let d2 be the second column
of I D I and

= [\ iu d2, (D+BX)n_2\dX.
j

Continuing,
r

h, d2, ...,

This proves the theorem when | C | # 0. But when | C \ ¥= 0, (1) is an
identity between two polynomials in the elements of C, and so by continuity,
it still holds when \C\ = 0 .

Corollary. Let Er(X) be the elementary symmetric functions of the latent
roots of X, then

I Er(X)dX = 0.

Proof. Let A — zl, B — C = /. Then since

zl\ = z" and zI+X \=z"+ V z"-rE,(X),
r = 1

J) z"~r E£X)dX = 0 for any number z.
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