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1. Introduction. In this article, we obtain results on commutators in Sylow sub-
groups of the lower central series, extending the work of Dark and Newell [2], Rodney
[12, 13] and Aschbacher and the author [1, 6, 7].

Some notation is required for the statement of the main results. Let r be a positive
integer and define

[X1] = X1, [*!, X2] = Xj X2

and

..,xr_,],xr] for

where x , , . . . , x, are elements in a group G. Let TrG = {[xlt..., xr] | Xj e G} be the set of
r-fold commutators in G. Then L,G = (TrG) is the rth term in the lower central series of
G. Set LcG = D L,G.

THEOREM A. Suppose L,G is finite and PeSylpCMj) is abelian of rank at most 2. If
any of the following conditions hold then P c TrG.

(0 P^5.
(ii) P is cyclic.

(iii) P has exponent p.
(iv) P D L . G f l .
(v) P n L + , G = l.
(vi) r=£2.

This result is known for r = 2. It was first proved by Rodney [13] for PeSylp(G) of
exponent p. The complete proof of (vi) is [7, Theorem A]. The main idea of the proof is to
reduce to the case where P = L,G. With this hypothesis, (iii) and (iv) are given in [6], while
(ii) and (v) are proved in [2]. However, (i) is still a new result even in this more restricted
situation. By examples in [1], [2], and [6], rank 2 cannot be replaced by rank 3. Moreover,
(i) fails for p = 2 (and possibly for p = 3).

The proof that when ps=5 and P = LrG is an abelian rank 2 p-group then P = FrG
splits essentially into two cases. The first is when P = LjG and is handled by [1, Theorem
C]. The more difficult case is when G is a p-group. In fact, we consider the more general
problem of when Pc( r r G) k . This also breaks up into the two cases described above
(Theorem 2.1). An example (Section 4) is given to show that the p-group situation is the
relevant obstruction to determining k in terms of the rank of P.

Combining these techniques with a result of Gallagher, we obtain the following
results.
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194 ROBERT M. GURALNICK

THEOREM B. Suppose G' is a p-group of order pk with k<n(n + \).
(a) / / L^G is abelian, then G' = (T2G)n.
(b) G' = (F2G)2".

THEOREM C. If G'^Z(G) and G' is a p-group of rank less than n(n + l), then
G' = (r2G)n.

By examples in [5], the bounds in Theorems B and C are of the right order of
magnitude. We define a function f = f(p, r, d) by the following: if P = LrG is an abelian
p-group of rank d, then P = (FrG)f and / is the least positive integer satisfying this.

THEOREM D. (i) Vd-l=s/=s2d, for r = 2 and 3. (ii) d(r-2) / ( r"1)/6r</«2d, for r > 3 .

Finally, we note that:

THEOREM E. // |G|<96 or \LrG\<8, then L,.G = rrG.

Moreover, these bounds are best possible for r > 2 (for r = 2, replace 8 by 16). See [6]
and [7] for examples.

The paper is organized as follows. In Section 2, the proof of Theorem A is reduced to
the case L,G = P. This case is handled in Section 3. Some examples pertaining to lower
bounds for / are given in Section 4. Finally, Theorems B - E are proved in Section 5. We
shall use notation as in [4]. I wish to thank the referee for his very careful reading of the
article and many valuable comments.

2. Reduction of Theorem A. The first result describes how the condition that L,G
has an abelian Sylow p-subgroup splits a Sylow p-subgroup into two nicer pieces.

THEOREM 2.1. Let G be a finite group with SeSylp(G). Suppose n^r and set
P = SHLrG and T = SnL,,G.

(a) P = (LrS)T.
(b) // T is abelian and N=NC(T), then P = (LrSftT, H]=£L,N, where H is a Hall

p'-subgroup of N.
(c) If S<G and V = SDLa>G is abelian, then S = CV and CD V = l , where C =

CS(H) and H is a Hall p1-subgroup of G. Moreover, if G is solvable and m is a positive
integer such that LrC = (FrC)m and r ankV<2 m + 1 - l , then P<=(rrG)m.

Proof. Since G/LnG is nilpotent, {L^I^GI^G is a Sylow p-subgroup of LrGILnG.
Thus P^(LrS)Te Sylp(L,G) and (a) follows. If T is abelian, then by [1, Corollary 5.2]
T = {LnS)[T, H]^LnN, where H is a Hall p'-subgroup of N. Hence (b) holds.

Now assume S < G and V is abelian. Clearly V = [S,H] and so by [4, Theorems
5.2.3 and 5.3.5], S = CV,V = [V, H] and VD C = 1. If G is solvable, then by [1, Theorem
4.1] there exist hu ..., hm e H such that

V=f[[V,hi]=f[[V,hi,...,hil
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Fix h e H. Then for any v e V, and cu c2e C,

[vcu c2h] = [u, c2hf'[cu c2].

Since (c2h)^{h), V < G is abelian, and [C, h]= 1,

Similarly, it follows that

{[we,, c 2 h , . . . , crh] I » e V}=> [V, h, • • •, h ] [ c i , . . . , cr]

Hence

A, = {[vcu c2hh ..., crht] | u e V, c, e C} = [V, h,]Tr(C).

Finally, note that since C normalizes [V, ht],

( m \

FT [v, h,] )(rro
m = v(j;c).

i = l 'Now (c) follows for ViL.C) = V(L,S) = P.
We now prove Theorem A (modulo results in section 3). So assume L,G is finite and

P eSylp(L.G) is abelian of rank at most 2. By [6, Lemma 1.4], we can assume G is finite.
By Theorem 2.1b, we can also assume P<3G and PC\LCOG = T = \T,H~\ for H a Hall
p'-subgroup (note that conditions (i)-(vi) remain valid under these reductions). Now
P = T x C P ( H ) by [4, Theorem 5.2.3]. If P=T, then P<=rrG by [1, Theorem C].
Otherwise T is cyclic and so there exists heH with [T, h] = T. Moreover, since G =
N G ( S ) G ' = N G ( S ) C G ( T ) , we can assume hsNc(S). Consider M = (S,h). Then LM =
L,S[h, T] = P. Thus it suffices to assume G = M and P = L,G. Now (ii), (iii), and (iv) follow
by [6, Theorem 3.2] and (v) follows by [2, Theorem 2]. As remarked before (vi) is [7,
Theorem A]. Finally, if (i) holds but (iv) fails, then T = l , P = L,S and Theorem 3.6
applies.

3. The case L,G = P. We need some commutator calculus. Suppose gsG. Define
To(g) = <g) and 7i+i(g) = [7i(g), G]. Note that 7i(g)<G for i>0 , and by the three
subgroup lemma,

7l+r(g), (3.1)

g , Y 1 . w + i ( g ) - (3.2)

PROPOSITION 3.3.

(a) [ s , t u , x 1 ; . . . , Xr] = [s, t,xu..., XrJs, u , x u . . . , x j

x [s, t, u, xu ..., x,] mod7r + 2( [s , t]).

(b) [s, t ' .X! , . . . , x , . ] = [s, t,xu . . . , x r ] '

x [S, (, t, xu . . . , x, J « - 1 ) / 2 mod7r + 2( [s , £])•
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Proof, (a) Set y = [s, (]. Induct on r. If r = 0, then

[s,tu] = [s,u][s,t][s,t,u]. (*)

The result holds in this case since [s, t, G']^y2(y)- Now assume r > 0 and 7r+2(y) = 1- By
induction

[s,tu, x a , . . . , xr_,] = abed,

where a = [s, t, x l 5 . . . , x ^ ] , b = [s, u, X j , . . . , x ^ J , c = [s, t, u,xu..., x ^ ] and d e
Tr+1(y) ssZ(G). Thus,

[s, t, u, x 1 ( . . . , x j = [abed, x,] = [abc, x j .

However, by (*) (or its inverse),

[abc, x,] = [ab, xJtab, x,, eje, x,]

= [a, xr][a, x,, b][ft, xr][ab, x,, c][c, x j .

Now (a) follows by noting that [afc, x,, c ]e [G ' , 7r(y)]==7r+2(y) and [a, xr, b]e
[7r-i(y), G,G ' ] « 7 r + 2 (y ) .

(b) follows from (a) by a straightforward induction argument.

LEMMA 3.4. Suppose L,G is an abelian p-group of rank at most two and L,+iG^
U'L.G.

(a) There exist j , l^/ '=£r, and 14, l=£i^/=Sr, such that

L r G = [ u j , . . . , «,._!, G , u , + 1 , . . . , U r ] .

( b ) Moreover, if p > 2, then

LrG = { [« ! , . . . , u,-_!, g, u , + 1 , . . . , u j | g e G} = 2 .

Proof, (a) Without loss of generality, U' l^G = £ ,+ ,0 = 1. Choose J c / = { 1 , . . . , r}
maximal so that there exist u,, jeJ with I^G = [Eu . . . , Er] where £, = u, if jeJ and £, = G
otherwise. Assume k<leI-J. Hence L,G = ( [ x l 5 . . . , x j , [ y 1 ; . . . , yr]) where x, - y, = u,
if j e J. Suppose z = [ x t , . . . , y f c ) . . . , x j ^ 1. Then either

LrG = <[x 1 ( . . . , x j , [ x , , . . . , y,-,..., xj>
or

LrG = ([xu . . . , y k , . . . , x,], [ y 1 ; . . . , yr]).

In the first case I-{k} satisfies the conclusion, and in the second case JU{/} satisfies the
same condition as J. This contradicts the maximality of J. So 2 = 1. Similarly
[yu . . . , X[ , . . . , yr] = 1; but now J\J{k} satisfies the condition with uk = xkyk.

(b) We note that we can assume j ^ 1 (for if j = 1 then / = 2 will also satisfy the
conclusion in (a)). Set s = [MI, . . . , uH1] and define <£ : G -» X by <Hg) = [s, g, u ,+ i , . . . , u,.].
First we shall show that for any g, vj+1,... ,vreG we have

y = [s, gep', U j + 1 , . . . , u r ] - [ s , g, vi+1,..., vrr' modU' + %G. (* *)
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Induct on i. If i=0 , this follows from Proposition 3.3b and the fact that L^G^S
. So assume i>0 . Again by Proposition 3.3b,

y=[s, g"'", u,-+i' • • •' ur?p mod B,

where B = 7r-i+i([s, gt""])pyr-i+2(b, gp'~']). By induction,

Since Lr+lG^lS%G it follows that [G,l5kLrG]^Uk+iLrG and so B=sUi+1L,G. Thus
(* *) holds.

Suppose now that UltLrG^ 1 = Uk+lLrG. By (a), there exists g 6 G such that <£(g) has
order pfc+1 and so by (**), z = <MgP") = <Kg)p"- In particular, zeU^G^ZiG). By
induction on |i^.G|, if xeL,G then xzc = <j)(h) for some positive integer e and h e G. By
Proposition 3.3a,

- e p > Wmod7r-]+1([s,

However by (* *),

4>(g-epk) = 2-e and 7r-J-([s,g-p'])'Sfc

Thus

and so <fr is surjective as desired.

The reason we assume p > 3 is apparent in the next lemma. If p > 3, then

2, i2 = 0mod p.
i=0

L E M M A 3 . 5 . Let G be a p-group with p > 3 . If x , y e G with a = [x, y ] , < a G ) = ( a , b )
abelian and [a, G]=£<ap, b), rhen [x, yp] = ap mod B, where B=(a"*, b").

Proof. Set A=(aG). Then [A, G]^(ap, b). If c = [a, y]e U'A, then [y, U ' A l ^ ^ A ,
and so

by Proposition 3.3(b). Hence as p^2 , [x, yp] = ap modB. Otherwise, we can take b =
[a, y].

Now [fc, y] = aapbep. Then a straightforward tedious computation shows that modulo B

since p>3.

THEOREM 3.6. If L,G is a rank 2 abelian p-group with p > 3 , then LrG = TrG.
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Proof. As in Section 2, we can assume G is a p-group. Let G be a counterexample
with \LrG\ minimal. Choose ael^G-T.G. Set A =(aa) = (a, b = [a, g]> for some geG.
Let pa and p3 denote the orders of a and b respectively. Note that a 2» (3. First assume
|3<a. Then B = {J"~1A ={ap"")^Z(G). If a > l , then by passing to G/B, some
generator of (a) is in YrG, and thus aeTrG by [6, Lemma 1.3]. So a = 1 and (3 = 0. If
a = c" with c e LrG, then as above c e TrG. Say c = [d, h] with d e Fr_, G and set e = [c, h].
Then ep = [cp, h] = l. Moreover as een1Lf + 1G and a^L,+1G (as Lr+1G = Fr+1G<=FrG
since IL^GMI^GI) , eeZ(G). Thus, [d, hp] = cpep(p-1)/2 = a since p^2 . Thus, a£ U'L,G
and so LrG = (a,x). We can assume xeFrG and so x = [g, y] for some g e G and
y e F ^ G . If [G,y] = <x>, then (x)<G and so L,+lG = [G, x]^l3'LrG. Then L,G = rrG
by Lemma 3.4b. Otherwise [G, y] = LrG. We claim a = [ft, y] for some heG. Induct on
the order of x. If xp = 1, then the map h -»[h, y]eZ(G) is an endomorphism from G
onto LrG. So assume x has order pk+1. By induction (xp"eZ(G)), we see that [h, y] =
axepk for some integer e. By Lemma 3.5, [gp, y] = xp mod(x:p2), and continuing we see that
[gp\ y] = xpk. Hence [g-epth, y] = ae TrG.

So /3 = a. Thus B = <bp""'> = U""'[G, A.~\mZ(G). Hence by passing to GIB,
a(bkp°")eTrG for some A. By Lemma 3.5, [a, gp] = fep mod U2A, and continuing we find
that [a, gXp"~'] = ftXp"~l and so a is conjugate to abXp"~'. This completes the proof.

By Example 3.1 in [6], p > 2 is necessary. If r = 2, and p > 3 , one can replace rank 2
by rank 3 [7, Theorem B]. This would seem to provide some evidence that there is a
counterexample with p = 3 since there is such for r = 2 with L2G of rank 3.

4. Lower bounds for /. Many examples have been given with L^Gi1 ( r rG)\ particu-
larly for r = 2 or for fc = 1 (see [1], [2], [5], [6], [7], [8], [10] and [11]). We construct one
which gives a good lower bound for / = f(p, r, d). First note that for r - 2, it follows from
[5] and [7] that:

PROPOSITION 4.1.

(a) / ( d ) < V d - l .
(b) /(3) = l O p > 3 .
(c)

For the rest of the section, assume r>2. By Theorem A, /(I) = 1 for all p and /(2) = 1
for p > 3 . Also by [1], /(d)>log2(d + l ) - l .

Now fix a prime p and r>2 . Let F be the free group on n generators. Set
H = F/mFYLr+iF. By Witt's formula, L,H is a free elementary abelian p-group of rank t,
where

and jx is the Moebius function. It follows easily that rt^n'"1. Now suppose d is a positive
integer with (n - l)s =£ dr < ns, s = r -1. Choose a subgroup M of L,H of index pd in LrH.
Set G = H/M. Then G is nilpotent, Lr+iG = 1, and L,G is elementary abelian of rank d.
By Proposition 3.3, the r-fold commutator is multiplicative in each variable. Thus

https://doi.org/10.1017/S0017089500005619 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500005619


GENERATION OF THE LOWER CENTRAL SERIES II 199

|rrG|<p"r. Hence if f = f(p,r,d), then pd = \LrG\ = \(rrG)>\<\TrG\> <pnn. So f>dlnr.
Since

d 1 / I > (n - l ) r - 1 / I ^ i r - 1 - ( l

it follows that

We remark that for r = 3, one can construct a group G similar to that in [2,
Proposition 3] in which L3G is elementary abelian of rank n2 and L3Gi=(T3G)n. Thus
f{p,3,d)'5z\ld-l. Also as r gets large, we can replace 6 by numbers tending to 2. We
conjecture that f(d)^d(r~1)lr-l (this is true for r-2).

5. Theorems B-E. Theorem B follows as an easy consequence of Theorem 2.1 and
a result of Gallagher.

THEOREM B. Suppose G' is a p-group of order pk with k<n{n + l).
(a) 1/ L^G is abelian then G' = (T2G)n.
(b) G' = (r2G)2".

Proof. Note that (b) follows from (a) and [3, Theorem lb] by considering G/U-^G)'.
As usual, we assume G is finite. For (a), note that if SeSylp(G), and C is as in Theorem
2.1c then (T2C)n = C by Gallagher [3, Theorem 2]. The result now follows by Theorem
2.1c (for n(n+ 1)<2"+ 1-1).

Theorem C also follows from the same result of Gallagher and the next lemma.

LEMMA 5.1. Let G be a p-group with G'^Z(G) and G'j=(T2G)n. Moreover, assume
\G\ is minimal with respect to this property (for a fixed p and n). Then G' has exponent p.

Proof. Choose a eL2G-(T2G)n. Suppose d = [u, u]p = [u, v"]^ 1 for some u, veG.
As \G\>\G/(d)\, ad' e(T2G)n for some i. By replacing d by d\ we may assume that
ad G (T2G)n. Say

ad = fl fa, tj.
i = l

Then

Since aeH', H = (s1,tu...,sn,tn,u,v") = G. However, v" is an element of the Frattini
subgroup of G, and so G can be generated by 2n +1 elements. However, this implies
G' = (T2G)n by [5, Theorem 5.2]. So [u, vf = 1 for all u, v e G, proving the lemma.

Now Theorem C follows from Theorem B. Moreover, by [5, Section 5], n(n + l) can
not be replaced by (n + l ) 2 + l in either Theorem B or C. Recall that f = f(p,r,d) is
denned as follows: if P = l^G is an abelian p-group of rank d then P = (TrG)f and / is as
small as possible. We first obtain an upper bound for /.
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PROPOSITION 5.2. Let G be a finite group.
(a) If (x) = (y) and xe(TrG)k, then ye(TrG)k.
(b) J / x € ( r r G ) \ then<x>c=(rrG)3\
(c) Ifxe(TrG)k is a p-element, then (x)c(TrG)2k.
(d) IfPeSylpiUG) is abelian of rank d, then P<=(rrG)2d.

Proof. As remarked before, (a) is [6, Lemma 1.3]. Now (b) and (c) follow by noting
that if y e (x), then y = ab or abc, where a, b and c are some generators for (x).
Moreover, if x is a p-element, then either (y) = (x) or y = ab. Now (d) follows from (c) and
the observation that if P has rank d, it can be generated by d elements of TrG (see
Theorem 2.1).

Theorem D now follows from Proposition 5.2(d) and the results in Section 4. We
note that /(1) = /(2) = 1 (for p > 3 or r = 2) and /(3)s=2 (for r > 2 or r = 2 and p=£3.).

Finally, we shall prove Theorem E. Note if \L,.G\ < 8, then L,G = TrG by Theorem A
and [6] unless perhaps L,G^S3. However if rs=2, then as A=(LtG)'<lG, L.G^G'^
CG(A), a contradiction. So L^G^= S3. Now assume |G|<96. Suppose G is a counterexam-
ple. Then r 5= 3 by [7, Theorem D]. If GIG' is cyclic, then T2G = {[g, h] \ g s G', h e G},
and G' = L,G for r3=2. Since |G|<96, G' = r2G, and so by induction, we see that

Tr+1(G) = {[g, h] | g € TrG, h e G} = T2G = G' = L,+1 G.

Since |L3G| 3= 8 and indeed by an argument similar to the one above \L3G\ is divisible
by at least three primes, the only possibilities remaining are that [G: G'] = 4 and
11̂ .01 = 8,12, or 18 or that [G:G'] = 9 and |G'| = li^Gl = 8. The last possibility is easily
eliminated by inspection. If [G: G'] = 4 and |LrG| = 8, then G is a 2-group and G' is
cyclic. Thus Theorem A applies. If [G:G'] = 4 and \LrG\ = \2 or 18, then either LrG is
the union of its Sylow subgroups (and so Lfi = TrG by Theorem A) or G' = L,G is
abelian. It then follows that L.G^ G', and this contradiction completes the proof.
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