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Introduction

Any congruence on a semigroup S with a nonempty set Eg of idempotents
induces a partition of the set Eg. Two congruences p and ¢ on the semigroup S
are defined to be idempotent-equivalent congruences on S if p and ¢ induce the same
partition of Eg. In this paper we investigate idempotent-equivalent congruences
on orthodox semigroups (regular semigroups in which the set of idempotents forms
a subsemigroup).

If S'is an orthodox semigroup and p is a congruence on .S, then the partition
of Eg induced by p satisfies certain normality conditions. We determine those par-
titions of Eg which are induced by congruences on S and we characterize the
largest and smallest congruences on S corresponding to such a partition of Eg.

The set of all congruences which are idempotent-equivalent to a given congru-
ence forms a sublattice of the lattice A(S) of all congruences on S. We investigate
some of the properties of this sublattice of A(S). Specifically, we determine the reg-
ular kernels of the meet and join of two idempotent-equivalent congruences p and o
on S in terms of the regular kernels of p and o. Finally, we show how this may be
simplified in the special case when the lattice of idempotent-equivalent congruences
considered coincides with the lattice of idempotent-separating congruences on S.

The corresponding results concerning idempotent-equivalent congruences on
inverse semigroups have béen obtained by N. R. Reilly and H. E. Scheiblich [3],
and the methods which we adopt provide an extension of the methods adopted in
[3} The essential difficulties which arise are due to the necessity to consider the
transitive closures of several relations.

1. Preliminary Results and Notation

We shall adhere throughout to the notation and terminology of A. H. Clif-
ford and G. B. Preston {1]. In addition, we shall denote the set of inverses of an
element x of a regular semigroup by ¥V (x).

We make frequent use of the following lemma ([3], lemma 1.3 and lemma 1.4).
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LemMa 1.1, Let S be an orthodox semigroup. Then

(i) if a and b are arbitrary elements of S, and if a’ and b’ are arbitrary inverses
of a and b respectively, it follows that b'a’ € V{(ab);

(i) if a is an arbitrary element of S and if a' is an arbitrary inverse of a, then
a'Ega < Eg;

(iii) if e is an arbitrary idempotent of S, then V(e) < Eg.

We now give a brief outline of some of the results of the author [2] concerning
congruences on orthodox semigroups. The regular kernel # = {B;:i€l} of a
congruence g on an orthodox semigroup is defined to be the set of maximal regular

subsemigroups of the elements of the kernel &7 = {4, :ieI} of p. Indeed, for
all i € I, we have the characterization

B, ={xed;,V(x)n A4, # O} 1)
A regular kernel normal system of the orthodox semigroup S is defined to be a set
# = {B;:iel} of subsets of S which satisfy the conditions:
(K1) each B; is a regular subsemigroup of S;
(K2) B;n B; = (Qifi # j;
(K3) each idempotent of S is contained in some B;;
(K4) for each a€ S, a’ € V(a), and i € I, there is some j =(a, @', i) € I such that
aBac By;
(K5) for each i, j € I, there is some k € I such that B;B; B; < B,;
(K6) if a, ab, bb’, b'b € B; for some b’ € V(b), then b € B;
(K7) for each i eI and for each je I, there is some k € I such that E;E; < E,,
where E; denotes the set of idempotents of B;.
Then we have the following theorem ([2], theorem 3.6).

THEOREM 1.2. If p is a congruence on an orthodox semigroup S then the regular
kernel & of p is a regular kernel normal system of S, and p = py, the transitive
closure of the relation pg defined by:

pa = {(a,b)e Sx S :there exists a’ € V(a) and b' e V(b) such that
aa',bb’, ab’ € B;, a'a,b'b, a'b e B; for some i,jel}. 2)

Conversely, if & is a regular kernel normal system of S, then there is precisely one
congruence p on S such that % is the reqular kernel of p, and then p = ply.

Now let S be an orthodox semigroup and let p be a congruence on S. Then as
mentioned earlier, p induces a partition

éa= {Ei:iel}
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of the set Es of idempotents of S. By virtue of lemmu 1.1, we easily see that &
satisfies the conditions:

(N1) for all i, j € I, there exists k € I such that E;E; = E;
(N2) for all i€, ae S, and @’ € V(a), there exists je I such that aE;a’ < E;.

We define a partition & = {E;:ie I} of the set Eg of idempotents of the
orthodox semigroup S to be a normal partition of Es if & satisfies conditions N1
and N2. We denote by n, the equivalence relation on Eg induced by such a parti-
tion € and show that there exists a congruence p on S such that p|; = 7,: indeed
we determine the maximal and minimal such congruences on S.

Before proceeding to the determination of these congruences, we introduce
the following useful notation: if e and f are two idempotents of the orthodox semi-
group S, then we define e = f if and only if e and f are in the same class E; of the
normal partition & = {E;:i€l} of E;s.

Using this notation, we have the following lemma.

LemMma 1.3, Let s,,5,," ", 5,1 be elements of the orthodox semigroup S,
and let 5], s;’ be inverses of s, for i = 1,---n—1 such that relative to some normal
partition & of Eg we have 5,5," & S, 18)41,5,'8, X S}41841,forr=1,-+--n-2.

Then the following formulae hold.

$181 R (Sn—155-1)(Sa=250-2) =~ (51 51)3 (3)
s150 ® (5150)  ** (S0-280-2)(Sp- 1 5a=1); (3"
Sne1Sn-1 R (531 Sn—1) * * * (8252)(s151)5 )
Sn—15n—1 2 (51 57)(525%7) - (Sn=15n"1)- 4)

This may be proved by induction along precisely the same lines as the proof of
lemma 3.3 in [2], using the condition (N1) in the appropriate places.

2. The Congruence {’

Let & = {E;:ie I} be a normal partition of the set Eg of idempotents of the
orthodox semigroup S and consider the relation

{ = {(a, b) e Sx S : there exist inverses @’ of @ and b’ of b such thatie I
implies aE;a’, bE;b' < E; and a'E;a, b'E;b = E,, for some j, kel}. (5)

We prove that the transitive closure {* of the relation { is the largest congruence on
S whose restriction to Es is m,.

LeMMA 2.1. Let & = {E;:ie I} be a normal partition of the set Eg of idem-
potents of the orthodox semigroup S and let { be defined by (5). Then the transitive
closure (' of the relation { is a congruence on S.

https://doi.org/10.1017/51446788700006418 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700006418

224 John Meakin 4]

PROOF. ( is clearly reflexive by normality condition N2, and { is also clearly
symmetric, so to prove that {* is a congruence on S it suffices to show that { is a
compatible relation.

Suppose that (a, b) € {, and let ¢ be an arbitrary element of S. Let ¢’ be an ar-
bitrary inverse of ¢, and let @’ and &’ be the inverses of a and b respectively which
appear in the definition of {. Since a’c’ € V(ca) and b'c’ € V(cb), it suffices, in or-
der to establish the left compatibility of {, to show that given i € I, there exists
leIand m e I such that

5 (ca)Efa’c"), (cb)E(b'c") < E|,
(a@'c’)E(ca), (b'c")E(cb) = E,,.

Now, given i € I, there exists j € I such that aE;a’, bE;b" = E;. Then
(ca)Ei(a'c’) = c(aEa')c’ = cE;c' € E),
some /e I, by condition N2, while

(cB)E(b'c’) = c(bEb)c

n

cE;c’ € E|,
by N2,
Also, c’'E;c < E,, some ne I (by N2), and given n € I, there exists m € I such

that a'E,a, b'E,b < E,. Hence (a'c')E(ca) = a'E,a S E,, and
(b'c')Ei(chb) < b'E,b < E,,.

Hence the left compatibility of { is established, and the proof that { is right com-
patible follows in a similar fashion. Thus { is compatible, and it follows that {* is
a congruence on S.

LEMMA 2.2. Under the conditions of lemma 2.1 the restriction {'| £s Of the con-
gruence ' to the set Eg of idempotents of S coincides with n,, the equivalence
relation on Eg induced by &.

PRroOOF. Suppose first that e and f are idempotents of S in the same class E; of the
partition &. Let j be an arbitrary element of I. Then eE;e = E,E;E; < E,, some
kel, by NI, and fE;f < E,E;E; = E,. Since e€ V(e) and fe V(f), it follows
that (e, f)e { < (', and hence that n, = ('|g,.

Conversely, suppose that e and f are idempotents of S for which (e, f) € . We
aim to prove that e and f are in the same class of the partition &, i.e. that e = f.

Now since {* = [ ), (", where (" is the n-fold composition of { with itself, it
follows that (e, f) e {* for some n = 1. We consider the cases n = 1 and n > |
separately.

Suppose first that (e, f) & {. Then there are inverses e’ of e and f* of f such
that iel implies eE;e’, fE;f' = E; and €'E;e, f'E;f = E,, some j, k € I. Then
ee’ = e(e)e’ ~ fef’, and similarly it follows that e’e &~ f'e’f and that ff’ = ef'e’.
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Hence e = (ee’')(e'e)

= (fef ) fef) (by NI)

= flef'e)f

SIUP =f  (by NI).
Hence e = f, and the proof for the case n = 1 is complete. Now suppose that
(e,f)e (", some n > 1. Then there are elements sy, s,, - - *, 5,-; of .S such that
(e,5,)€8, (51,8)€L, - (8,-1,f) €, and it follows that there are elements
eeVe),s,syeV(s) forl=1,---n—1,and f' € V(f) such that i € I implies
the existence of j,, j,, " * “Ju> k15 K2, * - - k, € I such that

eE;e’,s,E;sy S E;; e'Eje, s E;sy S Ey;
siE;s)s si+1Eisivy € Ej,, s forl=1,---n-2,
SUE;s;, siv1 Eisiyy S By, forl=1,---n-2;

Su—1 Eisy1 JEf S E;; sy 1ESa—1,f'E; f S Ei,.

(6)

As the first step in the proof that e = f, we prove the following formulae:

ee’ ~ sy sy, e~ sisy,

11

! 144 ’ .
SiS; R S; 1841y SIS R Sit1Si+1s fori=1,---n-2, )]

sn—lsrlll-l sz,’ Sr,:,—lsn—l zftf

Now
sy 57 = si(s181)s1 = e(sysy)e’ (by (6))
= e(sys;€)e’ x 5,(ss,€)sy  (by (6))
= s5,€'s; x eee (by (6)),

and hence 5,5, = ee’. Also, fori = 1,---n—2 we have

587 = si(5:'8)si” & 8i44(518))80 44 (by (6))

Siv1[(8i's)(sia 1 Siw 1)]8i0 1 = 8i(5:8)(50 41 84 1)80 (by (6))

and hence

$i8: % S(Siv 1 Sie )8 R S (ST 1S4 18141 = Sit1Sien-
Finally,

Sn=15n=1 = Sp=1(Sa=1 Sa-1)8n=1 = f(sn=18,=1)f’
SUGa= 18- ) If" = sy i(s0= 1 80= 1) "534
= Sp-1 S Su—1 = fff" = ff".

By the dual arguments, we obtain

i
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e'e ™ SySy, 8IS N Siy1Sivys fori =1,---n-2,
and
’ rr
ff X Su-15-1>

and this completes the verification of (7). By virtue of the formulae (7) we are now
in a position to use lemma 1.3, of course. Now

ee' = eee’ ~ s,es; (by 6))
= sy[e(sys1)1sy(5151)-
We use this as a basis for an inductive proof of the formula:
ee’ ~ s e(s]5,)(s282) * +* (515.)s,'(5.,) * * * (5252)(s4 1), (8)

for r = 1,--- n—1. We have just seen that this holds true for r = 1, so suppose
that (8) holds for r = k. Then we have

ee’ & sy qe(sy51)(5252) "+ (Skse)sk+ 1(Sese) -+ (5252)(5151) (by (6))

Sea1€(5180)  (Sus)(Skr 1 Ske 1)k 1 (S 1 Sk 1 )(SkS) - (515%),

2

and this completes the inductive proof of (8). From (8), we deduce that
ee’ x5, 1e(s15)(5252) " (Snm1Sn-1)8n 1(Ss-1Sn—1) " " * (5285)(5151)
© mfe(sys)(5252)  (Shmy Sa ) (Samysmon) t (s285)(sis1)  (by (6))-
By the dual of the argument used to prove this, we also have
ee x (s150)(5252) ** (Sum1Su—1)f (Sa-15n-1) - (5252)(5157)ef.
Hence
e = (ee')(e'e)
& fe(s151)(5252)  * * (Sam1Su=1)f (Su-150-1) -+ (5255)(s1 51)ef (by N1)

= unvn’
where
Uy = fe(s15,)(s252)  *  (Sa-1 Sa=)Sf 5
and
Un = f'(Sp-15n—1) "~ - (5253)(sy s)elf.
Now

Up X Sy y€(s151)(5282) * * * (Sum1 S 1)S0—1
= n—l[e(si 51)(-"; 52) e (Sr,-—z sn—Z)]sr,l—-!(sn—l Sa_1)s

and we use this result as a basis for an inductive proof of the formula:

u, S,,_,.[e(51 sl)(s'Z s2) e (sr’l—r—l Sp—p— 1)] st’!—r(sn—rsr,n,—r) e (sn—l Sr’l’—'l)’ (9)
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forr = 1, - - n—1. Suppose inductively that (9) holds for r = k. Then
Uy X Sy 11€(5151) " (Snmr—1Sn—k=1)I5n k= 1(Sn—k Sn k) " Sn~1 Sn=k—1)
= Spok—1[e(s151) " (Sn-tm28—k-2)1Sn—k- 1 (Sack— 180 —k-1) " (Sa=1Sn= 1)
and this completes the inductive proof of (9). From (9) we immediately deduce that
u, X (s;e57)(s:57)(5287)  * (Sam 1804
~ (eee')(s,s7)(s25%) " (sn-18,~1)  (by (6) and N1)
= (ee')(s15Y)(s257) "+~ (Sp-15n"1)
~ (5051)(s157)(525%) * * (sp-15,=1)  (by(7) and N1)

= (5157)(s255) * * (Sn=1 851
R Su_15,_1 by (4') of lemma 1.3
= ff'.

By the dual argument, we deduce that

v, ~ [,
e~ uo, ~ (ffNff) =1,

and hence that

as required.
Hence {‘|g, S 74, and since the converse inclusion has already been establish-
ed, we deduce that {*|p; = m,, as required. This completes the proof of the lemma.

THEOREM 2.3. Let & = {E; : i€ I} be a normal partition of the set Eg of idem-
potents of the orthodox semigroup S and let { be defined by equation (5). Then (',
the transitive closure of (, is the largest congruence p on S which satisfies plg, = ns.

Proor. We have already seen that * is a congruence on S and that {f|z, = 7,.
It remains to verify that if p is a congruence on S satisfying plg, = n,, then
ps

So let p be a congruence on S which satisfies p|g, = s, and let & = {B;:iel}
be the regular kernel of p. Then since plg, = m,, we have that E; < B;, for all
ie I, for a suitable indexing of the elements of %. By theorem 1.2, p = p, the
transitive closure of the relaticn p4 defined by (2). Before proceeding to the proof
that p = pg < (' we remark that if (a, b) € pa, then there exist inverses a’ of a and
b of b such that (a',b') € pgy.

To prove this, suppose that we have (a, b) € pg for some a, b € S. Then there
are inverses @’ of @ and b’ of b such that aa’, bb’, ab’ € B;, a'a, b'b, a'b € B;, for
some i, je L. Since a e V(a') and b € V(b'), we clearly have that (@', b') € pg.

We now prove that p = pg < (' Let (a, b) € ply = | )2, pla. Then (a, b) € p,
for some n = 1. Hence there exist elements a = s, $,,8;," " " Sy—1, S, = b€ S
such that for all i = 0, - - - n—1, we have (s;, 5;,,) € pg, and consequently there
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are elements sy € V(so), 5{,5; € V(s;) for i =1,---,n—1, and s, € V(s,) such
that for i =0,---,n—1,
(si', siv1) € pa-
Hence ap = sgp = syp =" =$,_,4p = §,p = bp, and
a’p =sop =519, 57p =530 8,_1p =s5,p=bp.

Now choose E;, an arbitrary element of the partition &, and let e be an arbitrary
element of E;. Then for i =0, n—1,

(siesi)p = (s:p)(ep)(si'p) = (si+1P)(ep)(Si+1P)
= (Si+1€541)Ps
and
(si'es)p = (si'p)(ep)(sip) = (si+1p)ep)(si+1P)
= (Si+1€Si41)P-

Since s;es;’ and s, es;, are idempotents of S which are equivalent under p, and
since plg, = 7, it follows that s;es/” and s, es;,, are in the same eclement E,
of the partition &, and hence by N2,

e ’

S;E;si', siv1 Ejsivy S Ey.
Since (s;'es;)p = (si+1e8;+1)p, We also deduce that
S{'E;s;, siv1E;jsiy S Ep some lel.

Hence, for i = 0, - - n—1, we have (s;, 5;4,) € {, and it follows that (s,, s,) € {",
i.e. (a,b) e (" = {'. Hence p = pjy = (', and the theorem is proved.

We devote the remainder of this section to the calculation of the regular kernel
of the congruence (*. By virtue of theorem 1.2, this provides an alternative char-
acterization of the congruence {'.

We make use of the following theorem, due to N. R. Reilly and H. E. Scheiblich
([3], theorem 1.5).

THEOREM 2.4. Let E be an idempotent subsemigroup of a semigroup S. Then S
has a unique subsemigroup T with the property that T is the largest regular subsemi-
group of S with E as its set of idempotents.

Now let & = {E;:ielI} be a normal partition of the set Eg of idempotents
of the orthodox semigroup S. Then for each i € I, E; is a subsemigroup of S and
hence there exists a unique subsemigroup T; of S with the property that T; is the
largest regular subsemigroup of S with E; as its set of idempotents. It is obvious
that T is an orthodox subsemigroup of S. Using this definition of T;, we now prove
the following theorem.

THEOREM 2.5. Let S be an orthodox semigroup and let & = {E;:iel} be a
normal partition of Eg. For each i € I, define
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Z; = {x e T;: there exists x" € ¥V (x) n T; such that
E,E;E; < E, implies xE;x', x'E;x < E,}.

Then & = {Z;:i€l} is the regular kernel of the congruence ('

PrOOF. Let &/ = {A;:i€el} be the kernel of {" and let # = {B;:ie I} be the
regular kernel of {*. We aim to show that forallie I, B, = Z;.
Suppose first that x is an arbitrary element of Z; for some i € I. Then there
exists x' € V(x) n T; such that E;E; E; < E, implies xE;x" € E, and X'E;x S E,.
Now xx’ € E;, and for all j € I we have,

xx'E;xx' € E\E;E; < E,,  some kel
It follows that xE;x’ < E, and x'E;x < E,. Hence
(x, xx)el = ¢ and (¥, xx")e{ < (-

Thus x € 4; and x’ € A;, and so x € B; by virtue of the characterization (1) of the
B,. Hence Z; B, for all ie I.

Conversely, let x be an arbitrary element of B; for some i€/, and choose
x' € V(x) n B;. Then since E; is the set of idempotents of B, it follows that B; < T;
and hence that x, x" € T;. Suppose now that given je I, we have E,E;E; € E,
(such a k exists by N1). Choose e€ E,, f€ E;, g € E,, so that (e{")(f')(el*) = g{.
Now x, x' € 4;, and so x{' = x'{* = e{’, and it follows that

GO INET) = ONFENL) = g,
i.e.
Gefx )= (xfx)" = g

Hence xfx', x'fx € E,, and so xE;x', xX'E;x € E,. Thus xe Z;, and so B, c Z,,

foralliel
Hence we have B; = Z; for all i € I, and the theorem is proved.

3. The Congruence &

Let & = {E;:ie i} be a normal partition of the set Eg of idempotents of the
orthodox semigroup S and consider the relation .

& ={(a,b)e Sx S : there exists a' € V(a),b’ e V(b) and i,jel

such that aa’, bb' € E;,a’a,b'be E;, and for some ee E; and

fE€E;, eaf = ebf and fa'e = fb'e}. (10)
In this section we prove that &, the transitive closure of the relation ¢ defined by
(10) is the smallest congruence p on S which satisfies the condition plg, = m,.

We also determine the regular kernel of the congruence &, thus providing an
alternative characterization of this congruence.
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LemMa 3.1. Let S be an orthodox semigroup and let & = {E;:iel} be a
normal partition of Eg. Then the transitive closure & of the relation ¢ defined by (10)
is a congruence on S.

Proor. It is trivial to verify that £ is reflexive and symuaeiric, so to prove that
& is a congruence on S it suffices to prove that ¢ is left and rignt compatible. Let
(a,b)e & and let ¢ be an arbitrary element of S. Then there exists @' € V(a),
b e V(b), and i,je I such that ada’, bb' € E;, d’a, b'b € E;, and for some ec E;
and fe E;, eaf = ebf and fa'e = fb'e. Let ¢’ be an aroitrary inverse of ¢. Then
since a'c’ € V(ca) and b'c’ € V(cb), in order to prove the left compatibility of
£ it suffices to show that there exist k, / € I such that (ca)(a'c’), (cb)(b'c’) € E; and
(a'c’)(ca), (b'c’)(chb) € E, and that for some e, € E, and f, € E,, we have

ei(ca)fy = ey(cb)fy and fi(a'c')e; = f1(b'c')e,.
Let (ca)(@'c’) € E,. Then since c(aa’)c’ =~ c(bb’)c’ (by N2), we also have that
(cb)(b'c’) e E,.
Let (a'c’)(ca) € E, and let (b'c’)(cb) € E,,. We prove now that E; = E,,. Now,
(d'c’)(ca) = (a'a)a’[(aa')(c'c)(aa’)]a(a'a)

~ fa'[e(c'c)elaf (by N1 and N2)
= (fa'e)(c'c)(eaf) = (fb'e)(c'c)(ebf)
= fb'[e(c'c)elbf

~ (b'b)b’ [(bb')(c'c)(bb')Ib(b'b) (by N1 and N2)
= (b'c’)(cb), and it follows that E, = E,,.

Now choose e, = ceafa’ec’ = cebfb’ec’, and choose f; = fa'ec’ceaf = fb'ec’cebf.

Note that
e, = c(ua')a(a’a)a'(aa’)c’ (by N1 and N2)
= (ca)(a'c’),so e, € E,.
Also,
f1 = (d'a)a’(aa’)(c'c)(aa’Ya(a’a) (by N1 by N2)
= (a'c')(ca), sof, e E(= E,).
Now,

ei(ca)fy

(ceafa’ec’)(ca)(fa'ec’ ceaf)
ce(afa’ec’c)(afa’ec’' c)eaf
ce(afa’ec’c)eaf
c(eaf)(fa'e)(c'c)(eaf)

= c(ebf)(fBe)(c'c)eb)
(ce)(bfb'ec’c)ebf

= (ce)(bfb'ec’c)(bfb'ec’ c)ebf
= (cebfb'ec’)(cb)(fb'ec cebf)
= e;(ch)f;.
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Also,

fila'c' )e, = (fa'ec’ceaf )a'c )(ceafa'ec’)
= (fa'e)(c’ceafa’)(c'ceafa’)(ec’)
= (fa'e)(c'ceafa’ Y ec')
— (e)coNeb ) fbre)
= (fb'e)(c’cebfb’)ec’
= (fb'e)(c’cebfb’)(c'cebfb)ec’
= (fb'ec’cebf )(b'c")(cebfb'ec’)
= fi(b'c'ey.

This completes the proof that £ is left compatible. The proof that £ is right com-
patible follows similarly and is omitted. Thus & is a congruence on S, and the
lemma is proved.

LemMMA 3.2. Under the conditions of lemma 3.1, the restriction &g of the con-
gruence & to the set Eg of idempotents of S coincides with n,, the equivalence re-
lation on Eg induced by &.

PRrROOF. Suppose first that e and f are idempotents of S in the same class E; of
the partition &. Then ef € E; and it is easily verified that (ef )e(ef) = (ef) and that
(ef)f(ef) = ¢f. Since ee V(e) and fe V(f), it follows that (e,f)e < &, and
consequently that n, < &|g,.

Conversely, suppose that e and f are idempotents of S for which (e, f) € &.
Then (e, f) € &" for some n = 1. We consider the casesn = 1 and n > 1 separately.
Suppose first that (e, /) € £&. Then in particular, there exists inverses e’ of e and f”
of fsuch thatee’, ff' € E; and e’e, f'f € E; for some i, j € I. In fact these conditions
are sufficient to ensure that e ~ f, since e = (ee’')(e’e) ~ (ff')(ff) =1, by NL.
This completes the proof for the case n = 1.

Suppose now that (e,f)e " for some n» > 1. Then there exist elements
Sy, 82, " 8-y €5 such that

(e,50)€&, (51,8)€& (5,1, f)€E.

Then in particular, there exist elements e’ € V(e), s;,s; € V(s;), fori=1,---n—1,
and f” € V(f) such that

e’ = 5,51, ¢'e X 515¢,
Iz ' 12 ' :
8§:8; N Si+18i+1 i~ Si+15i+1 forl = 1,"'"‘_2, . (11)

Suc18n—1 R[Sy Sp_1 80—y &[S

Now e = (ee’)(e’e) = (sys1)(s15,), by N1, and so by (3) and (3') of lemma 1.3,
and by N1, we have,
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e R (Sp-ySn—1) " (5252)(5151)(515)(5252) " (Sa1 Su=1)
= (Sne1 80 ) (Snm1Sa— 1)+ (5253)(51 8)(5751)(5252) ** * (Sn=1 Sa=1)(Sn= 1 Sn—1)
~ (ff)(sn=180-1) -« " (5252)(51 81)(515:)(s252) = (Sp-1 Sa= )(SS)
= fsf,

where

S =f"(Sac18n~1) " " (5252)(s1 51)(s180)(5252) * * * (Sney S )f
Now f' = (ff)Sff") = (sa-15a-1)(Ss-15=1), by N1, s0

$ R (Sn- 1 Sue1)(Sne1 S 1)(Sne 1 Smet)  + + (8285)(s1 51)(51 5,)(52 52)
“ (Spm 1 Sne 1)(Sn= 1 Sam )(Sa-1 80 1)

= (a1 Sn=1)(Sn—1 Sn—1) " (51 SD(5151) "+ (Sn 1 Sae 1)(Sam 1 Sn=1)-

Thus by (3), (3'), (4), and (4') of lemma 1.3, and by N1, we have

s & (snySn-1) -+ (52'52)(s1's1)(s1 51)(s1 51)(s1 87)(5257) " (Sa—150-1)
1

= (sn=1Sn—1) " - (57'52)sV [y 8157 81508157 (s287)  +  (Sam18n=1

= (sw=18n=1) "+ (5252)(ss0)(s1 87 )(5287) -+ * (Sw=1 827 1)s

since 51 57 € V(s 5,). Hence by (4) and (4') of lemma 1.3, and by N1, we finally ob-
tain

SR (- Sum ) Sal ) R (FIUS) =1,

and so by N1,
exfsf=fff=1/

as required. Hence &'|z, < n,, and since we have already proved the reverse in-
clusion, it follows that &‘|z. = 7, and the proof of the lemma is completed.

THEOREM 3.3. Let & = {E;:ie I} be a normal partition of the set Eg of idem-
potents of the orthodox semigroup S and let ¢ be defined by equation (10). Then &, the
transitive closure of &, is the smallest congruence p on S which satisfies plg, = Ts.

ProoF. We have already seen that & is a congruence on S which satisfies
&g, = mg. Thus it remains to verify that if p is a congruence on S such that
Ples = Mg, then & < p. Let p be a congruence on S for which p|g, = 7,. It suffi-
ces to prove that £ < p, for then it follows that & < p, since & is the smallest
transitive relation containing ¢, and p is a transitive relation on S.

So let a and b be elements of S for which (a, b) € £. Then there exist elements
a' e V(a) and b’ € V(b), and i, j € I such that aa’, bb’ € E;, d'a, b'b € E;, and for
somee€ E,, fe E;, eaf = ebf and fa'e = fb'e. Then
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ap = ((aa’)a(a’a))p

= (aa’)p(ap)a’a)p

= epapfp (since plg, = mg)
= (eaf)p = (ebf)p = epbpfp

= (bb')pbp(b'b)p (since plg, = mg)

= (bb'bb’b)p = bp,  and so (a, b) € p.

Hence ¢ < p, and the proof of the theorem is completed.

We now proceed to the determination of the regular kernel of the congruence
E.If & = {E;:iel} is a normal partition of the set Eg of idempotents of the
orthodox semigroup S, then as in § 2, we denote by T; the unique subsemigroup
of S having the property that T; is the largest orthodox subsemigroup of S with
E; as its set of idempotents. We now prove the following theorem.

THEOREM 3.4. Let S be an orthodox semigroup and let & = {E;:i€l} be a
normal partition of Eg. For each i€ I, define

X; = {x €T, : there exists x' € V(x) n T, such that
exf = ef, fx'e = fe, for some e, f€ E;}.

Then ¥ = {X,:iel} is the regular kernel of the congruence &'.

PROOF. Let &/ = {4, :iel} be the kernel of ¢ and let # = {B;:iel} be
the regular kernel of £. We aim to prove that forallie I, B; = X;.

Suppose first that x is an arbitrary element of X;. Then there exists x’ € V(x)
N T; such that exf = ¢f and fx'e = fe, for some e, f€ E;. Then xx’' € E; and
x'x€ E;, and exf = ef = eef, fx'e = fe = fee, so it follows that (x,e)e < &
and that (x', e)e ¢ < &. Hence x, x’ € 4;, and so x € B, by virtue of the charac-
terization (1) of the B;. It follows that X; < B;, forallie I.

Conversely, let x be an arbitrary element of B;, for some i € I, and choose
x* € V(x) n B,. Then since E; is the set of idempotents of B;, we have B; < T},
and it follows that x, x* € T;. To prove that x € X; it suffices to prove the existence
of elements e, f€ E; such that

exf = ef and fx*e = fe.

To prove this, it suffices to show that there exist elements g,, #, € E; such that
gixh, = g, h,: for if this is true, then since x* is also an element of B;, we also
have that there exist elements g,, &, € E; such that g,x*h, = g,h,, and taking
e=hyg,€E;and f = h, g, € E,;, we see that

exf = (hy9:)x(h19,) = hy(gixhy)g, = (hp9,)(h19,) = ¢f,
and
Sx*e = (hyg2)x*(h29,) = hi(g;x*h)g, = (h192)(h2g,) = fe.
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Now x, x* € 4;, so xx*x*x € E; and (x, xx*x*x) € &. Hence (x, xx*x*x) e &"
for some n = 1. As usual, we consider the cases » = 1 and n > 1 separately. Sup-
pose first that (x, xx*x*x) € £. Then there exist elements x’ € V(x), z € ¥ (xx¥x*x),
and Jj, k € I such that xx’, xx*x*xz € E; and x'x, zxx*x*x € E;, and for some
e, € E;, f, € E,, we have

ey xfy e  xx*x*xfy, f1x'e; = fze,.
Let = e¢; xX* ~ xx'xx* = xx* e E;, and let
1 1 i

hy = x*xf; = x*xx'x = x*x € E|.
Then
g1xh, = e, xx*xx*xfy = e; xf1 = (e, xx*)(x*xf}) = g, h,.

Now suppose that (x, xx*x*x) € & for some n > 1. Then there exist elexnents
pp

S1583,° " S,_1 €S such that (x,s,)€&, (s;1,5,)€&  + (S,-1, Xx*x*x) € &, and
hence there exist x' € V(x), s;, ;"€ V(s;) fori =1, n—1, and z € V(xx*x*x)
such that

xx' =~ s; 81, X'x = 515,
! ! ! o
$;Si R Si41Sie1s SIS % SiviSivts fori=1,---,n-2, (12)
Sp_1 1 R XX*X"XxZ, S\ S,_1 ® ZXX"X*X,
and for somne elements e;, f; € Eg, for i = 1, - - -, n which satisfy
e; ~ 858, fi~sis, fori=1,--,n—1,
and e, = 8, S0_ 1, fo & 5,_15,~1, We have
’ ’ .
ey xfy = e s, f1, fix'e; =fsie;
1 ’ a .
esi-fi = es5.fi, fisilie; = fisie;, fori=2---n-1; (13)

ensn—lfn = e,,xx*x*xf,,, fnsrll’—len =f;,Z€,,.

Now take

91 = X (f1x e )u,(€,5,— 1 fr)e, xx*,
and

hl = X*xf;(fl x’el)un(ensn—lf;len)x’
where

U, = (92 51 f2 5'1’92)(6’3 52 f3sye3) - (en—l Sue2Su-15n-2 en—l)‘
Then,

g1 xhl = x(/nfl xlel Up€y Sy~ lf;lellx)(f;lfl x’el Up€pSy— lf;lenx)’

but since e,5,_,/, = ¢,xx*xf, € Eg, and since u, € Eg, it follows that

-f;lfl x’(el u,,e,,s ‘lf;lell)x € ES’
and heiice that
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91 x’lll = x(jnfl xiel Up€pSy lfnenx)

= x(fnfl xlel Up €y Sy - lfl‘l)e'lx'
Now

faf1x' e usens,-y fo
=flfix'e)ers  f257€;) " (en-15n-2fa-150-2€n-1)(€nSn-11n)
=flfisieexss f255€2) (a1 Sn-2fu1Sn—1€n—1)(€nSn=1 1)
= fufi(sterers)fa(s2ere38)f3 fum1(Sn-1€n-1 €nSn-1)fu>
and hence f, f x'e, u,e,s,_, f, € Es. It follows that
g1xhy = x(fof1x equpe, S, S)fuS 1 X €y upens,- 1 fr)enx
X 1% € tp(€nSy— 1 [ )f 1 X € Uy Sye 1 frnX
= xf,fix'e u(€,S,- 1 [ ) eaXX*x*Xf,)f | X €1t €45,y frn X
= (Xfof1X' € Uy, Sy 1 fr€yXX* )(X*Xf, f1 X' €1 Uy €, 5,1 [rnX)

= ghy.

It remains to verity that g, € E; and A, € E;. We first remark that, for i = 2,---
n—1,

esi—1 fisila)en = (8imy SN (Sio 1 SiZ 1 Sima L O)(Si-18iL1) = Sy 8ilys
and it follows that
Uy 2 (5157)(525%) * * * (Sa-250=2)-
Also, e, =~ 5,5, €, & S,_,5:.1, and

€nSu—1 fn = &, x'X:*x*xfn = (sn— 1 sl,l,- 1)(xx*X*x)(s:|l— 1 5n- l)’

while
Xfuf 1% & x(8,2 1 8y JEX)X" = x(5,- 1 85— )X’
= X(x'X)(Sp=1 Sp-1)X" = X{(S1 S )(Sn= 1 Su-1)X’
~ x(s15)(8252) "~ " (Snm1Sa=1)(Sn 1 S 1)X (by (3)
= x(s7 5 )(5252) * * * (S Sp-1)X’
~ x(sys)x" & x(x'x)x" = xx'.
Hence

g1~ (xx)(xx")(s151 )(825%) "+ (Sae280= 1)(Saz1 Sa=1)
(xx*x*x)(5C 1 Sn-1)(Sn—1 Sn 1)xx*
~ (xx')(sn— 1 stlll— 1)(xx *x *x)(slll,- 1 Sn— 1)(sn— 1 sr’t/— l)xx*
R (51851 (Sa-150-1 (xx*x*x)(x'x)(s,’,'_ 1 8n—1)(8s~1 5= 1)(xx’)(xx*)

R (5y51)(Saz 15011 (xx*x*x)(s; $)(Sn=1 Sn—1)(Sa~1Sn- (51 si)(xx*).
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Using (3) and (3') of lemma 1.3, we obtain

g1 ~ (51 57)(ex*x*x)(s] 51)(s 51)(xx™)
& (xx')(xx*x*x)(x'x)(xx' ) (xx*)
= (xx*)(x*x)(xx*) € E;, and it follows that g, € E;.

Since &, = x*g, x, we have also.
hy & x*(xx*)(x*x)(xx*)x = x*x*xx € E;.

Hence A, € E;, and we deduce that x € X;. Hence B; < X;, and since the reverse
inclusion has already been proved, we have B; = X;, and this completes the proof
of the theorem.

4. Lattice properties of idempotent-equivalent congruences

Let & = {E;:iel} be a normal partition of the set Eg of idempotents of
the orthodox semigroup S and denote by A,(S) the set of congruences on .S which
induce the partition & of Es. In [3] (theorem 3.4), Reilly and Scheiblich have
proved that A ,(S) is a complete sublattice of A(S) of commuting congruences on X.
We make use of this theorem to calculate the regular kernels of the meet and join
of two idempotent-equivalent congruences p and ¢ on S in terms of the regular
kernels of p and o.

We now introduce the following notation. If T'is a subsemigroup of the ortho-
dox semigroup S for which T n Eg # [, then we denote by R(T) the maximal
regular subsemigroup of S which is contained in 7. (Since Ey is a subsemigroup
of T, R(T) always exists, by virtue of lemma 2.4). Thus if &7 = {4, :ie I} is the
kernel of a congruence p on the orthodox semigroup S, and if Z = {B;:iel}
is the regular kernel of p, then for alli € I, B; = R(A,;). In general if T is a subsemi-
group of S, then we easily see that

RT)={xeT:V(x)nT# [} (14)

We also adopt the following notation: if B is a subset of the semigroup 7,
and if p is a congruence on T, then we define

Bp = {xeT: (b, x)e p for some b € B}.
We now prove the following lemma.

LemMA 4.1. Let p and o be idempotent-equivalent congruences on the orthodox
semigroup S and let /" = {N;:ie I} be the kernel of p and let M = {M,:iel}
be the kernel of 6. Then for all ie I,

Nio = M;p = Efpvo)
where
E, =N,nEg=M;n E;s.
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Proor. We first remark that since p and ¢ are idempotent-equivalent congruen-
ces on S, it follows that p o 0 = g0 p, by the result of Reilly and Scheiblich.
Hence p o g is the smallest transitive relation containing p and ¢ ([1], lemma 1.4),
and as the proof that p o g is compatible is trivial, it follows that pog = cop =
pvo.

Now let e be an arbitrary element of E; and let x be an arbitrary element of
N;o. Then there exists n e N; such that (n, x) € o, and hence we have (e, n) e p
and (n, x)€ o, and it follows that (e, x)epoo = pvo; that is, xee(pvao) =
E(p v o). Conversely, if xe E(p Vv o), then (x,e)e pve = o p for some ee E;.
Hence there exists ne S such that (x,n)eo and (n,e)ep, and it follows
that ne N; and that xe N;o. Hence N0 = E{pvo) and the proof that
M;p = Epvo) is similar,

CoROLLARY 4.2. Under the conditions of Lemma 4.1, we have

R(N;0) = R(M;p) = R(E(pV 0)),
foralliel.

Proor. Since Ei(p Vo) is an element of the kernel of the congruence pv o,
E(pv o) is a subsemigroup of S, and the result follows immediately.

Suppose now that p and ¢ are idempotent-equivalent congruences on the
orthodox semigroup S and let 4™ = {N/:iel} and 4" = {M]:iel} be the
regular kernels of p and o respectively. We prove that {(N'v M’);:ie I} is the
regular kernel of the congruence p v 6, where for each i € I, (N’ v M’); is definzd by

(N'vM'); = {keS:there exists k'€ V' (k) such that kk', k'k € E;, (15)

and kn, k'n' e M|, some ne N, n" € V(n) n N{}.

LemMA 4.3. Let p and o be idempotent-equivalent congruences on the orthodox
semigroup S. Let /" = {N;:iel} and # = {M,:ie I} be the kernels of p and
o respectively, and let ™ = {N' :ic I} and #' = {M] :ie I} be the regular ker-
nels of p and o respectively. Then for all i € I, we have

(N'vM'); = R(M,;p) = R(N,0),
where (N’ v M"), is defined by (15).

Proor. It clearly suffices to prove that (N'v M’); = R(N;0), since we have
already proved that R(N;6) = R(M;p). Let E; = N; n Es = M; n Eg, for each
i e I. Suppose first that k is an arbitrary element of (N’ v M’);. Then there exists
k' € V(k) such that kk’, k’k € E;, and for some ne N/ and n' € V(n) n N/, we
have kn, k'n’ e M;. Then kk’, Wne E;, kne M/, and k'k, nn’ € E;, k'n’ € M;, and
so(k,n')ep, < p'y = 0. Hence ke N6 = N,o, and it follows that (N’ v M’);
S N;o. But if ke (N'v M’);, then it follows from the definition of (N'v M’);
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that there exists an element k'€ V' (k) n (N'v M'); € N;o, and hence (N’ v M’);
€ R(N,0).
Conversely, let k be an arbitrary element of R(N;a) and choose
k* e V(k) n R(N;0).

Since R(N;0) = R(E{p v 0)) is the maximal regular subsemigroup of E;(p v o),
we have k'k*!, k*'k! € E; for any positive integer /. Also, since k € R(N;6) € N,o,
and ke R(N;6) = R(M;p) & M,p, there exist n, € N; and me M, such that
k,n;)e o and (k, m)e p. We choose n} € V' (n,) and m* € V(m) arbitrarily.
1 1
Here we remark that (kK*m**k?, k*)e p, (k*m**k?, k*)e o, (kntk, k?)e p,
and (kn’ k, k) € 0. In fact. since (k, m) € p, we have
(K*m*2k?, m?) = (k*m**k?, m*m**m?) € p, and (m?, k*) € p.
Hence (k*m**k*, k*)e p. Also, since (m?, k’k**)e o and (m*, k**k*) e o, we
have
(K2m*2k2, kK*m*k?) = (KPk*2 k> m*2 k2 k%2 k2, kK*mPm**m*k?) e 6
and (k*m?k?, k*) = (kK*m*k?, k*(k*k*?)k*) € 6. Hence (k*m**k*, k*)e 0. That
(kntk,k*)e p and (kntk, k) e o can be proved similarly.
Now we set
n = k**m?k*2k*k*n, k* and n' = kn}kk**k*m*?k?.
Then clearly n' € V(n). Moreover,
(1, K*2K**2) = (K*2m2k*2kkn, k*, k=2 kKK kk*k*) € p
and
(', Kk*4K2) = (kn* kk**k2m*2k?, k2 k*4k?) e p
and so n, n’ € N;. Hence n, n’ € R(N;) = N;.
Furthermore,
(kn, KI*K4h*) = (kk*¥2m2k*2k*ktn, k*, kk*2 (k2k*2 2k k*kk*) € o,
(%, K*$K*k*) = (kn* KK**K2m*2 k2 k*, kk**k*k*) € o,
(k*n', kK4 = (kK*kn* kk**k2m*2k2, Kk k%) € o,
(nk, k**k*) = (kK¥2m2k*2k*k*n, k*k, k**k2k**k*k*kk*k) € o
and so kn, n'k*, k*n’, nk € M;. Hence kn, k*n’ € R(M,) = M]. Therefore, by
definition, ke (M'v N');,. Hence R(N;c)C (M’'v N'); and this completes the
proof of the lemma.
We are now in a position to prove the following theorem.

THEOREM 4.4. Let p and ¢ be idempotent-equivalent congruences on the ortho-
dox semigroup S with regular kernels /' = {N;:iel} ond M' = {M]:iel}
respectively. For each i€ I, define (N'AM'), = N/ n M/, aond define (N v M'),;

¢
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by (15). Then {(N' A M"); : i e I} is the regular kernel of p " 6 and {(N'v M’); :ie I}
is the regular kernel of p v o.

PROOF. Let 4" = {N;:iel} be the kernel of p and let# = {M;:iel} be
the kernel of o. Then we first remark that {N; » M, : i e I} is the kernel of p N 0.
This follows easily since for each e€ E;, e(pno) =epnes = N;n M;. We
now verify that for each i € I, R(N; n M;) = R(N;) n R(M,). It is trivial to verify
that R(N; n M,)} & R(N;) n R(M;), so suppose that x is an arbitrary element of
R(N;) n R(M;). Then x € R(N;) and x € R(M;), so there exist inverses x’ and x*
of x such that x, x' € N; and x, x* € M;. But then x'xx* € V(x), and x'xx* € N;E;
S N;, and x'xx*€ E;M;. Hence x,x'xx*e N;n M;, and it follows that
x€ R(N; n M;). Thus R(N; n M;) = R(N;) n R(M;) = N/ n M/, and we see
that {(N'A M’); : i e I} is the regular kernel of p N a.

To prove that {(N'v M"), : i e I} is the regular kernel of p v ¢ it suffices to note
that {R(E(pVv o)) :iel} is the regular kernel of pva, and that for each i€/,
R(E{pv o)) = R(N;o) = (N'vM'),;, by lemma 4.3 and corollary 4.2.

5. The lattice of idemnotent-separating congriences

We now show how the resnlt of theorem 4.4 may be simplified in the case
when the partition & of Eg considered is the maximum partition of Eg. In this
case, Ag(S) = Z(s#), the lattice of idempotent-separating congruences on S.

A set /" = {N,:ee Eg} of normal subgroups of the maximal subgroups
{H, : e€ Eg} of the orthodox semigroup S is defined to be a group kernel normal
system of S if the N, satisfy the conditions:

(i) aN,ac N, forallaesS, a e V(a), and e € Eg;
(i) N.N;s N, foralle,feE;.
Then we have the following theorem ([2], theorem 4.2).

THEOREM 5.1. If p is an idempotent-separating congruence on an orthodox
semigroup S then the kernel A of p is a group kernel normal system of S, and
p = py, where p, is defined by

o+ = {(a,b)e Sx S : there are inverses @’ of g and b’ of b such that
ar = bb’' =e, ab'eN,, da="bb =f, abe N,, for some e, fe Eg}.

(17)

Conversely, if /" is a group kernel normal system of S, then there is precisely one
congruence p on S such that N is the kernel of p. This congruence p is an idempo-
tent-separating congruence on S and p = p .

We now determine the kernels of the meet and join of two idempotent-
separating congruences p and ¢ on S in terms of the kernels of p and o.

The following theorem has a precise anzlogue for inverse semigroups ([1],
theorem 7.56).

https://doi.org/10.1017/51446788700006418 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700006418

240 John Meakin [20]

THEOREM 5.2. Let p and o be idempotent-separating congruences on the ortho-
dox semigroup S with kernels A" = {N,:e€ Es} and # = {M, : e € Eg} respect-
ively. Define MN = M v N = {M,N,:ecEg}, and # AN ={M,NN,:ee Eg}.
Then M v AN and M AN are group kernel normal systems of S, and M AN
is the kernel of p N o and M v N is the kernel of pv a.

Proor. That .# A 4" is a group kernel normal system and is the kernel of
p n o follows immediately from theorem 4.4 and theorem 5.1. Furthermore, by
theorem 4.4, it follows that the kernel of the congruence p vois {(N v M), : e€ Eg},
where for each e € Eg,

(Nv M), = {keS:there exists k' € V(k) such that
kk’ = k'k = e, and kn, k'n’ € M,, some
neN,,neV({n)n N,

Thus to complete the proof of the theorem it suffices to show that for each e € Eg
we have M_N, = (Nv M),.

Let k be an arbitrary element of M_N,. Then k = mn, for some me M,,
ne N,. Let m’ be the inverse of m which is in M, and let »’ be the inverse of n
which is in N, and let k "= n'm’. Then kk’ = m(nn')m’ = mem’ = mm’' = e, and
similarly k'k = e. Moreover, kn' = mnn' = me = me M,, and k'n = n’'m'n : but
n’'m’'n and e = n'en are in the same element M, of the group kernel normal system
4 by condition (i) of the definition of group kernel normal systems, and hence
k'neM,. Thus ke (Nv M), and it follows that M N, = (M v N), for each
eeE;s.

Conversely, choose k € (N v M),. Then there exists £’ € V' (k) such that kk’ =
k'k = eand kn,k'n’ € M, forsomene N,andn' e V(n) " N,. Now ke = kk'k = k,
and hence k = ke = k(nn') = (kn)n’' e M_N,, and it follows that for each
ecEg, (NvM), < M_N,. Hence M_N, = (Nv M), for each ee Es, and the
theorem is proved.
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