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Energy Focus

High-performance, long-lasting 
battery comes with test protocol 

Electric automobiles are becoming 
more popular and more common on 

the roads each year. These cars are vi-
able because their battery banks store 
enough energy to facilitate daily com-
mutes. They also deliver steady day-to-
day performance and do not degrade rap-
idly. However, everyday commutes that 
are short and intermittent rarely tap the 
full capacities of these batteries. As long-
haul trucks and driverless taxis transi-
tion from gasoline to electric power, 
their constant run time will have an ad-
verse impact on the longevity of their 
batteries. Furthermore, hot and cold en-
vironments also affect the operational 
capabilities of electric vehicles. There 
is, therefore, a significant drive to de-
liver “beyond-lithium” cell chemistries 
for the next generation of batteries. The 
aforementioned host of dynamic vari-
ables presents a formidable challenge for 
these efforts: what is the most reliable 

protocol to evaluate these cells and, over 
a viable laboratory-scale test process, as-
sess expected lifetime and failure mech-
anisms that accurately apply to real-life 
batteries that operate for several years?  
	 A research group from the Department 
of Physics and Atmospheric Sciences and 
Department of Chemistry at Dalhousie 
University recently reported a lithium-
ion cell chemistry design with excellent 
longevity. Their resulting battery de-
sign, which uses finely tuned electrode 
and electrolyte designs, also withstood 

(a) Scanning electron microscope (SEM) image of the single-crystal cathode 
material; (b) SEM image of the graphite anode material; (c) photograph 
of a typical pouch cell that was used for this work (coin added for scale). 
Image Credit: Journal of The Electrochemical Society.

temperature extremes, allowed fast charg-
ing, and was durable enough to power an 
electric vehicle for over 1 million miles. 
The group published their findings and 
methodology in a recent issue of the 
Journal of The Electrochemical Society 
(doi:10.1149/2.0981913jes).
	 A crucial component of the success of 
Jeff Dahn and his colleagues was the de-
sign of the cathode electrode in the battery 
cell. A single-crystal electrode composed 
of a lithium nickel manganese cobalt ox-
ide yielded the highest and most durable 

In another Nature Energy article (doi: 
10.1038/s41560-019-0466-3), a team 

lead by Hairen Tan of Nanjing University 
presented a different way to suppress tin 
oxidation in tin-lead perovskite layers. 
Their “simple and effective strategy” is 
to add metallic tin powder to the pre-
cursor solution from which perovskite 
films are made. 
	 In the precursor, the species Sn2+ oxi-
dizes to Sn4+. But the metallic tin reduces 

the Sn4+ back to Sn2+, the researchers 
found. They filtered out the leftover 
metallic tin granules before making a 
perovskite film. “By using this strategy, 
we are able to reduce the Sn vacancies in-
side the grains and thereby achieve a long 
carrier-diffusion length of 3 μm in mixed 
Pb-Sn perovskite films,” they wrote. 
	 The resulting tin-lead perovskite films 
have electronic quality comparable to 
high-quality lead-based perovskites. This, 

in turn, yielded tin-lead perovskite solar 
cells, with the highest reported power-
conversion efficiency of 21.1%. Tandem 
cells made with these narrow-bandgap 
devices have a certified 24.8% efficiency 
for small-area devices (0.049 cm2) and 
22.1% for large-area devices (1.05 cm2). 
The tandem devices retained 90% of their 
performance following 463 hours of op-
eration at the maximum power point un-
der full 1-sun illumination.

While most efforts on perovskite so-
lar cells have focused on meth-

ylammonium lead trihalide perovskites, 
with bandgaps of 1.55 eV or higher, for-
mamidinium-lead-iodide (FAPbI3)-based 
systems, with their slightly narrower 
bandgap, have the potential to give more 
efficient photovoltaic devices. 
	 The material’s drawback is that within 
10 days at room temperature, it transforms 
from a black phase to a yellow phase—
which has trigonal versus hexagonal 

crystal symmetry, respectively—that has 
a wider bandgap. In a recent Science ar-
ticle (doi:10.1126/science.aay7044), re-
searchers reported a method to stabilize 
the trigonal phase to make efficient, stable 
FAPbI3 solar cells. 
	 In the past, others have tried to stabi-
lize FAPbI3 by mixing in cations and an-
ions such as methylammonium, cesium, 
and bromine. But these additives can al-
so widen the bandgap and reduce stabil-
ity. Sang Il Seok and his colleagues at the 

Ulsan National Institute of Science and 
Technology made highly efficient and sta-
ble perovskite solar cells by adding meth-
ylenediammonium dichloride (MDACl2) 
to the a-FAPbI3. The device had a certi-
fied efficiency of 23.7% and maintained 
over 90% of that initial efficiency after 
600 hours of operation under full sunlight. 
Even unencapsulated devices exhibited 
better thermal and humidity stability over 
a control device in which FAPbI3 was sta-
bilized by MAPbBr3.
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(a) Scheme showing that the PZ67 “sandwich” prevents polysulfides (Sm
2– 

and Sn
2–) from diffusing to Li anodes. (b) Cycling stability of Li-S batteries 

with various cathodes: bare sulfur (S), PZ67-supported sulfur (PZ67/S), 
PZ67-covered sulfur (S/PZ67), and PZ67-sandwiched sulfur (PZ67/S/PZ67). 
CoP, cobalt monophosphide. Credit: APL Materials.

ENERGY FOCUS

Metal–organic-framework-derived 
“sandwiches” enhance longevity 
of Li-S batteries 

Rechargeable lithium-sulfur (Li-S) 
batteries with elemental sulfur and 

lithium metal as cathode and anode, re-
spectively, are promising electrochemical 
energy-storage devices with energy den-
sities 3–5 times higher than those of re-
chargeable Li-ion batteries. However, the 
practicality of Li-S batteries is significantly 
compromised by their short lifetimes that 
are mainly associated with polysulfides, the 
intermediate products formed during cy-
cling. Once formed, these electrolyte-sol-
uble species diffuse to the Li metal anodes 
and deposit as Li2S on the Li surface. The 
deposition passivates Li and reduces the 
concentration of Li+ available for electricity 
storage. Therefore, developing methods to 
prevent polysulfide diffusion to Li anodes 
is crucial for addressing the implementa-
tion challenge for the Li-S battery.
	 In APL Materials (doi:10.1063/ 
1.5122819), Bo Wang and co-workers 
of the Beijing Institute of Technology, 
China, describe a cobalt phosphide/po-
rous carbon composite (PZ67) that pre-
vents the leaking of polysulfides into the 
electrolyte. The PZ67 composite results 
in Li-S batteries with a high capacity 
(a metric for quantifying electricity-storage 

capability) that goes 
beyond 300 charge-
discharge cycles.
	 According to the 
first author, Xing 
Gao, the purpose 
of this work was to 
utilize polar com-
pounds and porous 
carbon networks to 
trap polysulfides. To 
realize this goal, the 
researchers selected 
ZIF-67, a type of co-
balt-containing met-
al–organic framework 
(MOF), as a starting 
material. MOFs are 
crystalline coordina-
tion compounds con-
sisting of metal ions 
or clusters and organ-
ic ligands. Through 
thermal annealing 
and phosphidation by 
NaH2PO4 under N2 
atmosphere, ZIF-67 
was converted to co-
balt monophosphide 
(CoP) nanoparticles 
wrapped with N- 
doped mesoporous carbon matrices.
	 The PZ67 composite functioned as 
a “cage” to confine polysulfides near 

sulfur. Specifically, sulfur was sand-
wiched between two pieces of PZ67 
but remained accessible to Li+ through 

a

b

capacities. A carefully designed electro-
lyte that used an organic lithium salt, a 
blend of three organic solvents, and nov-
el stabilizing agents acted as an essen-
tial partner to this electrode and ensured 
its durability over thousands of charge 
and discharge cycles. This stable system 
delivered a 795-Wh/L stack energy den-
sity and performed at high efficiencies 
over 3700 cycles at 20°C and 40°C. The 
unique design of the cathode ensured that 
the electrodes never cracked or effused 
active material. 
	 Georgia Institute of Technology pro-
fessor Gleb Yushin, who is unaffiliated 
with this research effort, assessed the 
impact of the work: “Development of 
longer lasting batteries [is] critical for 

both autonomous electric mobility and 
clean energy grid. Revealing key contri-
butions to cell degradation, as demon-
strated by this excellent work and oth-
ers, enable materials scientists to fine-tune 
both electrode particles and electrolytes to 
overcome the current Li-ion limitations. 
In the near future, I expect new anode 
and cathode chemistries beyond graphite 
and NMC [nickel manganese cobalt] will 
push the limits of energy density versus 
cycle life to new heights.”
	 The researchers validated the lon-
gevity of their cells against compara-
ble commercial cells and replicated ex-
pected operating conditions. The team 
stored the cells in temperature-controlled 
ovens for over a year and periodically 

cycled them to assess their thermal sta-
bilities. Battery testing cycled the ener-
gy-storage modules at different rates and 
combined electrochemistry information 
with changes in volume (due to aging-
induced generation of gas in the cells) 
and characterization of electrodes at dif-
ferent time points. The researchers me-
ticulously documented their test methods 
and ensured that researchers could easily 
replicate these results or build upon them 
in follow-up efforts. Many of the tested 
cells are—to this day—still cycling in 
the Dalhousie University laboratories, 
and readers are encouraged to contact 
the research team and inquire about the 
current operating status.
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