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Abstract

We prove that proper coloring distinguishes between block factors and finitely dependent
stationary processes. A stochastic process is finitely dependent if variables at sufficiently well-
separated locations are independent; it is a block factor if it can be expressed as an equivariant
finite-range function of independent variables. The problem of finding non-block-factor finitely
dependent processes dates back to 1965. The first published example appeared in 1993, and
we provide arguably the first natural examples. Schramm proved in 2008 that no stationary
1-dependent 3-coloring of the integers exists, and asked whether a k-dependent q-coloring exists
for any k and q. We give a complete answer by constructing a 1-dependent 4-coloring and
a 2-dependent 3-coloring. Our construction is canonical and natural, yet very different from
all previous schemes. In its pure form it yields precisely the two finitely dependent colorings
mentioned above, and no others. The processes provide unexpected connections between extremal
cases of the Lovász local lemma and descent and peak sets of random permutations. Neither
coloring can be expressed as a block factor, nor as a function of a finite-state Markov chain; indeed,
no stationary finitely dependent coloring can be so expressed. We deduce extensions involving d
dimensions and shifts of finite type; in fact, any nondegenerate shift of finite type also distinguishes
between block factors and finitely dependent processes.

2010 Mathematics Subject Classification: 60G10, 05C15, 60C05

1. Introduction

Central to probability and ergodic theory is the notion of mixing in various
forms. A stochastic process is a family of random variables indexed by a metric
space, and mixing means that variables at distant locations are approximately
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independent. The strongest and simplest mixing condition is finite dependence,
which states that subsets of variables are independent provided they are at
least some fixed distance apart. Despite the simplicity of the definition, finite
dependence turns out to be rather subtle. Finitely dependent processes arise in the
context of classical limit theorems [18, 19, 24, 27], renormalization of statistical
physics models [32, 40], and the Lovász local lemma [4, 13], a fundamental tool
of probabilistic combinatorics.

A key problem, originating from work of Ibragimov and Linnik in 1965
[23, 24], has been to understand the relationship between finite dependence and
block factors. A block factor is a process that can be expressed as a function
of an underlying family of independent random variables, where the function
has finite range and commutes with the action of a transitive symmetry group.
It is clear that a block factor is finitely dependent; it is natural to ask about the
converse implication.

This question retains its interest and subtlety even in the simplest setting of
stochastic processes indexed by the integer line. (We return to more general
settings later.) We say that a stochastic process X = (X i)i∈Z is k-dependent if the
random sequences (. . . , X i−2, X i−1) and (X i+k, X i+k+1, . . .) are independent of
each other, for each i ∈ Z; if X is k-dependent for some integer k then it is finitely
dependent. A process X is stationary if (X i)i∈Z and (X i+1)i∈Z are equal in law.
A process X is an r-block-factor (of an independent and identically distributed
process) if for some independent and identically distributed (Ui)i∈Z and some
measurable f we have X i = f (Ui+1,Ui+2, . . . ,Ui+r ) for each i . (The random
variables Ui can be assumed uniform on [0, 1] without loss of generality.)

An r -block-factor is clearly stationary and (r − 1)-dependent. Ibragimov
and Linnik [23, 24] proved in 1965 that the converse implication holds for
Gaussian processes, and claimed without proof that it is false in general. This
question was explicitly stated as open by Götze and Hipp [16] and Janson
[26]. It was not resolved until 1989, when Aaronson et al. [2] gave a family
of 1-dependent processes that are not 2-block-factors. This construction is
indirect and algebraic, and the authors asked for more natural examples. This
question and the surrounding issues have been taken up by a number of authors
[1, 7–10, 15, 17, 19, 25, 27, 32, 35, 36, 41], and various further examples have
been constructed. Highlights include an explicit 1-dependent (5-state) Markov
chain that is not a 2-block-factor [1], a (hidden-Markov) 1-dependent process
that is not an r -block-factor for any r (Burton et al. [8]), and a ‘perturbable’
example showing that 2-block-factors are not dense in the set of 1-dependent
Markov chains [35].

The constructions mentioned above are intricate, subtle and counterintuitive,
but the resulting examples have the appearance of technical ones specifically
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constructed for the purpose. For instance, Borodin et al. [6] remarked in 2010: ‘it
appears that most “natural” one-dependent processes are two-block factors’. This
issue has practical implications: several authors [16, 18, 26] have been forced to
assume a block-factor representation as an additional assumption in the study
of finitely dependent processes: if natural finitely dependent processes are block
factors, then there is little to be lost by such an assumption.

In this article we provide arguably the first genuinely natural finitely dependent
stationary process that is not a block factor. Moreover, we establish something
much stronger, which runs entirely counter to the above ideas about natural
processes. Suppose that we impose any fixed system of local constraints
on a stochastic process. (Formally, we require the process to belong almost
surely to a shift of finite type.) Provided the constraints satisfy certain simple
nondegeneracy conditions, we show that they can be satisfied by a stationary
finitely dependent process, but not by any block factor. The latter negative
statement follows from ideas of Ramsey theory—our main contribution is
the former positive statement. Underlying this is a remarkable new stochastic
process that is natural and canonical, yet apparently quite different from all
previously studied classes of stochastic processes. It has many surprising
properties that hint at a deeper theory. In particular, certain marginal projections
provide unexpected links between known processes involving descent and peak
sets of random permutations, Dyck words, and extremal cases of the Lovász
local lemma.

Proper coloring is a canonical choice of local constraint, which turns out to
be the key to the general case. We call a stochastic process X = (X i)i∈Z a
q-coloring (of Z) if each X i takes values in {1, . . . , q}, and almost surely we
have X i 6= X i+1 for all i ∈ Z. For which k and q does there exist a stationary
k-dependent q-coloring of Z? This question arose from discussions between Itai
Benjamini, Alexander Holroyd and Benjamin Weiss in early 2008. In addition to
its implications in relation to block factors, it is a formulation of the very natural
question: do local constraints demand global organization? It can also be seen
as a question about spontaneous symmetry breaking. Oded Schramm proved a
negative answer in the first nontrivial case: there is no stationary 1-dependent
3-coloring. The proof appears in [22]; we will give a different proof, which
provides some further information. It is very natural to expect that no stationary
k-dependent q-coloring exists for any k and q . (Indeed, Schramm conjectured
this.) However, we prove the following.

THEOREM 1. There exist a stationary 1-dependent 4-coloring of Z, and a
stationary 2-dependent 3-coloring of Z.

On the other hand, we have the following.
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PROPOSITION 2. No r-block-factor q-coloring exists, for any r and q.

Theorem 1 and Proposition 2 together provide perhaps the cleanest answer
one could hope for to the question raised by Ibragimov and Linnik:

Coloring can be done by a stationary 1-dependent process, but not
by a block factor.

Moreover, since it is easily seen that no stationary finitely dependent
2-coloring exists, Schramm’s impossibility result and Theorem 1 together
provide a complete answer to the above question about k-dependent q-colorings.
In fact, there is a canonical construction that gives precisely the two required
cases (k, q) = (1, 4), (2, 3) in Theorem 1, and no others. To our knowledge,
Theorem 1 also provides the first stationary finitely dependent non-block-factor
that is symmetric under permutations of the symbols, and the first stationary
1-dependent process that is not hidden-Markov. (See below for details.)

We do not claim Proposition 2 as new, although it does not appear to be
particularly well known in this form. An essentially equivalent result appears in
[38] (in a stronger, quantitative form, stated in rather different terms motivated
by applications in distributed computing, and building on earlier work in
[33]). Further extensions and applications appear in [3, 22]. For the reader’s
convenience we provide a simple proof of Proposition 2.

Given the prominence of Markov chains in the literature on finitely dependent
processes, it is natural to ask whether our colorings are Markov. They are not,
and much more can be said. We call a stationary process X hidden-Markov if
there exists a stationary Markov chain M = (Mi)i∈Z on a finite-state space, and
a deterministic function f , such that X i = f (Mi) for all i . (In contrast with the
definition of block factors, here finiteness of the state space is important: if we
were to allow an uncountable state space then any stationary process X could be
represented this way, by taking Mi = (. . . , X i−1, X i).) Note that hidden-Markov
processes include m-step Markov processes, as well as Gibbs measures with
local interactions. The following is a previously unpublished result of Schramm,
of which we present a proof.

PROPOSITION 3 (Schramm). No hidden-Markov finitely dependent q-coloring
exists, for any q.

In particular, our 4-coloring provides a partial answer to a question of de Valk
[10, Problem 8], who asked whether every 1-dependent process is a function of
a Markov chain: the answer is no for finite-state chains. (The case of countable
state spaces remains open.)
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As mentioned earlier, the colorings of Theorem 1 have many remarkable
properties, which hint at some deeper structure. We strongly believe that the
stationary 1-dependent 4-coloring is unique. The next result gives some of these
properties, and also provides a small step toward uniqueness. Let 1[ · ] denote an
indicator function.

THEOREM 4. The stationary 1-dependent 4-coloring X and 2-dependent 3-
coloring Y of Theorem 1 can be chosen to have the following additional
properties.

(i) The processes are reversible, and symmetric under permutations of the
colors, that is X is equal in law to (X−i)i∈Z, and to (σ (X i))i∈Z for any
σ ∈ S4, and similarly for Y and σ ∈ S3.

(ii) The process (1[X i = 1])i∈Z is equal in law to (1[Bi > Bi+1])i∈Z, where
(Bi)i∈Z are independent and identically distributed taking values 0, 1 with
equal probabilities.

(iii) The process (1[X i ∈ {1, 2}])i∈Z is equal in law to (1[Ui > Ui+1])i∈Z, where
(Ui)i∈Z are independent and identically distributed uniform on [0, 1].

(iv) The process (1[Yi = 1])i∈Z is equal in law to (1[Ui−1<Ui>Ui+1])i∈Z,
where (Ui)i∈Z are independent and identically distributed uniform on [0,
1].

(v) The law of (Y1, . . . , Yn) is the conditional law of (X1, . . . , Xn) given that
X i 6= 4 for i = 1, . . . , n.

Every stationary 1-dependent 4-coloring X satisfies (ii).

The processes in (ii)–(iv) above are evidently block factors, notwithstanding
Proposition 2. Many of these properties are mysterious. It is not clear why
conditioning a 1-dependent 4-coloring to have no 4’s should be expected to give
a 2-dependent process, as in (v). We have no simple explanation for the striking
similarity between (iii) and (iv) (even bearing in mind (v)). It appears difficult
to think of any processes satisfying the properties above, or even certain subsets
of them. For example, we know of no other ergodic process X that satisfies
(i) and (ii), nor that satisfies the analogue of (iii) for every 2-element subset of
{1, 2, 3, 4}. It appears plausible that some such sets of properties may uniquely
characterize the processes.

The processes in (ii)–(iv) have been studied extensively in other settings; (ii)
is an extremal case of the Lovász local lemma in a certain sense (see [42, 43]
and the discussion below), and (iii) and (iv) correspond to the descent sets and
peak sets of random permutations (see for example [5] and references therein).
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The colorings X and Y can be seen as couplings of multiple copies of these
processes (with special properties).

We will prove Theorem 1 by giving expressions for cylinder probabilities
(that is for the probability that (X1, . . . , Xn) takes any given value) in terms
of a certain combinatorial structure. The expressions are simple but mysterious,
and seem a priori very hard to guess. In the case of the 4-coloring, we will
prove that the expression is equal to a very different (and more complicated)
expression (an alternating sum of numbers of linear extensions of certain
posets), which is useful for deducing certain properties including Theorem 4(iii)
above. The equality of the two expressions also implies many interesting new
combinatorial identities. We in fact started with the more complicated expression
(which was guessed by considering the constraints imposed on a 4-coloring by
1-dependence), but were unable to prove its nonnegativity directly. We were led
to the simple expression by searching for recursions satisfied by the complicated
one.

We now consider generalizations to higher dimensions, and to general systems
of local constraints (as mentioned earlier). Firstly, let G = (V, E) be a graph. A
stochastic process X = (Xv)v∈V indexed by the vertexes is called a q-coloring
if each Xv takes values in {1, . . . , q} and almost surely Xu 6= Xv whenever u
and v are neighbors. It is k-dependent if its restrictions to two subsets of V are
independent whenever the subsets are at graph distance greater than k from each
other. The hypercubic lattice is the graph with vertex set Zd and an edge between
u and v whenever ‖u − v‖1 = 1; the graph itself is also denoted Zd . A process
on Zd is stationary if it is invariant in law under all translations of Zd .

COROLLARY 5. Let d > 2. There exist integers q = q(d) and k = k(d)
such that:

(i) there exists a stationary 1-dependent q-coloring of Zd;
(ii) there exists a stationary k-dependent 4-coloring of Zd .

No stationary k-dependent q-coloring of Zd was previously known to exist
for any k, q, d . The proof of Corollary 5 yields explicit upper bounds on q(d)
and k(d), but we do not expect them to be close to optimal. In particular, we
can take q(d) = 4d in (i). (See Proposition 7 below for some lower bounds.)
Both assertions are consequences of Theorem 1; (i) is straightforward to deduce,
while (ii) uses results of Holroyd et al. [22] that were developed for the study of
finitary factor colorings. While the colorings of Corollary 5 are stationary under
translations, we do not know how to make them invariant under all isometries of
Zd . By another result in [22], the 4 colors in (ii) cannot be reduced to 3 for any
d > 2.
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To describe our second extension we generalize from proper coloring to
arbitrary local constraints. Write [q] := {1, . . . , q}. A shift of finite type on
Z is a (deterministic) set of sequences S ⊆ [q]Z characterized by an integer m
and a set W ⊆ [q]m of allowed local patterns as follows:

S = S(q,m,W ) := {x ∈ [q]Z : (xi+1, . . . , xi+m) ∈ W ∀i ∈ Z}.

For w ∈ W , let T (w) be the set of times at which the pattern w can recur, that
is the set of t > 1 for which there exists x ∈ S with (x1, . . . , xm) and (xt+1, . . . ,

xt+m) both equal to w. We call the shift of finite type nonlattice if there exists
w ∈ W for which T (w) has greatest common divisor 1. For example, the set of
all deterministic proper q-colorings of Z is a shift of finite type, and is nonlattice
if and only if q > 3. The following is again a consequence of Theorem 1 together
with results from [22].

COROLLARY 6. Let S be a nonlattice shift of finite type on Z. There exists an
integer k (depending on S) and a stationary k-dependent process X such that the
random sequence X belongs to S almost surely.

The following is a straightforward consequence of Proposition 2, proved in
[22]. Let S be a shift of finite type on Z that does not contain any constant
sequence. Then there is no block factor that belongs a.s. to S. (In fact, under
the nonlattice condition, it is shown in [22] that there is a finitary factor of an
independent and identically distributed process, with tower-function decay of its
coding radius, that belongs a.s. to S, and that this decay rate cannot be improved.)
Combining this with Corollary 6 provides, as promised, an even more striking
answer to the Ibragimov–Linnik question:

Any nonlattice shift of finite type on Z that contains no constant
sequence serves to distinguish between block factors and stationary
finitely dependent processes.

Returning to coloring, for any graph G and any k and q one can ask whether
there exists a k-dependent q-coloring that is invariant in law under some given
group of automorphisms. The following concept leads to negative answers in
some cases. A hard-core process on G is a process J = (Jv)v∈V such that each
Jv takes values in {0, 1}, and almost surely we do not have Ju = Jv = 1 for
adjacent vertexes u, v. If X is a q-coloring of G then Jv := 1[Xv = a] defines a
hard-core process for any given color a ∈ [q]. If X is k-dependent then so is J .
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We define the critical point

ph = ph(G) := sup
{p : ∃ a 1-dependent hard-core process J with P(Jv = 1) = p ∀v}.

It turns out that for each p 6 ph there is a unique 1-dependent hard-core process
with all one-vertex marginals P(Jv = 1) equal to p. Moreover, ph has alternative
interpretations involving complex zeros of the partition function of the standard
hard-core model (or lattice gas) of statistical physics, and in terms of boundary
cases of the Lovász local lemma. See Section 9 and [42, 43] for details.

Suppose that there exists a 1-dependent q-coloring X of G in which the colors
(Xv)v∈V are identically distributed. (This last condition holds in particular if the
process is invariant in law under a transitive group of automorphisms.) Then the
above remarks imply

q >
1
ph
, (1)

so upper bounds on ph yield lower bounds on the number of colors needed. We
illustrate the method by proving the following.

PROPOSITION 7. Suppose that there exists a 1-dependent q-coloring X of G
with (Xv)v∈V identically distributed.

(i) For G = Zd we have q > (d + 1)d+1/dd , and moreover q > 9 for d = 2,
and q > 12 for d = 3.

(ii) For G = T∆, the infinite ∆-regular tree, q > ∆∆/(∆− 1)∆−1.

We do not know the minimum number of colors needed for a stationary
1-dependent coloring of Zd for any d > 2. On the tree T∆, one may use
Theorem 1 to construct 1-dependent colorings that are invariant in law under
certain transitive groups of automorphisms, but again we do not know the
minimum number of colors, nor whether fully automorphism-invariant colorings
exist.

It is a remarkable fact that the bound (1) is tight on Z: we have ph(Z) = 1/4,
yet there exists a stationary 1-dependent 4-coloring. In other words, it is possible
to couple 4 copies of the critical 1-dependent hard-core process in such a way
that their supports partition Z, while the entire process retains stationarity and
1-dependence.

One can interpret k-dependent processes via the language of functional
analysis (see also [10]). The following is a consequence of Theorem 1.
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Figure 1. Construction of the process: random colors arrive at random times. In
this case the coloring (Z1, . . . , Z6) is rejected at time 4, because Z3 and Z6 are
both red (color 3), and they arrive before the intervening points Z4 and Z5.

COROLLARY 8. Let (k, q) = (1, 4) or (2, 3). There exists a real separable
Hilbert space U and a bounded linear operator R : U → U with the following
properties. The image RnU is one-dimensional for all n > k. There is a
decomposition U = U1 + · · · + Uq into mutually orthogonal closed linear
subspaces, such that for each i , the image R Ui is contained in the closed linear
span of {U j : j 6= i}.

So far as we know, Corollary 8 is new. Schramm conjectured in 2008
(motivated by colorings) that such U and R cannot exist for any k and q (even
with the U j merely linearly independent, and without the separability restriction).
A space U satisfying the conditions of the corollary cannot be finite-dimensional,
and by Lidskii’s theorem (see for example [30, Ch. 30]), R cannot be of trace
class. A complex Hilbert space example has been suggested by Fedja Nazarov
and Serguei Denissov (personal communication).

We now give a complete probabilistic description of our two colorings of Z,
which is astonishingly simple. (However, it is not at all obvious that it works; we
will prove this in the next two sections.) See Figure 1. Let Z = (Z1, . . . , Zn) be
a sequence of independent and identically distributed random variables taking
values 1, 2, . . . , q with equal probabilities. Let σ be an independent uniformly
random permutation of 1, . . . , n, which we interpret as meaning that the symbol
Z i arrives at time σ(i). Let E be the event that, for every time t = 1, . . . , n, the
subsequence of Z formed by those symbols that arrived up to time t (ordered as
in the original sequence Z ) forms a proper coloring (that is no two consecutive
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elements in the subsequence are equal). Then for q = 4 or q = 3, the conditional
law of Z given E equals the law of (X1, . . . , Xn), where X is, respectively, the
4-coloring or the 3-coloring of Theorem 1.

We emphasize that the cases q = 3, 4 in the above description are very special.
For q = 2 or q > 5, the resulting process is not k-dependent for any k.

In a follow-up article [21] by the current authors, we use a more elaborate
method inspired by the construction above to obtain for all q > 5 a stationary
1-dependent q-coloring of Z that is symmetric under permutations the colors (as
in Theorem 4(i)). Besides these examples and straightforward embellishments
of them, no other stationary finitely dependent colorings of Z are known.

In another article [20] by one of the current authors, the above construction
is modified to obtain a probabilistic construction of the 4-coloring on the
whole of Z. (More precisely, the process is expressed as a finitary factor
of an independent and identically distributed process; however, the approach
fails for the 3-coloring.) One complication is that, while the laws of colorings
(X1, . . . , Xn) are consistent between different intervals (as required to obtain an
extension to Z), the accompanying random permutations (after conditioning) are
not consistent.

The article [22] deals with the closely related issue of coloring Zd by a
finitary factor of an independent and identically distributed process; that is, a
deterministic function that commutes with translations in which the color at
the origin can be determined from the independent and identically distributed
variables within some finite (but random and perhaps unbounded) radius. A
block factor can be interpreted as a continuous map with respect to the product of
discrete topologies; a finitary factor is almost everywhere continuous. Depending
on the number of colors and the dimension, it turns out that the optimal tail decay
of this radius is either a power law or a tower function.

The relationship between the 4-coloring and 3-coloring is puzzling. Can they
be coupled in a natural way (without conditioning)? Here is one plausible
approach that fails. If X is a 1-dependent 4-coloring then we can obtain a
3-dependent 3-coloring Y as a 3-block-factor of X by eliminating color 4: take
Yi to be X i unless X i = 4, in which case Yi := min({1, 2, 3} \ {X i−1, X i+1}).
It is natural to try to get a 2-dependent 3-coloring as a 2-block-factor of X , but
this is impossible—this amounts to the fact that the Kautz graph with vertexes
V = {(a, b) ∈ {1, 2, 3, 4}2 : a 6= b} and (undirected) edges E = {((a, b),
(b, c)) : (a, b), (b, c) ∈ V } is not 3-colorable.

Coloring, finite dependence, and block factors have applications in computer
science (see for example [33, 38]). For example, colors may represent update
schedules or communication frequencies for machines in a network; adjacent
machines are not permitted to conflict with each other. Finite dependence implies
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privacy or security benefits: an adversary who gains knowledge of some colors
learns nothing about the others, except within some fixed distance. A block factor
(or, more generally, a finitary factor [20, 22]) has the interpretation that colors
can be computed by the machines in a distributed fashion, based on randomness
generated locally together with local communication.

The article is organized as follows. In Section 2, we introduce a combinatorial
structure on which our processes are based. In Section 3, we deduce Theorem 1
and Theorem 4(i,v). Sections 4–9 can largely be read independently of each
other. In Sections 4 and 5, we give proofs of Propositions 2 and 3 respectively,
the latter using the Hilbert space interpretation that also gives Corollary 8. In
Section 6, we prove Theorem 4(ii, iv) together with the stronger assertion that
every 1-dependent 4-coloring has the former property, and we give a new proof
of Schramm’s result that no 1-dependent 3-coloring exists. In Section 7, we
provide the alternative expression for the cylinder probabilities, and deduce
Theorem 4(iii). Section 8 contains the proofs of Corollaries 5 and 6, and in
Section 9 we discuss hard-core processes and prove Proposition 7. We conclude
the article with a list of open problems.

2. Buildings

In this section, we introduce the combinatorial object on which our
construction is based. We deduce some striking properties, although the real
magic will happen when we interpret them probabilistically.

A word is a finite sequence x = (x1, x2, . . . , xn) ∈ Zn , which we sometimes
abbreviate to x1x2 · · · xn . The word x is a proper coloring if xi 6= xi+1 for all
1 6 i < n. For a word x ∈ Zn and a symbol a ∈ Z we denote the concatenation
as xa = (x1, . . . , xn, a), and so forth. We write x̂i := x1 · · · xi−1xi+1 · · · xn for x
with the i th symbol removed.

Let Sn be the symmetric group of all permutations of 1, . . . , n. Let x ∈ Zn

be a word, and let σ ∈ Sn be a permutation. We interpret σ as meaning that the
symbol xi arrives at time σ(i) (and in position i). For t = 1, . . . , n we define

xσ(t) := (xi : σ(i) 6 t),

the subsequence of symbols that arrived by time t (ordered as in x , not ordered
by arrival times). So for example if σ = (2, 3, 1) then xσ(2) = (x1, x3). We say
that σ is a proper building of x if xσ(t) is a proper coloring for each t = 1,
. . . , n. So the identity permutation is a proper building of the word 121, but the
permutation (2, 3, 1) is not. Let B(x) denote the number of proper buildings of
x . The following is the key property.
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LEMMA 9. If x is a proper coloring of length n then

B(x) =
n∑

i=1

B(̂xi).

Proof. This follows on considering the last arrival σ−1(n). The permutation σ is
a proper building of x with σ−1(n) = i if and only if σ̂i is a proper building of
x̂i .

We deduce the following identities. Recall that [q] := {1, . . . , q}.

PROPOSITION 10. Let q > 2 and x ∈ [q]n , where n > 0. We have∑
a∈[q]

B(xa) = [n(q − 2)+ q]B(x).

PROPOSITION 11. Let x ∈ [q]m and y ∈ [q]n , where m, n > 0.

If q = 4 then
∑
a∈[q]

B(xay) = 2
(

m + n + 2
m + 1

)
B(x)B(y).

If q = 3 then
∑

a,b∈[q]
B(xaby) = 2

(
m + n + 4

m + 2

)
B(x)B(y).

The proofs of Propositions 10 and 11 are elementary, and are very similar
to each other. However, in another respect the two results are very different:
Proposition 11 says something special about q = 3, 4 that apparently has no
simple analogue for other q . For example, for q 6= 4 the ratio of

∑
a∈[q] B(xay)

to B(x)B(y) no longer depends only on the lengths of x and y. Also see
Proposition 13 at the end of this section.

COROLLARY 12. Let q > 2 and n > 1. The total number of proper buildings of
all words of length n is

Σ(q, n) :=
∑

x∈[q]n
B(x) =

n∏
k=1

[k(q − 2)+ 2],

which equals 2n , (n+2)!/2, and (n+1)! 2n in the cases q = 2, 3, 4, respectively.

Proof. This is immediate from Proposition 10. (The last factor in the product is
(n − 1)(q − 2)+ q = n(q − 2)+ 2.)
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Proof of Proposition 10. We use induction on n. The identity is immediate when
n = 0 (so that x is the empty word and B(x) = 1). Suppose that n > 1 and that it
holds for n − 1. We can assume that x is a proper coloring, otherwise both sides
are 0. By Lemma 9,∑

a∈[q]
B(xa) =

∑
a 6=xn

[ n∑
i=1

B(̂xi a)+ B(x)
]
. (2)

We now consider each of the terms on the right. For i 6 n − 1 the inductive
hypothesis gives ∑

a 6=xn

B(̂xi a) = [(n − 1)(q − 2)+ q]B(̂xi),

while for the case i = n we have∑
a 6=xn

B(̂xna)+ B(̂xn xn) = [(n − 1)(q − 2)+ q]B(̂xn).

Since x̂n xn = x , and
∑

a 6=xn
B(x) = (q − 1)B(x), the right side of (2) therefore

becomes

[(n − 1)(q − 2)+ q]
n∑

i=1

B(̂xi)+ (q − 2)B(x),

which by Lemma 9 equals [n(q − 2)+ q]B(x).
Proof of Proposition 11, case q = 4. We use induction. When n = 0 the identity
is precisely Proposition 10 with q = 4, and the case m = 0 follows by symmetry.
Therefore, suppose that m, n > 1, and that the identity holds for all x and y
with lengths totaling less than m + n. Assume that x and y are proper colorings,
otherwise the identity holds trivially.

We consider two cases (and the crucial consequence of the assumption q = 4
will be that they give identical results). First suppose xm = y1, and without loss
of generality suppose both are equal to 1. Lemma 9 gives∑

a∈[4]
B(xay) =

∑
a 6=1

[ m∑
i=1

B(̂xi ay)+ B(xy)+
n∑

j=1

B(xa ŷ j)

]
. (3)

Considering the first of the three terms on the right, the inductive hypothesis
gives for each i , ∑

a 6=1

B(̂xi ay) = 2
(

m + n + 1
m

)
B(̂xi)B(y).
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Similar reasoning applies to the third term, while B(xy) = 0 since xy is not a
proper coloring. Therefore, using Lemma 9 again, the right side of (3) equals

2
(

m + n + 1
m

)
B(x)B(y)+ 2

(
m + n + 1

m + 1

)
B(x)B(y), (4)

which equals the right side of the claimed identity.
For the second case, suppose xm 6= y1, and say xm = 1 and y1 = 2. Then

∑
a∈[4]

B(xay) =
∑
a=3,4

[ m∑
i=1

B(̂xi ay)+ B(xy)+
n∑

j=1

B(xa ŷ j)

]
. (5)

For i 6 m − 1 we have, similarly to the previous case,∑
a=3,4

B(̂xi ay) = 2
(

m + n + 1
m

)
B(̂xi)B(y).

On the other hand, for i = m, the inductive hypothesis gives∑
a=3,4

B(̂xmay)+ B(xy) =
∑
a 6=2

B(̂xmay)

= 2
(

m + n + 1
m

)
B(̂xm)B(y).

The last of the three terms on the right of (5) can be treated similarly, and of
course the middle term yields

∑
a=3,4 B(xy) = 2B(xy). (This is the key point

where q = 4 is used—for general q we would be left with an additional term
(q−4)B(xy), which was not present in the first case above.) Therefore, the right
side of (5) equals (4), as in the previous case.

Proof of Proposition 11, case q = 3. The proof is similar to the q = 4 case,
and is again by induction. When m or n is 0, the result follows by applying
Proposition 10 (twice). Therefore, suppose m, n > 1 and that the result holds for
all smaller m + n. Again we can assume x and y are proper.

By Lemma 9,∑
a,b∈[3]

B(xaby)

=
∑

xm 6=a 6=b 6=y1

[ m∑
i=1

B(̂xi aby)+ B(xby)+ B(xay)+
n∑

j=1

B(xabŷ j)

]
. (6)
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As in the previous proof, for i 6 m − 1 the inductive hypothesis gives∑
xm 6=a 6=b 6=y1

B(̂xi aby) = 2
(

m + n + 3
m + 1

)
B(̂xi)B(y).

The i = m term must be combined with the next term, B(xby), and we again
consider two cases.

Firstly, suppose xm = y1 = 1 (say). Then∑
16=a 6=b 6=1

B(̂xmaby)+
∑

1 6=a 6=b 6=1

B(xby)

=
∑

ab=23,32

B(̂xmaby)+
∑
b=2,3

B(̂xm1by)

=
∑

a,b∈[3]
B(̂xmaby) = 2

(
m + n + 3

m + 1

)
B(̂xm)B(y),

by the inductive hypothesis.
Secondly, suppose xm = 1 6= 2 = y1 (say). Then∑

1 6=a 6=b 6=2

B(̂xmaby)+
∑

1 6=a 6=b 6=2

B(xby)

=
∑

ab=21,23,31

B(̂xmaby)+ B(̂xm13y)

=
∑

a,b∈[3]
B(̂xmaby) = 2

(
m + n + 3

m + 1

)
B(̂xm)B(y).

The third and forth terms appearing on the right of (6) can be treated
symmetrically, so by Lemma 9 the entire sum becomes

2
[(

m + n + 3
m + 1

)
+
(

m + n + 3
m + 2

)]
B(x)B(y),

which equals the required expression.

The following fact is not needed for our main results, but it will imply that the
q-color analogue of our processes is not finitely dependent for q /∈ {3, 4}.

PROPOSITION 13. Let q > 2 and n > 0. We have∑
x∈[q]n
[B(1x2)− B(1x1)] = 2

n∏
k=1

[k(q − 2)− 2]. (7)
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Proof. We use ∗’s to denote unrestricted symbols, so B(a ∗n b) :=∑
x∈[q]n B(axb), and so forth. Let n > 1. By Lemma 9,

B(1 ∗n 1) =
∑

x∈[q]n :
1x1 proper

[
B(x1)+

n∑
i=1

B(1x̂i 1)+ B(1x)
]
.

But, by symmetry,∑
x∈[q]n :

1x1 proper

B(x1) =
∑
a 6=1

B(a ∗n−1 1) = (q − 1)B(1 ∗n−1 2),

and the term B(1x) can be treated similarly. On the other hand,∑
x∈[q]n :

1x1 proper

B(1x̂i 1) = (q − 2)B(1 ∗n−1 1),

since each proper coloring of the form 1 ∗n−1 1 arises from exactly q − 2 proper
colorings of the form 1∗n 1 by deleting the (i+1)st symbol—the two neighboring
colors must be distinct, so there are q − 2 choices for the symbol between them
that is deleted.

Therefore,

B(1 ∗n 1) = n(q − 2) B(1 ∗n−1 1)+ 2(q − 1) B(1 ∗n−1 2),

and a similar argument gives

B(1 ∗n 2) = (n + 2)(q − 2) B(1 ∗n−1 2)+ 2 B(1 ∗n−1 1).

Subtracting yields

B(1 ∗n 2)− B(1 ∗n 1) = (n(q − 2)− 2)[B(1 ∗n−1 2)− B(1 ∗n−1 1)],
and induction finishes the proof.

3. The colorings

Proof of Theorem 1. Recall that B(x) denotes the number of proper buildings of
a word x . To construct the 4-coloring, we define

P(x) = P4(x) := B(x)
Σ(4, n)

= B(x)
(n + 1)! 2n

, x ∈ [4]n. (8)

https://doi.org/10.1017/fmp.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2016.7


Finitely dependent coloring 17

We claim that there is a stationary 1-dependent 4-coloring X with cylinder
probabilities given by

P[(X i+1, . . . , X i+n) = x] = P(x), i, n ∈ Z, x ∈ [4]n. (9)

Proposition 11 gives that for all words x and y,∑
a∈[4]

P(xay) = P(x)P(y). (10)

Taking y or x to be the empty word ∅ gives respectively
∑

a∈[4] P(xa) = P(x)
and

∑
a∈[4] P(ay) = P(y), so (9) gives a consistent family of measures. We have

P(∅) = 1, and of course we have P(x) > 0 for all x . Thus by the Kolmogorov
extension theorem (see for example [28, Theorem 6.16]) there exists a process
X satisfying (9), and (9) immediately shows that it is stationary. The process X
is a 4-coloring since P(x) = 0 when x is not a proper coloring, and (10) gives
that it is 1-dependent.

The construction of the stationary 2-dependent 3-coloring is essentially
identical. We take

P3(x) := B(x)
Σ(3, n)

= 2B(x)
(n + 2)! , x ∈ [3]n. (11)

Consistency follows from Proposition 10, and 2-dependence from
Proposition 11.

Proof of Theorem 4(i, v). The symmetry and conditioning properties are
immediate from (8), (11), and the definition of proper buildings.

Via Proposition 10, the above proof in fact shows that for every q > 2 there is
a symmetric, reversible, stationary q-coloring X given by

P[(X i+1, . . . , X i+n) = x] = B(x)
Σ(q, n)

.

It is immediate that this matches the description of the process via conditioning
given in the introduction. The event E that the random permutation σ is a
proper building of the random word Z has probability Σ(q, n)/(n!qn), which is
(n + 1)/2n for q = 4 and

(n+2
2

)
/3n for q = 3.

Here is an alternative description of this process that does not involve
conditioning, and that provides a practical and efficient method for exact
sampling. Start with a sequence of length 1 consisting of a uniformly random
element of [q]. At each step, insert a new color, in such a way that the sequence is
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always a proper coloring, as follows. Given that the current sequence has length
n − 1, choose one of the n − 2 locations between two consecutive elements
each with probability (q − 2)/[n(q − 2) + 2], or one of the 2 end locations
each with probability (q − 1)/[n(q − 2)+ 2]. Then insert a color in the chosen
location, chosen uniformly from among those that will still result in a proper
coloring; there are q − 2 choices at an internal location, or q − 1 at an end. It is
easily seen that the resulting sequence after n− 1 such steps has the same law as
(X1, . . . , Xn). See [34, 37] for a somewhat related process.

Proposition 13 shows that for q /∈ {3, 4} the process is not k-dependent for any
k. Indeed, the right side of (7) is positive for all q > 5 and n > 0 (the product
over k begins (q−4)(2q−6)(3q−8) · · · ), so the events X i = 1 and X j = 1 are
strictly negatively correlated for i 6= j when q > 5. (The case q = 2 is trivial.)

4. Block factors

Proof of Proposition 2. Let U1, . . . ,Ur+1 be independent and identically
distributed random variables, and let f : Rr → [q] be a measurable function.
We claim that for all r, q > 1,

P[ f (U1, . . . ,Ur ) = f (U2, . . . ,Ur+1)] > 0. (12)

Once this is proved, the required result follows immediately.
We prove (12) by induction on r . For r = 1 it is immediate, since f (U1) and

f (U2) are independent and identically distributed. Assume that it holds for r − 1
and all q . Now for f : Rr → [q] define

S(u1, . . . , ur−1) := {a ∈ [q] : P[ f (u1, . . . , ur−1,Ur ) = a] > 0},
that is, the set of values that f can take with positive probability given its first
r − 1 arguments. Since the function S takes at most 2q values, the inductive
hypothesis gives

P[S(U1, . . . ,Ur−1) = S(U2, . . . ,Ur )] > 0.

Moreover, since a.s. f (U1, . . . ,Ur ) ∈ S(U1, . . . ,Ur−1), we can find
deterministic A ⊆ [q] and a ∈ A such that

P[S(U1, . . . ,Ur−1) = S(U2, . . . ,Ur ) = A, f (U1, . . . ,Ur ) = a] > 0.

Using the definition of S(U2, . . . ,Ur ), and the fact that Ur+1 is independent of
(U1, . . . ,Ur ), the conditional probability that f (U2, . . . ,Ur+1) = a given the
above event is positive. Thus,

P[ f (U1, . . . ,Ur ) = f (U2, . . . ,Ur+1)] > 0.
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By replacing ‘> 0’ with ‘> ε’ in the definition of S, the above proof can be
made quantitative, giving that the left side of (12) is at least

1

22
. .
.
24q ,

where there are r −1 exponentiation operations in the tower. The tower-function
form of this bound is sharp. See [22] for more information.

5. Hilbert spaces and hidden-Markov processes

In this section, we present the Hilbert space connection that leads to
Corollary 8, and from which we will also deduce Proposition 3 concerning
hidden-Markov processes.

Before doing this we give the much simpler proof of a special case of
Proposition 3: a stationary k-dependent q-coloring cannot itself be a Markov
chain. Indeed, let P = (Pa,b)a,b∈[q] be its transition matrix. Since Xn is
independent of X0 for n > k, the conditional law of Xn given X0 is simply
the stationary distribution of the Markov chain, so in particular the conditional
laws of Xk+1 and Xk+2 given X0 are identical, hence Pk+1 = Pk+2, that is
Pk+1(1 − P) = 0. Therefore, the eigenvalues of P are precisely 0 and 1.
However, since X is a proper coloring we have Pa,a = 0 for all a, so P has trace
0, and its eigenvalues (with multiplicities) sum to 0, a contradiction.

The proof of Proposition 3 follows a broadly similar strategy, but requires
a more elaborate set-up, which also gives Corollary 8. Let X = (X i)i∈Z be a
stationary process taking values in Ω := [q]Z, with law µ. Let L2 be the Hilbert
space of real L2(µ) functions onΩ (which is separable by the Stone–Weierstrass
and Lusin theorems). Let S : Ω → Ω be the shift map given by S(x) j = x j−1,
and define the shift operator T : L2 → L2 by (T f )(x) = f (S−1(x)). Let A be
the space of functions f ∈ L2 that depend only on x0, x1, . . ., and let B be the
space of functions f ∈ L2 that depend only on . . . , x−1, x0. Thus T A ⊆ A and
T B ⊇ B. Let PB denote orthogonal projection in L2 onto B, or in probabilistic
terms, PB( f ) = E( f | . . . , X−1, X0). Define

U := PB A

(where the bar denotes closure), and define R to be the restriction

R := (PB T )|U .

LEMMA 14. Let X = (X i)i∈Z be a stationary process taking values in [q]Z.
Define the Hilbert space U and the operator R as above.

https://doi.org/10.1017/fmp.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2016.7


A. E. Holroyd and T. M. Liggett 20

(i) We have RU ⊆ U.

(ii) If X is k-dependent, then RnU is the space of constant functions, for all
n > k.

(iii) If X is a q-coloring, then U has an orthogonal decomposition

U = U1 ⊕ · · · ⊕Uq

into closed linear subspaces such that RU j is orthogonal to U j for each j .

Proof. We first note that
PB T PB = PB T . (13)

Indeed, this is an instance of the tower property. When applied to f ∈ L2, the
right side yields the conditional expectation of T f given (X i)i60, while the left
side yields the conditional expectation of T f given (X i)i61 and then (X i)i60.

Now suppose that f ∈ A and g = PB f . Then (13) gives Rg = R PB f =
PB T PB f = PB T f ∈ PB A. Thus R maps PB A into itself. Since R is continuous,
the same applies to the closure U , establishing (i).

A similar argument to the above gives RnU ⊆ PB T n A for every integer n > 1.
Now if X is k-dependent then PB T n A is the space of constants for all n > k, so
we obtain (ii).

Finally, let V j denote the space of functions in L2 that are supported on the set
of x ∈ Ω such that x0 = j . Let

U j := PB(V j ∩ A).

Then U j ⊆ V j , since PB V j ⊆ V j and V j is closed. The spaces V j are mutually
orthogonal, therefore so are U j . Clearly, A is the direct sum of the subspaces
V j ∩ A, and therefore PB A is spanned by the spaces PB(V j ∩ A). Since these are
mutually orthogonal, the same applies to the closures. So U is the orthogonal
direct sum of the spaces U j .

Now suppose that X is a q-coloring; then V j is orthogonal to T V j . To prove
(iii) we must show that RU j and U j are orthogonal. Suppose f, g ∈ U j . Then
〈 f, Rg〉 = 〈 f, PB T g〉 = 〈PB f, T g〉 = 〈 f, T g〉 = 0. (Here we used that PB is an
orthogonal projection and therefore self-adjoint, and that f, g ∈ V j so f and T g
are orthogonal.) This proves (iii).

Proof of Corollary 8. This is immediate by Theorem 1 and Lemma 14.

To prove Proposition 3 we also need the following.

LEMMA 15. If X is a hidden-Markov process then the Hilbert space U defined
above has finite dimension.
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Proof. Let X be a function of a Markov chain M with state space S. Consider
the earlier space L2 = L2(µ) embedded in the possibly larger space of L2(λ)

functions on the probability space of M , where λ is the law of M , and where we
now interpret a function f ∈ L2(µ) as the random variable f (X). Let C be the
space of random variables in L2(λ) that depend only on . . . ,M−1,M0, and let
PC denote orthogonal projection onto C . Since X i is a function of Mi we have
B ⊆ C , and therefore U = PB A = PB PC A, so it suffices to prove that PC A is
finite-dimensional. Let f ∈ A. Then

PC f = E( f | . . . ,M−1,M0) = E( f | M0),

by the Markov property. But the latter depends only on M0, so it is in the linear
span of the functions {1[M0 = s] : s ∈ S}. Thus dim(PC A) 6 |S|.
Proof of Proposition 3. Apply Lemmas 14 and 15. Since U is finite-dimensional,
choose an orthonormal basis e1, . . . , ed that comprises orthonormal bases for
each U j . Since Rei is orthogonal to ei for each i we have trace(R) = 0. But
Lemma 14(ii) implies that R has exactly one nonzero eigenvalue, a contradiction.

Hilbert space representations of k-dependent processes were also explored in
[10]. We briefly discuss the connection with the above approach. It is shown in
[10] that if X is a stationary k-dependent [q]-valued stochastic process, there
exist a Hilbert subspace H of L2 and bounded linear operators A1, . . . , Aq on H
that encapsulate the cylinder probabilities of X via

P((X1, . . . , Xn) = x) = 〈Ax1 · · · Axn 1, 1〉
with the subsidiary conditions

(A1 + · · · + Aq)
kh = 〈h, 1〉1, h ∈ H, (14)

(A1 + · · · + Aq)1 = 1,
(A∗1 + · · · + A∗q)1 = 1,

where 1 is the function that is identically 1. The subspace H is not given
explicitly in [10], though the operators Ai are. The construction above provides
an explicit choice:

H = RU , Ai = PH Ii T,

where Ii = 1[X1 = i]. (These Ai ’s are the same as in [10].) To check (14),
for example, take h ∈ H and note that, since H ⊆ B, we have PB T h =
Rh ∈ R2U ⊆ H , so that PH T h = Rh. Iterating gives (PH T )nh = Rnh for
n > 1. Since A1 + · · · + Aq = PH T , Lemma 14(ii) gives (14).
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6. One-color marginals

Theorem 4(ii) is a consequence of the following more general result that in any
1-dependent coloring, the set of locations of a single color has a simple structure.

PROPOSITION 16. Suppose that (X i)i∈Z is a stationary 1-dependent q-coloring.
Suppose p := P(X0 = 1) > 0. Then the process J defined by Ji := 1[X i =
1] is a renewal process, and its renewal time T (the number of steps between
consecutive 1’s) has probability generating function

G(s) := EsT = ps2

1− s + ps2
.

The fact that J is a renewal process is due to Fuxi Zhang. We are grateful for
her permission to include it.

Proof of Proposition 16. To prove that J is a renewal process we must check
that (Ji)i<0 and (Ji)i>0 are conditionally independent given J0 = 1. Since X is
a coloring, J0 = 1 implies J−1 = J1 = 0. For a string u ∈ {0, 1, ∗}n we write
P(u) := P(Ji = ui ∀i s.t. ui 6= ∗) (so that ∗’s denote unrestricted symbols). Let
u, v ∈ {0, 1}n−1 be any binary words. Then

P(u010v) = P(u∗1∗v)
= p P(u) P(v)
= p−1 P(u∗1) P(1∗v)
= p−1 P(u01) P(10v)

(where in the 2nd and 3rd equalities we used 1-dependence of J , and in the 1st
and 4th we used the fact that J has no consecutive 1’s). Now dividing through
by p shows that the events (J−n, . . . , J−1) = u0 and (J1, . . . , Jn) = 0v are
conditionally independent given J0 = 1, as required.

Turning to the renewal time distribution, we write

pn = P(10n−11)/p.

This is the conditional probability given that we have just seen 1 of waiting n
steps until the next 1, thus (pn)n>1 is the probability mass function of the renewal
time. Note that p1 = 0. The probability generating function is defined by

G(s) :=
∑
n>1

pnsn.
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Since J is a renewal process, for any integers ki > 0 we have

P(10k1−110k2−11 · · · 0km−11) = p pk1 pk2 · · · pkm . (15)

We claim that

p(G(s)+ G(s)2 + G(s)3 + · · · ) = p2(s2 + s3 + s4 + · · · ). (16)

To check this, observe that by (15), the coefficient of sn on the left side is the sum
of P(1u1) over all binary strings u of length n−1. But this is simply P(1∗n−1 1),
which equals 0 for n = 1 (by the coloring property) and p2 for n > 2 (by 1-
dependence), as required for the right side.

Finally, summing the geometric series in (16) and solving gives the claimed
formula for G(s).

Proposition 16 yields an alternative proof of the following result of Schramm
(see [22] for Schramm’s original proof).

COROLLARY 17. In any stationary 1-dependent q-coloring, any given color
has marginal probability at most 1/4. In particular, there is no stationary
1-dependent 3-coloring.

Proof. Suppose that p > 1/4. Then both singularities of G (viewed as a function
on the complex plane) are complex. This contradicts a theorem of Pringsheim
from 1893 (see [14, Theorem IV.6] or [45, Section 7.21]): a Taylor series with
nonnegative real coefficients and finite radius of convergence R has a singularity
at R. (Alternatively, one may show that G has negative coefficients by expressing
it in partial fractions.)

Proof of Theorem 4(ii). We prove that any stationary 1-dependent 4-coloring has
property (ii), as claimed at the end of Theorem 4. By Corollary 17, each color
must have marginal probability exactly p = 1/4, in which case the probability
generating function of the renewal time in Proposition 16 factorizes to become

G(s) =
(

s
2− s

)2

.

But this is the probability generating function of the sum of two independent
Geometric(1/2) random variables, which yields the claimed description of the
process J .

One straightforward consequence of Theorem 4(ii) is that for any stationary
1-dependent 4-coloring X ,

P(X1, . . . , Xn ∈ {2, 3, 4}) = n + 2
2n+1

.
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For our 4-coloring this also follows from Corollary 12 with q = 3 (and
symmetry).

Corollary 17 and its proof reflect the fact that q = 4 colors is in a sense a
critical case for the 1-dependent coloring problem. This is one reason for our
belief that the solution is unique. See Section 9 for extensions of some of these
ideas to general graphs.

Finally in this section we derive the claimed description of the one-color
marginal for the 3-coloring, for which we need to return to proper buildings.

Proof of Theorem 4(iv). It suffices to check that the two processes have equal
probabilities of assigning 1’s to every integer in a finite set A ⊂ Z, since all
other cylinder probabilities can be computed from these by inclusion–exclusion.
Since both processes are 2-dependent and have no adjacent 1’s, it is enough to
do this for A of the form {1, 3, . . . , 2m − 1}.

Let P(x) = P3(x) = 2B(x)/(n + 2)! denote the cylinder probability of the
3-coloring for the word x ∈ [3]n . We use ∗’s to denote unrestricted symbols in
[3] to be summed over, so that 2-dependence of the process says that P(x∗∗y) =
P(x)P(y) for all words x and y. Lemma 9 gives that for every proper coloring
x ∈ [3]n ,

(n + 2)P(x) =
n∑

i=1

P (̂xi). (17)

Write pm := P(1∗1∗1 · · · ∗1), where the word has m 1’s and length 2m− 1, and
p0 := 1. Then,

(2m + 1)pm = P(∗1∗1∗1 · · · )+ P(1∗∗1∗1 · · · )+ P(1∗1∗∗1 · · · )+ · · ·
= p0 pm−1 + p1 pm−2 + · · · + pm−1 p0.

(The first equality requires some care: the left side does not change if we interpret
each ∗ as being summed over {2, 3} instead of [3]; then we can apply (17). The
words that arise from deleting a ∗ vanish, since they are not proper colorings,
and in the others we may allow each ∗ to revert to its original meaning, since it
is still adjacent to a 1. For the second equality we use 2-dependence.)

We now show that the cylinder probabilities of the second process satisfy
the same recurrence, whereupon induction will finish the proof. Indeed, let
qm := P(U1 < U2 > U3 < · · · > U2m+1), where the inequalities alternate,
and q0 := 1. This equals the probability of the event E that the elements of
a uniformly random permutation π in S2m+1 satisfy the same inequalities. We
decompose E according to the location of the maximum of π . The conditional
probability of E given π2i = 2m + 1 is

P(· · · < π2i−2 > π2i−1)P(π2i+1 < π2i+2 > · · · ) = qi−1qm−i .
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7. Alternative formula

In this section, we derive a different formula for the cylinder probabilities of
the 1-dependent 4-coloring X of Z. It was this formula that originally convinced
us that such a coloring must exist (contrary to much circumstantial evidence),
since it has all the required properties, except that it appears extremely difficult
to prove directly that it is nonnegative. We were led to our solution by seeking
recursions satisfied by this formula, and finding the equivalent of Lemma 9
(which we then re-interpreted via buildings). Below we state the formula, after
some necessary definitions. We then discuss applications and motivation before
giving the proof. The basic idea is to start with a postulated law for the
1-dependent binary process (1[X i = 1 or 2])i∈Z, and try to build the law of X
around it.

We identify the 4 colors with binary strings of length 2. It is convenient to
use the binary symbols +(= +1) and −(= −1), and to write the strings as
column vectors, so 1, 2, 3, 4 = (−−), (−+), (+−), (++) (say; the choice of bijection is
immaterial). Then a word x ∈ [4]n becomes a 2 × n matrix, and we denote its
rows y, z ∈ {−,+}n:

x = (x1, x2, . . . , xn) =
(

y
z

)
=
(

y1 y2 · · · yn

z1 z2 · · · zn

)
.

Let y ∈ {−,+}n , and let α(y) denote the number of permutations π ∈ Sn+1

such that πi < πi+1 if yi = +, and πi > πi+1 if yi = −, for each 1 6 i 6 n
(in other words, the number of permutations with descent set given by the
locations of −’s, or the number of linear extensions of the (n+ 1)-element poset
generated by these inequalities). For example,

if y = + − + +
then α(y)= |{π ∈ S5 : π1 <π2 >π3 <π4 <π5 }| = 9.

(See for example [39] for information about α). If (Ui)i∈Z are independent and
identically distributed uniform on [0, 1] and we let Yi := (−1)1[Ui>Ui+1] then
P((Y1, . . . , Yn) = y) = α(y)/(n+ 1)!. This will be the law of Y , where X = (Y

Z

)
.

A Dyck word of length 2k is an element of {−,+}2k comprising k +’s and k
−’s, such that the i th + precedes the i th − for each i . A dispersed Dyck word
of length m is an element of {−, 0,+}m that is a concatenation of Dyck words
and strings of 0’s. Examples of dispersed Dyck words are +−0++−−00, 000,
and +−+− (but not +0−). Let DD(m) be the set of dispersed Dyck words of
length m, and forw ∈ DD(m), let |w| be the number of+’s inw. (We remark that
|DD(m)| = ( m

bm/2c
)
, although we will not use this. For a bijective proof, consider a
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lattice path from (0, 1
2 ) to (m,± 1

2 ) via steps (1,±1). Map steps between heights
− 1

2 and 1
2 to 0’s, and reflect excursions below − 1

2 into excursions above 1
2 .)

If y ∈ {−,+}n has m intervals of constancy (or runs) and w ∈ DD(m − 1),
define yw ∈ {−,+}n to be the word obtained by changing the signs of some
whole runs of y, not including the first and last runs, in such a way that the j th
sign change between runs is eliminated precisely for those j with w j 6= 0. For
example, with n = 15 and m = 9,

if w = + + − − 0 + − 0
and y =+++ −− + − ++ −−− + − +
then yw =+++ ++ + + ++ −−− − − +,

(where the horizontal spacing emphasizes the runs of y). Note that yw depends
on w only through the locations of its Dyck words, not on which words they are,
so for instance y++−−0+−0 = y+−+−0+−0.

Now let y, z ∈ {−,+}n , and let m be the number of runs of y. For 1 6 j 6
m − 1, let ` j and r j be respectively the elements of z immediately before and
after the j th sign change in y. For example, if(

y
z

)
=
(++ −−− ++ − ++

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

)
then `1 = z2, r1 = z3, and r3 = `4 = z8, and so forth. Let

c(w, y, z) :=
m−1∏
j=1


` j w j = +;
r j w j = −;
1 w j = 0.

We are now ready to state the formula. For x = (y
z

) ∈ [4]n , where y has m runs,
define

Q(x)= Q
(

y
z

)
:=


2n−m

∑
w∈DD(m−1)

(−1)|w|c(w, y, z) α(yw)
if x is a
proper coloring;

0 otherwise.
(18)

THEOREM 18. For x ∈ [4]n we have B(x) = Q(x).

In consequence, the cylinder probabilities P(x) for the 4-coloring X of
Theorem 1 can of course be expressed as P(x)= Q(x)/[2n(n+1)!]. Theorem 18
will be proved by showing that Q(x) satisfies the same recurrence as B(x)
(Lemma 9). It is now easy to deduce the claimed marginal distribution for the
first binary digit.
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Proof of Theorem 4(iii). We claim that∑
z∈{−,+}n

Q
(

y
z

)
= 2nα(y), y ∈ {−,+}n; (19)

then the result is immediate from Theorem 18.
To prove (19), sum (18) over z and interchange the order of summation. The

contribution from the trivial word w = 00 · · · 0 is∑
z:x is proper

2n−mα(y) = 2nα(y),

since z must alternate within each run of y, and thus there are 2m choices. The
contribution from every other w vanishes. To see this, fix a nontrivial w, and
consider the location of the first + in w. For any z, let z′ be obtained from z by
changing the sign of every symbol in the run of y that precedes that +. Then
c(w, y, z′) = −c(w, y, z), so the terms corresponding to z and z′ cancel.

Theorem 18 implies a host of combinatorial identities; we briefly highlight
some examples. Re-interpreting the result proved above in terms of buildings
gives the following. For y ∈ {−,+}n , define S(y) ⊂ [4]n to be the Cartesian
product

S(y) :=
n×

i=1

{
{1, 2} yi = −;
{3, 4} yi = +.

Then we have ∑
x∈S(y)

B(x) = 2nα(y), y ∈ {−,+}n.

When y = ++ · · ·+ this is Corollary 12 with q = 2, but it seems much less
clear why the general case holds. Can it be given a bijective proof? Taking y
alternating of even length and combining with Theorem 4(iv) yields the curious
identity ∑

x∈({1,2}×{3,4})n
B(x) = 4n

n + 1

∑
x∈({1,2}×{3})n

B(x), n > 1.

The S4-symmetry of B(x) implies in particular that

Q
(

y
z

)
= Q

(
z
y

)
, y, z ∈ {−,+}n.

Again, it does not seem at all clear how to prove this directly from the definition
(18). For instance, in the very simplest case where z is a constant word and y is
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alternating, it reduces to∑
m>1, t1,...,tm>0:∑

j (2t j+1)=n

[ m∏
j=1

(−Ct j )

]
α(2t1 + 1, . . . , 2tm + 1) = 2n−1, n > 1,

where α(k1, . . . , km) denotes α(y) for a word y constructed so as to have
successive run lengths k1, . . . , km , and Ct :=

(2t
t

)
/(t+1) are the Catalan numbers.

We have found a direct proof of this last identity, but even this involves a fairly
intricate inclusion–exclusion argument for posets.

Another application of the formula (18) is that it gives rise to a
computationally efficient method for computing the cylinder probabilities
of the 4-coloring. Indeed, there is a recurrence based on (18) that allows
Q(x)(= B(x)) to be computed in O(n3) operations for a word x of length n,
whereas a naı̈ve application of (18) requires exponential time, as does computing
B(x) via Lemma 9. We state this recurrence at the end of this section.

Before giving the proof of Theorem 18 we briefly discuss how we arrived at
the formula (18) (before knowing whether any k-dependent q-coloring existed).
Suppose X is a 1-dependent 4-coloring, and decompose it into two binary
sequences X = (Y

Z

)
. Then Y is a stationary 1-dependent binary process. The

law of such a process is determined by the sequence vn = P(Y1 = · · · =
Yn = +), since all other cylinder probabilities can be computed from v by
inclusion–exclusion. Of course, the sequence v must satisfy certain inequalities
in order that these cylinder probabilities be nonnegative. Many choices for v are
possible. Examples are those for which 1, 1, v1, v2, v3, . . . is a Pólya frequency
sequence—see [29, Ch. 8].

Suppose for the purposes of the current discussion that Y is any stationary
1-dependent binary process, and let α′ be defined by P[(Y1, . . . , Yn) = y] =
α′(y)/(n + 1)!. By considering the constraints imposed on the cylinder
probabilities of X by 1-dependence, one is led (after a certain amount of
computation and some inspired guesses) to the hypothesis that P[(X1, . . . ,

Xn) = x] = Q ′(x)/[(n + 1)!2n], where Q ′ is given in terms of α′ by the
formula (18). It is not difficult to check that a Q ′ defined in this way satisfies
the equalities required for consistency and 1-dependence of X , for any α′ arising
from a stationary 1-dependent Y .

The only issue is nonnegativity of Q ′(x). This does not hold for general α′: for
instance if Y is independent and identically distributed with P(Y0 = +) = 1/2
then one can check that Q ′(x) < 0 for y = +−+− and z = ++++. In fact
it appears likely that α′ = α is the only choice that works. However, it seems
extremely difficult to prove nonnegativity of Q directly from (18) in that case.
The only way we know is to prove that Q satisfies the same recurrence as B.
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We now turn to the proof of Theorem 18. A key ingredient is that α satisfies
a recurrence similar to the one that we wish to check for Q. As before, let
α(k1, . . . , km) denote α(y) where y is a binary word with m runs of successive
lengths k1, . . . , km . If one ki is 0 the interpretation is that the two neighboring
intervals coalesce, so that for example α(k1, k2, 0, k4, k5) = α(k1, k2 + k4, k5)

and α(0, k2, k3, . . .) = α(k2, k3, . . .).

PROPOSITION 19. For positive integers k1, . . . , km ,

α(k1, k2, . . . , km)

= α(k1 − 1, k2, . . . , km)+ α(k1, k2 − 1, . . . , km)+ · · · + α(k1, . . . , km − 1).

This is a special case of the main result of [12], when applied to the poset that
defines α. We also give a simple direct proof.

Proof of Proposition 19. Suppose α(k1, . . . , km) = α(y) where y ∈ {−,+}n is
of length n = ∑

j k j . Let E be the set of permutations π ∈ Sn+1 that satisfy
the inequalities in the definition of α(y), so α(y) = |E |. For 1 6 i 6 n + 1,
let Ei be the set of permutations π ∈ E that have their maximum at i , that is
πi = n + 1. For 1 < i < n + 1 we further distinguish according to the order of
the neighboring elements: let E+i be the set of π ∈ Ei such that πi−1 < πi+1, and
define E−i similarly with the inequality reversed. Clearly,

E = E1 ∪ En+1 ∪
⋃

1<i<n+1

(E+i ∪ E−i ),

and the union is disjoint. However, Ei is empty unless πi is already a local
maximum in the sequence of inequalities defining E (that is (yi−1, yi) =
(+,−), where restrictions on ‘y0’ and ‘yn+1’ are ignored). In that case, we have

|E+i | = α(k1, k2, . . . , k j−1, k j−1, . . . , km);
|E−i | = α(k1, k2, . . . , k j−1−1, k j , . . . , km),

when 1 < i < n+1 and (yi−1, yi) = (+,−) is the boundary between the ( j−1)st
and j th runs of y, and similar statements hold for E1 and En+1. (Indeed, the
maximum element n + 1 in the permutation can be ignored, and the remaining
elements 1, . . . , n satisfy precisely the inequalities required for the appropriate
‘reduced’ α.)

Proof of Theorem 18. Recall that x̂i denotes the word x with the i th symbol
deleted. We claim that if x ∈ [4]n is a proper coloring,

Q(x) =
n∑

i=1

Q(̂xi). (20)
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Once this is proved, the result is immediate, since Lemma 9 states that B satisfies
the same recurrence, and Q(∅) = B(∅) = 1 for the empty word ∅.

Let x = (y
z

)
and let y have m runs. Since z alternates within each run of y,

we have Q(̂xi) = 0 whenever i is an interior point of a run, because x̂i is not a
proper coloring. So, we need to compute Q(̂xi) when i is an endpoint of a run
of y.

Suppose first that i is an endpoint of a run of length at least 2, and suppose
initially that it is not the first or last run. If, for example, i is an endpoint of the
j th run of y, and that run is −−−−, the relevant part of x is

x =
(

y
z

)
=
( · · · ++ + − − − − +++ · · ·

` j−1 r j−1 ` j r j

)
,

and if i is the left endpoint of that run, the corresponding x̂i is

x̂i =
(

ŷi

ẑi

)
=
( · · · ++ + − − − +++ · · ·

` j−1 −r j−1 ` j r j

)
,

while if i is the right endpoint of that run,

x̂i =
(

ŷi

ẑi

)
=
( · · · ++ + − − − +++ · · ·

` j−1 r j−1 −` j r j

)
.

In passing from x to x̂i , the value of m is unchanged, while the value of n is
decreased by 1. In the first case above, the sign of r j−1 is changed, while in the
second case, the sign of ` j is changed, and therefore

c(w, ŷi , ẑi) = c(w, y, z) (−1)1[w j−1=−]

in the first case, and

c(w, ŷi , ẑi) = c(w, y, z) (−1)1[w j=+]

in the second. If we set w0 = wm = 0 then these also hold when the run
is the first or the last. In both cases, ŷi is obtained from y by shortening the
corresponding run by 1, and (ŷi)w = (̂yw)i . Denote their common value by ŷw,i .
So, the contribution to the right side of (20) from (both endpoints of) this interval
is

2n−1−m
∑

w∈DD(m−1)

(−1)|w|c(w, y, z)α(ŷw,i)
[
(−1)1[w j−1=−] + (−1)1[w j=+]]. (21)

The last factor (−1)1[w j−1=−] + (−1)1[w j=+] can be written as 2I (w j−1, w j)

where

I (u, v) :=


+1 (u, v) = 00 or +−;
−1 (u, v) = −+;
0 otherwise.
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This follows simply by considering all possibilities for (w j−1, w j), noting that
0− and +0 are impossible in a dispersed Dyck word. Therefore, (21) equals

2n−m
∑

w∈DD(m−1)

(−1)|w|c(w, y, z)α(ŷw,i)I (w j−1, w j). (22)

Now suppose i is the sole element of a run of length 1. Again n is decreased
by 1 in passing from x to x̂i , but now m decreases by 2 if 1 < i < n, or by 1
if i ∈ {1, n}. If i = 1, each w′ ∈ DD(m − 2) in the sum defining Q(̂x1) can be
made into a w ∈ DD(m − 1) by adding a 0 at the beginning, and this gives

Q(̂x1) = 2n−m
∑

w∈DD(m−1):
w1=0

(−1)|w|c(w, y, z)α(ŷw,1).

Similarly, for i = n, we add a 0 at the end:

Q(̂xn) = 2n−m
∑

w∈DD(m−1):
wm−1=0

(−1)|w|c(w, y, z)α(ŷw,n).

If 1 < i < n, then (for example)

x =
(

y
z

)
=
( · · · ++ + − +++ · · ·

` j−1 r j−1 = ` j r j

)
,

and

x̂i =
(

ŷi

ẑi

)
=
( · · · ++ + +++ · · ·

` j−1 r j

)
.

This is a proper coloring if and only if ` j−1 6= r j . We will introduce a factor
(1 − ` j−1r j)/2 to account for this constraint. Let w′ ∈ DD(m − 3) be a word
in the sum corresponding to Q(̂xi). We can try to make w′ into a word in
DD(m−1) by inserting 00,+− or−+ before the ( j−1)st symbol of w′; denote
the resulting words w00, w+−, w−+. Inserting+− introduces an additional factor
` j−1r j to c, and changes |w′| by 1. Exactly one of w00, w−+ is a dispersed Dyck
word (inserting −+ succeeds precisely when there is a Dyck word that cannot
be broken apart at the insertion point − note that for example +−+− can be
broken in the middle, so here we would insert 00). Inserting 00 leaves c and
|w′| unchanged, while −+ multiplies c by r j−1` j = 1 and changes |w′| by 1;
we introduce an extra sign change in this last case so that we can get the factor
(1− ` j−1r j)/2. The conclusion is

(−1)|w
′|c(w′, ŷi , ẑi)

1− ` j−1r j

2
= 1

2

∑
w∈DD(m−1)∩
{w00,w+−,w−+}

(−1)|w|c(w, y, z) (−1)1[w=w−+].
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Therefore,

Q(̂xi) = 2n−m
∑

w∈DD(m−1)

(−1)|w|c(w, y, z)α(ŷw,i)I (w j−1, w j), (23)

where I (w j−1, w j) is precisely the same quantity as defined for the earlier case,
and where the factor 1/2 has canceled the extra 2 in 2(n−1)−(m−2). Finally, note
that if we again set w0 = wm = 0 then (23) is valid in the cases i = 1, n also.

For each 1 6 j 6 m, write ỹw, j = ŷw,i , where i = i( j) is in the j th run of y.
This is the same for all runs j that coalesce into a single run when we form yw.
Summing over all runs of y, we see that the right side of (20) can be written as

2n−m
∑

w∈DD(m−1)

(−1)|w|c(w, y, z)
m∑

j=1

α(ỹw, j) I (w j−1, w j).

Each Dyck word in w corresponds to a run of yw, as does each 00 (where again
we take w0 = wm = 0). Every Dyck word contains exactly one more +− than
−+. Therefore, the sum of I (w j−1, w j) over those j that correspond to a given
run of yw is 1. By Proposition 19, the right side of (20) agrees with Q(x).

Finally, we state the promised alternative recurrence for Q that allows for
efficient computation. We have for all proper colorings x ∈ [4]n ,

Q(x) =
n+1∑
r=1

Q0
r (x),

where the quantity Qk
r (x)= Qk

r

(y
z

)
is defined for integers k > 0 and 1 6 r 6 n+1

by
Qk

r (x) = 1[k = 0 and y1 = (−1)r+1], n = 1,

and for n > 2,

Qk
r (x) =

∑
s∈S


2Qk

s (̂x1) y1 = y2;
Qk

s (̂x1)− z1 Qk+1
s (̂x1) y1 6= y2 and k = 0;

z2 Qk−1
s (̂x1)− z1 Qk+1

s (̂x1) y1 6= y2 and k > 0,

where

S :=
{
{r, . . . , n} y1 = (−1)k;
{1, . . . , r − 1} y1 = (−1)k+1.

We omit the proof of this, which is a straightforward check given the following
explanation. The quantity Qk

r (x) represents an extended version of Q(x) in
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which we sum over ‘partial dispersed Dyck words’ w that can be made into a
dispersed Dyck word by appending exactly k +’s at the beginning, and where
in addition each α(yw) is modified by restricting to permutations π ∈ Sn+1

satisfying π1 = r .

8. Higher dimensions and shifts of finite type

In this section, we prove Corollaries 5 and 6. Let ‖ · ‖ = ‖ · ‖1 be the 1-norm
on Zd . The distance between two sets A, B ⊆ Zd is inf{‖u − v‖ : u ∈ A, v ∈
B}. We first observe that the definition of k-dependence for graphs given in the
introduction is consistent with the earlier definition for Z. Indeed, suppose X is
k-dependent according to the earlier definition. Then if (I j) j∈J is any collection
of intervals of Z no two of which are within distance k then the restrictions
(X |I j ) j∈J form an independent family; this follows by inductively adding one
interval at a time. Now if A, B ⊆ Z are at distance greater than k then X |A and
X |B are independent, since A and B can each be partitioned into subsets that are
contained in such a collection of intervals.

We need the following extension of Theorem 1. Write u
m∼ v if 0 < ‖u − v‖

6 m. A process (Xv)v∈Zd is a range-m q-coloring if each Xv takes values in [q],
and almost surely Xu 6= Xv whenever u

m∼ v. (A range-1 coloring is simply a
coloring.)

COROLLARY 20. Let d > 1 and m > 1. There exists a stationary m-dependent
range-m q-coloring of Zd , where q 6 exp(cmd) for an absolute constant c.

Proof. A line is a subset of Zd of the form L = {a+ ih : i ∈ Z}, where a, h ∈ Zd

and h 6= 0. We call h the direction of L . We will place independent copies of the
1-dependent 4-coloring along each line in a suitable family, and combine them
to form the desired process.

More precisely, let H be a set comprising exactly one of h and −h for every
h ∈ Zd with 0

m∼ h. (For instance, in the case m = 1 we can take H to be the
set of d standard basis vectors.) For each line L of Zd with direction in H , take
a copy X L of the 1-dependent 4-coloring of Theorem 1, with the copies being
independent for different lines. Assign the color X L

j to the point a + jh, where
L = {a + ih : i ∈ Z} (and a ∈ L is chosen arbitrarily, but is deterministic
and fixed for the particular line). Let Y h

v ∈ [4] denote the color thus assigned to
v ∈ Zd by the unique line of direction h passing through v. Finally define Zv to
be the vector (Y h

v : h ∈ H) ∈ [4]H . The desired process is Z = (Zv)v∈Zd .
Clearly Z is stationary, and its elements take 4|H | values. It is a range-m

coloring since for any u, v with u
m∼ v there is a line on which u, v are
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consecutive points, so Zu and Zv differ in the coordinate corresponding to its
direction. (Two points on a line of direction h are said to be consecutive on the
line if they differ by ±h.) To check m-dependence, note that if A, B ⊆ Zd are at
distance greater than m from each other then every line with direction in H that
intersects both A and B does so in two nonconsecutive sets. Thus Z |A and Z |B
are functions of independent collections of random variables.

Proof of Corollary 5(i). This is Corollary 20 with m = 1. (The number of colors
is q = 4d .)

To state the relevant results from [22] we need to generalize block factors to d
dimensions. Denote the ball B(r) := {v ∈ Zd : ‖v‖ 6 r}. A block-factor map
is a map F : RZd → RZd characterized by an integer r called the radius and a
measurable function f : RB(r)→ R via

(F(x))v = f ((θ−vx)|B(r)), x ∈ RZd
, v ∈ Zd,

where θ−v denotes translation by −v (so (θ−vx)u = xv+u). (On Z, a radius-
r block-factor map of an independent and identically distributed process is a
(2r + 1)-block-factor, in our earlier terminology.)

LEMMA 21. Let X be a stationary k-dependent process on Zd and let F be a
radius-r block-factor map. Then F(X) is stationary and (2r + k)-dependent.

Proof. This follows easily from the definitions.

THEOREM 22 (Holroyd et al. [22]).

(i) Let d > 1. There exists m such that for any q there exists a block-factor
map F with the following property. If X is a range-m q-coloring of Zd

then F(X) is a (range-1) 4-coloring of Zd .

(ii) Let S be a nonlattice shift of finite type on Z. There exists m such that for
any q there exists a block-factor map F with the following property. If X
is a range-m q-coloring of Z then F(X) belongs to S almost surely.

The somewhat awkward series of quantifiers above reflects the need to
encapsulate the relevant results from [22] cleanly without going into details of
their proofs.

Proof of Corollary 5(ii) and Corollary 6. The results are immediate from
Corollary 20, Lemma 21, and Theorem 22.
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We make a few remarks about the scope of Corollaries 5 and 6. While the
colorings of Corollary 5 are stationary (meaning invariant under translations),
they are not invariant in law under all isometries of Zd , because the proof
imposed an ordering on the set of line directions, which is not invariant under
permuting the coordinates. We do not know how to construct an isometry-
invariant finitely dependent coloring of Zd for d > 2. Similar remarks apply
to trees, as pointed out by Russell Lyons (personal communication). Treating a
regular tree as the Cayley graph of a free group, we obtain a 1-dependent coloring
that is invariant under the action of the group itself (which is vertex-transitive),
by the same approach as in the proof of Corollary 5. However, we do not know
how to construct a fully automorphism-invariant finitely dependent coloring.

As remarked in the introduction, another result of [22] implies that there is
no stationary k-dependent 3-coloring of Zd for any k and d > 2. In fact, there
is no stationary 3-coloring of Z2 whose correlations decay faster than a certain
polynomial rate.

It is straightforward to check that if S is a lattice shift of finite type on Z then
there is no stationary finitely dependent process that belongs almost surely to
S. In fact, there is no stationary mixing process that belongs to S; again, details
appear in [22].

9. One-dependent hard-core processes

In this section, we prove Proposition 7. We also discuss properties of
1-dependent hard-core processes, which are interesting in their own right. Let
G = (V, E) be a simple, countable, undirected graph with all degrees finite.
Recall that a hard-core process J = (Jv)v∈V is a {0, 1}-valued process with no
adjacent 1’s, and that ph(G) is defined to be the supremum of p for which
there exists a 1-dependent hard-core process with all its one-vertex marginals
P(Jv = 1) equal to p.

In Lemmas 23 and 24 below we record some simple but interesting
observations about ph. Closely related ideas appear in work of Scott and
Sokal [42, 43], where a rich web of interconnections involving mathematical
physics and probabilistic combinatorics is explored. The arguments we use in
the proofs of Lemmas 23 and 24 are largely present in those articles, at least
implicitly. However, our particular viewpoint (focussing on 1-dependent hard-
core processes, especially on infinite graphs) is apparently novel, as is our
application to coloring. As another application of our approach, we give an
alternative proof of a result of Shearer [44] at the end of this section.
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LEMMA 23. Let G be a graph. For each p 6 ph there exists a unique
1-dependent hard-core process with all one-vertex marginals equal to p. This
process is invariant in law under all automorphisms of G.

Proof. We first observe a general monotonicity statement: if a 1-dependent hard-
core process J with one-vertex marginals P(Jv = 1) = pv exists, and if p′v 6 pv
for all v ∈ V , then such a process exists with marginals (p′v). This follows by
thinning: let (εv)v∈V be {0, 1}-valued, independent of each other and of J , with
P(εv = 1) = p′v/pv; then take J ′v = εv Jv.

The above shows that a 1-dependent hard-core process exists for all p < ph.
To extend this to p = ph, take a sequence pn ↗ ph and a process for each
pn , and consider a subsequential weak limit in distribution J (which exists,
by compactness). Since probabilities of all cylinder events converge, J has all
marginals equal to ph, and is a 1-dependent hard-core process.

Uniqueness and automorphism invariance follow from the more general fact
that the law of a 1-dependent hard-core process is determined by its one-
vertex marginals pv = P(Jv = 1). Indeed, the law of a binary process J is
determined by the probabilities P(J ≡ 1 on A) for finite A ⊆ V , since all
other cylinder probabilities can be computed from them by inclusion–exclusion.
But this probability equals 0 if A contains two neighbors, and otherwise it is∏

v∈A pv.

We next give a simple characterization of ph in terms of finite sets. (Such
characterizations can be powerful tools in understanding phase transitions—see
[11] for a notable recent example.) For a finite set of vertexes A ⊆ V and λ ∈ R,
define

Z A(λ) :=
∑

B∈I(A)
λ|B|,

where I is the set of all independent subsets of A (or hard-core configurations),
that is subsets of A that do not contain any two neighbors in G. This is the
partition function of the standard hard-core model of statistical physics; it is also
known as the independence polynomial of the induced subgraph of A. See for
example [31, 43].

LEMMA 24. Let G = (V, E) be a graph and let p ∈ [0, 1]. We have p 6 ph if
and only if Z A(−p) > 0 for every finite A ⊆ V . If G is infinite and connected
then this is also equivalent to the statement that the strict inequality Z A(−p) > 0
holds for every finite A ⊂ V .
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Proof. Suppose that p 6 ph, so a 1-dependent hard-core process J with
marginals p exists. Then by inclusion–exclusion,

P(J ≡ 0 on A) =
∑
B⊆A

(−1)|B| P(J ≡ 1 on B) = Z A(−p), (24)

so the last quantity is nonnegative.
Moreover, all other cylinder probabilities can be expressed in terms of those

above. Let B,C be disjoint finite sets of vertexes with B ∈ I(V ), and let C ′ be
the set of vertexes of C that have no neighbor in B. Then

P(J ≡ 1 on B, J ≡ 0 on C) = P(J ≡ 1 on B, J ≡ 0 on C ′)
= p|B| ZC ′(−p).

Thus, given Z A(−p) > 0 for all A, we can compute nonnegative expressions for
all cylinder probabilities, and it is easy to check that they are consistent and give
rise to a 1-dependent hard-core process with marginals p. Thus p 6 ph.

Here is a useful recurrence. Suppose A ⊆ V is finite, let u ∈ A, and define
A′ := A \ {u} and A′′ := A′ \ N (u), where N (u) denotes the set of neighbors of
u. Then by an argument similar to the above,

Z A(−p) = Z A′(−p)− p Z A′′(−p). (25)

(Indeed, it is a standard and straightforward fact that this identity holds for
any parameter λ, regardless of the existence of the process J ; see for example
[31, 43]).

To prove the final claimed equivalence, suppose that G is infinite and
connected. Let 0 < p 6 ph. (If ph = 0 then the claim is trivial.) Suppose that
Z A(−p) = 0 for some finite A ⊂ V , and let A be minimal with this property.
There exists a vertex u /∈ A that is adjacent to A. Let B = A ∪ {u}, B ′ = A, and
B ′′ = A \ N (u). Then applying (25) to B, B ′, B ′′ gives that Z B(−p) is negative,
a contradiction.

For an infinite connected G, our critical point ph coincides with the critical
point λc defined in [43] (in (5.3) and the immediately following remark) in terms
of the complex zeros of Z . This follows immediately from Lemma 24 above
together with [43, Theorem 2.2(b,c) and (3.1)].

The following bounds on ph are known. For any infinite connected graph G of
maximum degree ∆,

(∆− 1)∆−1

∆∆
6 ph(G) 6

1
4
, ∆ > 2. (26)
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For the infinite ∆-regular tree T∆, the lower bound is sharp:

ph(T∆) = (∆− 1)∆−1

∆∆
, ∆ > 2. (27)

For the hypercubic lattice Zd ,

(2d − 1)2d−1

(2d)2d
6 ph(Zd) 6

dd

(d + 1)d+1
, d > 1. (28)

Proofs of (26), (28) appear in [42, Sections 5.2, 8.4]; the lower bound in (26)
amounts to the Lovász local lemma. The equality (27) is proved in [44], and
an exposition of the proof also appears in [42, 43]. Note that ph(Z) = 1/4.
This is a special case of all of (26), (27), (28), and also follows from the
proof of Corollary 17. Using rigorous computer-assisted methods, we supply
the following improvement on (28) in dimensions 2 and 3.

LEMMA 25. We have the strict inequalities

ph(Z2) < 1
8 ; ph(Z3) < 1

11 .

Proof. The recursion (25) gives Z A(−p) in terms of Z B(−p) for smaller sets
B ⊂ A. We use this to compute Z A(−p) numerically for rectangular boxes of
the form A = [a] × [b] ⊂ Z2 and A = [a] × [b] × [c] ⊂ Z3. After some
experimentation to find appropriate box sizes, we obtained

Z[13]×[10](−1/8) < 0; Z[12]×[4]×[4](−1/11) < 0,

giving the claimed bounds.
One must choose which vertex u to remove from a set A when applying

(25). We always chose the lexicographically largest u ∈ A, as this tends to
limit the number of smaller sets that need to be considered. The method turns
out to be numerically unstable, so that floating-point arithmetic cannot be
used. Instead we used exact arbitrary-precision rational arithmetic. The quantity
Z[12]×[4]×[4](−1/11) is a fraction with 100 digits in the denominator, and required
the computation of Z B(−1/11) for 89 077 sets B ⊆ [12]×[4]×[4]. (We provide
the computer code in an appendix.)

Proof of Proposition 7. As remarked in the introduction, the existence of a
1-dependent q-coloring X with the variables (Xv)v∈V identically distributed
implies that q > 1/ph. Indeed, let a ∈ [q] be a color with the largest marginal
probability pa (> 1/q); then Jv := 1[Xv = a] defines a 1-dependent hard-core
process, so pa 6 ph. Now use the upper bounds in (27), (28) and Lemma 25.
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The (nonrigorous) estimate ph(Z2) = 0.11933888188(1) was computed in
[46]. That this is greater than 1/9 indicates that a 9-coloring of Z2 cannot be
ruled out by the methods of this section.

Finally, we present an application of our approach in the context of [43].
Motivated by the case of Z in Theorem 4(ii), we give a very simple explicit
construction of the critical 1-dependent hard-core process J on the ∆-regular
tree T∆, thus providing an alternative proof of the upper bound on ph(T∆) in
(27). (The original proof in [44] used analytic methods.) Fix an end of the
tree. Assign the vertexes independent and identically distributed {0, 1}-valued
labels that are 1 with probability 1/∆. Then let Jv equal 1 if and only if v
has label 1 and all its children have label 0. (The children of a vertex are the
∆− 1 neighbors that do not lie on the unique path to the nominated end.) Then
P(Jv = 1) = (∆ − 1)∆−1/∆∆ as required. It is interesting that the construction
is invariant only under automorphisms that fix the given end, while the process
itself is fully automorphism-invariant, by Lemma 23. Can the critical process
on T∆ be expressed as a fully automorphism-equivariant block factor of an
independent and identically distributed process?

Open problems

(i) Is the stationary 1-dependent 4-coloring of Z unique? We conjecture that
the answer is yes. Is the stationary 2-dependent 3-coloring unique?

(ii) Is there a finitely dependent coloring (X i)i∈Z such that X i = f (Mi) for
a stationary countable-state Markov chain M? (A finite state space is
impossible, while an uncountable one places no restriction on the process.)
Can our two examples be expressed in this way?

(iii) What is the largest possible one-vertex marginal of a stationary k-
dependent hard-core process on Z for k > 2? Is it 1/3 when k = 2? Is
the critical process unique?

(iv) Can one of our two colorings of Z be expressed as a block factor of the
other? As a finitary factor?

(v) Is there a stationary finitely dependent coloring of Z that can be expressed
as a finitary factor of an independent and identically distributed process
with finite mean coding radius? (In [20], the 4-coloring is expressed as a
finitary factor with infinite mean coding radius.)

(vi) What is the minimum number of colors q needed for a stationary 1-
dependent q-coloring of Zd , for each d > 2? (For Z2, the answer is
between 9 and 16.)
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(vii) Does there exist a finitely dependent coloring of Zd for d > 2 that
it is invariant in law under all isometries of Zd? Does there exist a
finitely dependent coloring of a regular tree that is invariant under all
automorphisms, or all automorphisms that fix a given end?

(viii) On which transitive graphs is the existence of a 1-dependent hard-core
process with all one-vertex marginals equal to 1/q sufficient for the
existence of an automorphism-invariant 1-dependent q-coloring? (It is
necessary on any graph, and sufficient on Z.)
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Appendix: Computer code

Below we give Python code used in the proof of Lemma 25. It computes the
following values of the independence polynomial for rectangular grids. (The first
is included as a check.)

Z[3]×[3](−1/5) = − 21
3125 ;

Z[13]×[10](−1/8) = − 60294169567161237625416728069877775945051113
25108406941546723055343157692830665664409421777856138051584 ;

Z[12]×[4]×[4](−1/11) = −
46344295466778955212216048923
88528097877566844283627882753
10889047735211360981028087687

941234365126854052600118651191150
657486806311046954882395087600037

9062365652829504091329792873336961

.

from fractions import Fraction

def Z(A,t): # independence polynomial of set A
if A:

if (A,t) not in memo: # if not already computed
u=max(A) # choose site to remove
B=A.difference([u])
C=B.difference(nbrs(u))
memo[(A,t)]=Z(B,t)+t*Z(C,t)

return memo[(A,t)]
else:

return 1 # empty set
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def nbrs(u): # neighbors of a site in Zˆd
for i in range(len(u)):

for k in -1,1:
yield u[:i]+(u[i]+k,)+u[i+1:]

def grid(s): # rectangular box in Zˆd
if s:

return frozenset((i,)+u for u in grid(s[1:])
for i in range(s[0]))

else:
return frozenset([()])

memo={}
print(Z(grid((3,3)),Fraction(-1,5)))
print(Z(grid((13,10)),Fraction(-1,8)))
print(Z(grid((12,4,4)),Fraction(-1,11)))
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