JFP 31, e4, 31 pages, 2021. (© The Author(s), 2021. Published by Cambridge University Press 1
doi:10.1017/S0956796821000010

Integrating region memory management and
tag-free generational garbage collection

MARTIN ELSMAN

University of Copenhagen, Denmark
(e-mail: mael@di.ku.dk)

NIELS HALLENBERG

SimCorp A/S, Denmark
(e-mail: niels.hallenberg@simcorp.com)

Abstract

We present a region-based memory management scheme with support for generational garbage col-
lection. The scheme features a compile-time region inference algorithm, which associates values with
logical regions, and builds on a region type system that deploys region types at runtime to avoid the
overhead of write barriers and to support partly tag-free garbage collection. The scheme is imple-
mented in the MLKit Standard ML compiler, which generates native x64 machine code. Besides
demonstrating a number of important formal properties of the scheme, we measure the scheme’s
characteristics, for a number of benchmarks, and compare the performance of the generated exe-
cutables with the performance of executables generated with the MLton state-of-the-art Standard
ML compiler and configurations of the MLKit with and without region inference and generational
garbage collection enabled. Although region inference often serves the purpose of generations,
combining region inference with generational garbage collection is shown often to be superior to
combining region inference with non-generational collection despite the overhead introduced by a
larger amount of memory waste, due to region fragmentation.

1 Introduction

Region-based memory management allows programmers to associate lifetimes of objects
with so-called regions and to reason about how and when such regions are allocated and
deallocated. Region-based memory management, as it is implemented for instance in Rust
(Aldrich et al., 2002), can be a valuable tool for constructing certain kinds of critical sys-
tems, such as real-time embedded systems (Salagnac et al., 2006). Region inference differs
from explicit region-based memory management by taking a non-annotated program as
input and producing a region-annotated program, including directives for allocating and
deallocating regions (Tofte et al., 2004). The result is a programming paradigm where
programmers can learn to write region-friendly code (by following certain patterns (Tofte
et al., 20006)) to obtain good space and time performance for critical parts of the program.

The region-based memory management scheme that we consider is based on the stack
discipline. Whenever e is some expression, region inference may decide to replace e with
the term letregion p in ¢/, where €' is the result of transforming the expression e, which

PN

https://doi.org/10.1017/50956796821000010 Published online by Cambridge University Press @ CrossMark

https://doi.org/10.1017/S0956796821000010
https://orcid.org/0000-0002-6061-5993
mailto:mael@di.ku.dk
mailto:niels.hallenberg@simcorp.com
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956796821000010&domain=pdf
https://doi.org/10.1017/S0956796821000010

2 M. Elsman and N. Hallenberg

includes annotating allocating expressions with particular region variables (e.g., p) spec-
ifying the region each value should be stored in. The semantics of the letregion term
is first to allocate a region (initially an empty list of pages) on the region stack, bind the
region to the region variable p, evaluate ¢/, and finally, deallocate the region bound to p
(and its pages). The region type system allows regions to be passed to functions at run time
(i.e., functions can be region-polymorphic) and to be captured in closures. The soundness
of region inference ensures that a region is not deallocated as long as a value within it may
be used by the remainder of the computation.

To remedy the problem that region inference does not always capture precisely the life-
time properties of objects, previous work has augmented the static inference scheme with
a more dynamic lifetime-based reference-tracing copying garbage collector (Hallenberg
et al., 2002). For such an integration of region-based memory management and reference-
tracing garbage collection, care must be taken to rule out the possibility of deallocating
regions with incoming pointers from live objects. Incidentally, it turns out that such point-
ers can be ruled out by the region type system (Elsman, 2003), which means that we can
be sure that a tracing garbage collector will not be chasing dangling pointers at run time.

The resulting combined scheme works well in practice and forms the basis of the MLKit,
a bootstrapping complete implementation of the Standard ML language. Although it turns
out that region inference, for a variety of benchmarks, drastically decreases the time spent
on reference tracing garbage collection, the lack of generational garbage collection causes
all live values to be visited for every garbage collection. In essence, both region inference
and generational garbage collection have been shown to manage short-lived values well.
It has not been clear, however, whether the two approaches could complement each other.
In this paper, we present a framework that combines region inference and generational
garbage collection, and discuss the effects of the integration. The generational collector
associates two generations with each region. It has the feature that an object is promoted
to the old generation of its region (during a collection) only if it has survived a previ-
ous collection. Compared to the earlier non-generational collection technique (Hallenberg
et al., 2002), we may run a minor collection by only traversing (and copying) objects in
the young generations.

The traditional implementations of reference tracing garbage collection lead to a rep-
resentation of values that allows for dynamically detecting the structural type of a value.
Based on a notion of region types, we demonstrate that the combination of region inference
and generational garbage collection allows for tag-free compact memory representations
for a variety of common data structures, such as pairs, lists, and trees.

The contributions of this paper are the following:

1. We present a technique for combining region-based memory management with a
generational (stop the world) garbage collector, using a notion of typed regions,
which allows us to deal with mutable data in minor collections and for tag-free
representations of certain kinds of values, such as tuples.

2. We present a region type system that guarantees that regions contain values accord-
ing to the regions’ types. The region type system refines an earlier region type
system that guarantees that no dangling pointers are introduced during evaluation
(Elsman, 2003).

https://doi.org/10.1017/50956796821000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000010

Integrating region memory management and tag-free generational GC 3

3. To demonstrate the feasibility of the technique, we show empirically that the MLKit
generates code that, in many cases, is comparable in performance to executables
generated with the MLton compiler (v20201023).

4. We demonstrate empirically, based on a large set of benchmarks, that combining
region inference with generational garbage collection is often superior to combin-
ing region inference with non-generational garbage collection despite the overhead
introduced by a larger amount of memory waste, due to region fragmentation.

The study is performed in the context of the MLKit (Tofte ef al., 2006). It generates
native x64 machine code for Linux and macOS (Elsman & Hallenberg, 1995) and imple-
ments a number of techniques for refining the representations of regions (Birkedal ef al.,
1996; Tofte et al., 2004), including dividing regions into stack allocated (bounded) regions
(also called finite regions) and heap allocated regions.

The paper is organised as follows. In the following section, we first give an informal
example demonstrating how a Standard ML implementation of Mergesort on lists is com-
piled and represented in the region-based target language and how the program can be
optimised by a region-aware programmer to make better use of memory. While the exam-
ple serves as an introduction to region-based memory management in the MLKit, it also
serves to demonstrate that, without help from a region-aware programmer, the program
will benefit from using a combination of region inference and generational garbage collec-
tion. In Section 3, we present a simplified, but formal, region type system for a language
that serves as a target language for region inference. We present a number of properties of
the type system, including region type soundness and the property that no dangling point-
ers are introduced during evaluation. In Section 4, we present the generational garbage
collection algorithm and show how the algorithm is extended to work with mutable and
large objects. In Section 5, we present a number of experimental results and evaluate the
work. In Section 6, we describe related work, and in Section 7, we conclude.

2 An introduction to region-based memory management

Mergesort on lists can be implemented elegantly using pattern-matching in a functional
language such as Haskell or ML. Figure 1 lists a Standard ML implementation of the
Mergesort algorithm. The implementation consists of a function split, which splits a list
in two, a function merge, which merges two sorted integer lists, and a function msort,
which makes use of split and merge for sorting the input.

Region inference will associate region types to the expressions in the program.
Moreover, based on the inferred types, it may further infer that a function takes regions
as arguments and that other regions can be allocated temporarily within a function. The
merge function is inferred to have the following type:'

val merge : Vp. (int,p)list * (int,p)list

{get(p).put(p)} (int,p)list

! For clarity, we here disregard the fact that region inference will also associate a region with the argument pair.

https://doi.org/10.1017/50956796821000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000010

4 M. Elsman and N. Hallenberg

fun split (xs, 1, r) : int list * int list =
case xs of x::y::zs => split(zs,x::1l,y::r)
| [x] => (x::1,1)
[1 => (1,r)

fun merge (xs,ys) : int list =
case (xs,ys) of (xs,[]) => xs
| ([1,ys) => ys
| (11 as x::xs,12 as y::ys) =>
if x<y then x::merge(xs,12)
else y::merge(1ll,ys)

fun msort xs : int list =
case xs of [] => []
| [x]1 => [x]
| xs => let val (1,r) = split(xs,[],I[])
in merge(msort 1, msort r)
end

Fig. 1. The Mergesort algorithm on lists.

The region type scheme for merge specifies that the function takes as argument a region p
and a pair of integer lists each of which resides in the region p. As a result, the function
returns an integer list, which will also reside in the region p. The effect {get(p), put(p)},
annotated on the function arrow, specifies that, when applied, the function may read from
and write into the region p. By looking at the body of the merge function, we can see that
region inference has unified the type of the two argument lists with the type of the result.
The reason is that the function contains cases that return each of the arguments. Region
inference will result in the following inferred code for the merge function:

fun merge [p] (xs,ys) =
case (xs,ys) of
(xs,[1) => xs
| ([1,ys) => ys
| (11 as x::xs,12 as y::ys) =>
if x<y then op::((x,mergelp]l(xs,12)) at p)
else op::((y,merge[pl(1l1l,ys)) at p)

The code inferred for the msort function also depends on the region type scheme for
split, which is given as follows:

val split : Vppipp. (int,p)list * (int,p;)list * (int,pp)list
{get(p).put(p1).put(p2)}

(int,p;)1list * (int,pp)list

Again, for clarity, we have simplified the region type scheme by disregarding the regions
for holding the argument triple and the result pair.

Based on the region type schemes for merge and split, region inference will infer the
following code for the msort function:

https://doi.org/10.1017/50956796821000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000010

Integrating region memory management and tag-free generational GC 5

fun msort [p'] (xs: (int,p)list) : (int,p’)list =
case xs of
1 => 11
| [x] => op::((x,[]1) at p")
| xs => letregion p;, M
in let (1,r) = split [p1,p2] (xs,[1,[1)
in merge [p'] (msort [p'] 1, msort [p'] r)

The first property to observe is that msort may return its result in a region different from
its argument list. Second, observe that, for the call to split, only two regions are passed
as arguments; quantified region variables with only get-effects in the function type are
not included in the function’s formal region parameters. Finally, we observe that, for both
recursive calls to msort, the region p’ is passed as region parameter. Whereas polymorphic
recursion in regions allow for the recursive msort calls to receive its arguments in the local
regions p; and p,, the type of merge forces its argument lists to be stored in the same region
as its result, which is constrained by the msort function to be the region p’. As a result, all
the intermediate sorted lists pile up in the same region.

A better msort implementation will arrange that all intermediate sorted lists are stored
in local regions, which can be ensured if we modify the merge function slightly:

fun copy xs =
case xs of
nil => nil
| x::xs => x::copy Xxs

fun merge (xs,ys) : int list =
case (xs,ys) of
(xs,[]1) => copy xs
| ([1,ys) => copy ys
| (11 as x::xs,12 as y::ys) => if x<y then x::merge(xs,12)
else y::merge(1l1l,ys)

With the added copying, the merge function will be inferred to have the following type:

val merge : Vppipz. (int,p;)list * (int,pp)list
{get(p1).get(p2).put(p)}

(int,p)1list

The modified type for the merge function will now allow region inference to infer the
following code for msort:

fun msort [p’] (xs: (int,p)list) : (int,p’)list =
case xs of
1 => 1
| [x] => (op::)((x,[]1) at p")
| xs => letregion p;, P
in let (1,r) = split [p1,m] (xs,[1,[1)
in letregion pi, pé
in merge [p’] (msort [p;] 1, msort [p}] r)

https://doi.org/10.1017/50956796821000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000010

6 M. Elsman and N. Hallenberg

Notice that region inference has not unified the four regions pi, p2, p{, and pj. Region
inference is followed by a series of region analyses, which, in general may benefit from
regions not being unified. These analyses include multiplicity inference, which aims at
unboxing regions that are inferred to hold at most one value, and storage mode analysis,
which aims at emptying a region before it is stored into if it can be inferred that the region
contains no live values.

With the region-friendly version of msort, sorting of a list of length » runs in O(n) space
without the use of reference-tracing garbage collection. The execution times (¢ in seconds),
GC times (gc in seconds), and memory usage (m in bytes) of sorting 1,000,000 integers,
with the different configurations, are listed in the following table:?

r(RI) rG(RI + GENGC) rg(RI+ GC)
t(s) m(Mb) | t(s) gc(s) m(Mb) | t(sec) gc(s) m(Mb)
msort-rf | 044 103 | 0.71 0.18 126 0.71 0.15 120
msort 046 410 | 1.14 044 139 1.31 0.62 139

The most efficient version is the region-friendly version of msort compiled and executed
without support for reference-tracing garbage collection (row msort-rf and columns
r(RI)). Whereas region inference does well for region-friendly code, the situation is differ-
ent for the non-region-friendly version of msort. Here, the memory usage grows drastically
unless reference-tracing garbage collection is added to circumvent the lack of deallocating
the intermediate sorted lists. Moreover, we see that the configuration that combines region
inference with generational garbage collection (columns rG(RI + GENGC)) performs bet-
ter than when region inference is combined with non-generational garbage collection
(columns rg(RI+ GC)). In particular, the time spent on garbage collection is shorter. It
turns out that for the msort-case, the rG version performs 40 garbage collections of which
only 18 of them are major collections, whereas, the rg version performs 32 (major) garbage
collections.

A thorough evaluation of the different configurations is presented in Section 5.

3 A region type system with typed regions

The integration of region-based memory management with tag-free generational garbage
collection that we present in the following sections depends on a number of properties of
the underlying evaluation scheme.

In this section, we present a type system that provides us with the necessary guarantees.
Compared to the Tofte—Talpin type system (Tofte & Talpin, 1997), the type system that we
present ensures that no dangling pointers are introduced during evaluation (Elsman, 2003).
Moreover, the type system that we present allow us to give types to regions, which gives
us the guarantee that certain values, such as pairs, are allocated in the same regions and
that regions containing pairs only contain pairs. This last property is a novel contribution
of this work and has not been published elsewhere.

2 Measurements are averages over 30 runs with a relative standard deviation less than 6.7%. All benchmark
programs are executed on a MacBook Pro (15-inch, 2016) with a 2.7GHz Intel Core i7 processor and 16GB of
memory running macOS.

https://doi.org/10.1017/50956796821000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000010

Integrating region memory management and tag-free generational GC 7

In the remainder of this section, we present a formal treatment for a small ML-like
intermediate language extended with region annotations.

3.1 Region types, variables, and effects

A region type, ranged over by «, is either the token pair, which classifies regions contain-
ing pairs, or the token other, which classifies regions containing values other than pairs
and integers. Integers are unboxed and thus do not reside in distinguished regions.

We assume a denumerably infinite set of region variables, ranged over by p. Each region
variable has associated with it a region type. We write r#(p) to refer to the region type asso-
ciated with p. We also assume a denumerably infinite set of effect variables, ranged over
by ¢, a denumerably infinite set of #fype variables, ranged over by «, and a denumerably
infinite set of program variables, ranged over by x and /. An atomic effect, ranged over by
n, is either a region variable or an effect variable. An arrow effect, written ¢.¢, is a pair of
an effect variable and a set ¢ of atomic effects.

Notice that, for simplicity, we do not distinguish between put- and get-effects in the
formal treatment of effects. However, for reasons that we shall make clear later, function
types are annotated with arrow effects and not only with effects.

3.2 Types and substitutions

The grammars for types (t), type and places (1v), type schemes (o), and type scheme and
places (1) are as follows:

p ::=(t,p) | o | int Tori= o x| —5
o ::i= YaEp.u —% uy 7 o= (0,0) | 1
A type scheme and place (or type and place) 7 is well-formed if the sentence 7 can
be derived from the following rules:
rt(p) = pair rt(p) = other F(z,p)

o Fint p——
F (w1 X wa, p) (i =% uo, p) F(Vpac.t, p)

A region substitution (S') is a finite map from region variables to region variables, such
that rt(p) =1t(S"(p)) for any region variable p € dom(S"). A substitution (S) is a triple
(8", 8", 8°), where S" is a region substitution, S* is a finite map from type variables to well-
formed type and places, and S° is a finite map from effect variables to arrow effects. The
effect of applying a substitution on a particular object is to carry out the three substitutions
simultaneously on the three kinds of variables in the object (possibly by renaming of bound
variables within the object to avoid capture). For effect sets and arrow effects, substitution
is defined as follows (Tofte & Birkedal, 2000), assuming S = (5", S, S°):

S@)= (S(p) I pepiU(n]|Ie, e, ¢ ecpnSi(e)=¢c¢' Anefe}Ug}

S(e.p)=¢".(¢' US(¢)), where S°(e) =¢".¢’

One can show that well-formedness is closed under substitution; if -7 then F S(r), for
any substitution S.

https://doi.org/10.1017/50956796821000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000010

8 M. Elsman and N. Hallenberg

We see here why function types are annotated with arrow effects £.¢ and not only with
effects ¢; with arrow effects, we can make sure that if a non-region-annotated type is given
two distinct region annotations, then there exists a substitution, a unifier, that, when applied
to the two types, will make the two resulting region-annotated types equal. This property
is essential for the applied unification-based region inference algorithm (Tofte & Birkedal,
1998), which we shall not discuss further here.

A type scheme o = Vpaz.t’ generalises a type T via p’, written o > 1 via p’, if there
exists a substitution S = ({p '/}, S', §) such that S(z’) = 7, dom(S*') = {@}, and dom(S°®) =
{¢}.1f o > 7 via p, for some o, T, and p, and S is a substitution, then S(co') > S(t) via S(p).

A type environment (I') maps program variables to type scheme and places. Following
the usual definition of bound variables, we define, for any kind of object o, the free
region variables and the free region and effect variables of o, written frv(o), and frev(o),
respectively. We write fv(o) to denote the free type, region, and effect variables of o.

3.3 Terms
The grammars for expressions (e) and values (v) are as follows:

d | (vi,v)” | (Axe)’ | (funf [p] x=e)”

v|x| letx=e ine, | eje; | Ax.eat p | letregionp ine

v

e

| funf [plx=catp | e[platp | (er,ex) atp | #ie

Values include unboxed integers (d), pairs, ordinary closures, and recursive function clo-
sures (which may also take regions as parameters). All values, except integers, are boxed
and associated with distinguished regions. An expression can be a value, a variable, a
let-expression, a function application, a lambda-expression, a letregion-construct, a
recursive function binding, an application of a recursive function to a list of region param-
eters, a pair-construct, and a pair-projection expression. Notice that allocating expressions
are annotated with an at-specifier, which specifies in which region the value should
be allocated. The free (program) variables of some expression (or value) e is written
fpv(e).

3.4 Typing rules

To guarantee safety of garbage collection, we must ensure that no dangling pointers are
introduced during evaluation, which is not guaranteed by the Tofte—Talpin region type
system (Tofte & Talpin, 1997). The solution that we apply here is to add additional side
conditions to the typing rules for functions that guarantee the absence of dangling pointers
(Elsman, 2003).

First, we define a notion of value containment; all values in an expression e are contained
in a set of regions ¢ with appropriate region types, if the sentence ¢ =y e is derivable from
the rules in Figure 2.

We now introduce a relation G, which we shall use to strengthen the typing rules for
functions to avoid dangling pointers during evaluation. The relation is derived from the
side condition for functions suggested by Tofte and Talpin in (Tofte & Talpin, 1993,

https://doi.org/10.1017/50956796821000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000010

Integrating region memory management and tag-free generational GC 9

Values pEv
pEve peY pEV ¢FEW®L PEY ¢lve
—d rt(p) = other p €@ 1t(p)=pair rt(p) = other
4 -
¢ E (Ax.e)’ @ E (v, 12)” ¢E(funf [pl x=¢)”
Expressions
pEv ol pEver ¢pEve pEve pEve
g ’ ¢ (e1,e2) at p ¢ By Axeat p pEtie
pEve pEyve pEver vEve
¢ Evfunf [plx=catp ¢pEvelplatp pEve e
pEve ¢gEve PEY 9Eve
pEvletx=e ine; ¢ =y letregion p ine

Fig. 2. Value containment.

page 50). The relation G is parameterised over an environment ', a function body e, a
set of function parameters X, and the type scheme and place 7 of the function:

g, e, X, m) = Vyefpv(e) \ X.frev(I'(y)) C frev(mw) A frv(m) =y e

The typing rules for values and expressions are mutually dependent and are shown in
Figure 3. The typing rules for values allow inference of sentences of the form v : m,
which states that “the value v has type scheme and place 7. The typing rules for expres-
sions allow inference of sentences of the form I' e : 7, ¢, which states that “in the type
environment I", the expression e has type scheme and place 7 and effect ¢.

The typing rules are closed under substitution; if 'Fe:m,¢ then S(I')F S(e):
S(@m), S(p), for any substitution S. This property relies on the garbage collection safety
relation being closed under substitution.

For simplicity, the typing rule for 1let-bindings does not allow for generalisation.

3.5 A small step dynamic semantics

The dynamic semantics that we present is in the style of a contextual dynamic semantics
(Morrisett, 1995) and is similar to the semantics given by Helsen and Thiemann Helsen &
Thiemann (2000); Calcagno ef al. (2002), although it differs in the way that inaccessibility
to values in deallocated regions is modeled. Whereas Helsen and Thiemann “null out”
references to deallocated regions (to avoid future access), our semantics keep track of a set
of currently allocated regions and disallow access to regions that are not in this set.

The grammars for evaluation contexts (E) and instructions (1) are shown in Figure 4.
Contexts £, make explicit the set of regions ¢ bound by letregion constructs that
encapsulate the hole in the context.

https://doi.org/10.1017/50956796821000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000010

10 M. Elsman and N. Hallenberg

Values Fuv:m

{x:u}te:u, e

= (1 —% ua, p) ri(p) =pair
Fuo G} e {x}, 1) Foiiur Fopipg
Fd:int F{(Ax.e)? F (v, v2)? i (1 X 2, P)

{f (Ve =5 po, p)yx et a9 B
fvaep)Nfv(p) =0 m=Naep.pui —% s, p) G({}, e {f,x},)
F{(funf [pl x=e)’:m

Expressions

F+{ximtbep,e

/ _ £.9
P29 p= (1 —— p2, p)
Fuv:m Fke:m, ¢ Fu G, e {x}, 1) 'x)=n +x
'v:m,® Fke:m, ¢ 'ixeat p:u,{p} Fkx:m,0
The:(o,0),¢ Ther:(W = 1, p), 01
oc>tviap F(z,p) ke, 0
ke [platp:(z,0)9U{p, 0’} Fherer:p,p0Up UpUfe, p}
rt(p) =pair ie{l,2}
hertpn,or T'Eexip, ¢ I'Eet(ur X pa, p), ¢
' (er,ex) at p: (1 X (2, p), 91 Ugp U{p} I#ie: u,oU{p}
I'te:u,o p¢frev(l, n) ke :m,or TH+{x:mlkey:n, o
I'1letregionp ine:u, ¢\ {p} 'kletx=e iney:u, o Ugp

T+ {f: (Vpe.u1 =5 o, p)yx:puitbei o9 b

V@Ep) NIV(T, @) =0 7 =(Vaép.u1 — o, p) G, e, {f,x},7)
CHfunf [pl x=eat p:m,{p}

Fig. 3. Typing rules for values and expressions.

The evaluation rules are given in Figure 5 and consist of allocation and deallocation
rules, reduction rules, and a context rule. The rules are of the form e N ¢/, which says
that, given a set of allocated regions ¢, the expression e reduces (in one step) to the expres-

. . . L .
sion €. Next, the evaluation relation —* is defined as the least relation formed by the

. .. .) 4
reflexive transitive closure of the relation — . We further define e ||, vtomeane —* v,

. . . [[[
and e 1), to mean that there exists an infinite sequence, e < e; < e; —> ---.

https://doi.org/10.1017/50956796821000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000010

Integrating region memory management and tag-free generational GC 11

E, = [(0 =1)
| letregion p in Ey\(,) (pep)
| E,e | vE, | E, [platp | letx=E, ine
| (Eg,e)atp | (v,E)) atp | #i E,

l i:= d | axeatp | (v,v) at p
| #1 (v, 02)” | #2 (v, 012)”
| (Ax.e)? v | (funf [plx=e)? [p'] at p’

Fig. 4. The grammars for evaluation contexts (E) and instructions (v).

Allocation and Deallocation e L v
Ax.e at p SN (Ax.e)” (v, v7) at p SN (v1, v12)”
funf [pl x=eatp SN (funf [p] x=e)” letregion p inv <% v
Reduction and Context e < ¢
(Ax.e)P v SN e[v/x] letx=vine <% efv/x]

(funf [Flx=e) [5'] at p' S dixels/AN((Funf [5] x=e€)?)/f] at p'
pU{p} pU{p} Vo

#1 (v, 1) —— vy #2 (v, 1) ——

et ¢ 9N =0 E,#[]

, [Ctx]
E,le] <% E,[¢]

Fig. 5. Evaluation rules.

3.6 Type safety

The proof of type safety is based on well-known techniques for proving type safety for stat-
ically typed languages (Morrisett, 1995; Wright & Felleisen, 1994). We shall not present
the complete proofs here, but refer the reader to (Elsman, 2003), which includes proofs for
a similar system.

We first state a property saying that a well-typed expression is either a value or can be
separated into an evaluation context and an instruction:

https://doi.org/10.1017/50956796821000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000010

12 M. Elsman and N. Hallenberg

ol x pEvV pée ¢U{plEce pEce ¢Eve
¢ ¢ Ecv ¢ =c letregion p ine oEcletx=einé
pEce pE€ pEV ¢kce pEce
plcee plEcve pEcelplatp

plEce g€ pEV ¢kce e
¢l (e,e) at p o= (v,e) at p pletie

Fig. 6. Context containment.

Proposition 1 (Unique Decomposition). If - e:m, ¢, then either (1) e is a value, or (2)
there exists a unique E,, €, and ' such that e=Ey[e'] and ¢ :n',9 U@ and ' is an
instruction.

Proof. By induction on the structure of e. O

A type preservation property (i.e., subject reduction) for the language, as well as
progress and type soundness, can be stated as follows:

Proposition 2 (Preservation). Ifte: 7, ¢ ande <> ¢ thent¢ :x,¢.
Proof. By induction on the derivation e <5 e O

Proposition 3 (Progress). If-e: m, ¢ then either e is a value or else there exists some €'
such that e <> ¢,

Proof. If e is not a value, then by Proposition 1 there exists a unique £y, ¢, and " such

thate=Ey[t] and 1 : 7', ¢ U ¢’. The remainder of the proof argues that SN e’ for

some e”, so that E,[(] AN E,[€"] follows from rule [Ctx] in Figure 5. d

Theorem 1 (Type Soundness). If\-e:m, @, then either e ft, or else there exists some v
suchthate },vandt-v:m,¢.

Proof. By induction on the number of rewriting steps, using Proposition 2 and
Proposition 3. g

We now introduce the notion of context containment, written ¢ =, e, which expresses
that when e can be written in the form E,[¢'], values in ¢/ must be contained in the regions
in the set ¢ U @', where ¢’ are regions on the stack represented by the evaluation context
E, . The definition of context containment is given in Figure 6. The following containment
theorem states that, for well-typed programs, containment is preserved under evaluation:

https://doi.org/10.1017/50956796821000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000010

Integrating region memory management and tag-free generational GC 13

.

p

dy
by

ao

fPo
L

8y

8o

7777777777777777777 [7777777777777777777
2727222722222222777. L222222222222222727 227

77— T 000000]

///////////////////////)_)1//////////////////////////////////////j

LT

Fig. 7. A region descriptor on the down-growing stack. Region descriptors are linked, through
“previous pointers” (p), hold generation descriptors (gy and g,), and hold a linked list of large
objects (L).

Theorem 2 (Containment). Ifte: 7, ¢ and ¢ l=c e and e <> ¢ then ¢ = €.

Proof. By induction on the structure of e. O

The containment theorem states that evaluation allocates only in regions that are either
global or present on the region stack, represented by the evaluation context. Moreover, at
any point during evaluation, no region contains a value that does not conform to the region
type of the region.

Notice that the specified dynamic semantics does not capture the property that region
types are used correctly. That is, the dynamic semantics does not check that pairs, for
example, reside in pair regions when a pair element is extracted. For reference-tracing
garbage collection, a stronger property is needed, namely that, at any point during evalu-
ation (whenever the garbage collector runs, it must be safe to dereference live reachable
values (Morrisett et al., 1995). It is exactly this property that is captured by the contain-
ment theorem and that allows a reference-tracing garbage collector to be interleaved with
evaluation (as captured by the small-step evaluation semantics).

4 Generational garbage collection

The garbage collector we describe is a generational collector, which supports both minor
and major collections. In a minor collection, only reachable objects allocated in young
generations are traversed and evacuated (i.e., copied); those allocated in old generations
are left untouched. In a major collection, all reachable objects are traversed and evacuated.
In a minor collection, only reachable objects allocated in young generations are traversed,
but a minor collection does not differentiate between in which region an object is stored,
as there can be pointers from objects in newer regions to objects in older regions.

A region descriptor, which is depicted in Figure 7, represents an unbounded region
and consists of a pointer to the previous region descriptor on the stack (p), a generation
descriptor for the young generation (gy), a generation descriptor for the old generation
(go), and a list (L) for large objects (i.e., objects that do not fit in a region page). Each
generation descriptor (g) consists of a pointer to a list of 1Kb-aligned fixed-sized region
pages (fp), each of size 1Kb, and an allocation pointer (a). The treatment of large objects
is discussed independently in Section 4.4.

Consider a region 7, above a region r| on the stack, with two generations each. This sce-
nario allows for deep pointers from r, pointing to objects in region r; as shown in Figure 8

https://doi.org/10.1017/50956796821000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000010

14 M. Elsman and N. Hallenberg

;
N T — —
.fl)() AN : AN : H
2T 4 6 . 8
s 1 3. s 1 78
Joy — A — F—
fpo T h h }_)

Fig. 8. Possible and impossible pointers. Impossible pointers are those that are dashed. The stack
grows downwards.

(labeled 1-4) and shallow pointers pointing from objects allocated in region ;| into objects
allocated in region r, (labeled 5-8). Shallow pointers only exist between regions allo-
cated in the same letregion construct, which is a sufficient requirement to rule out the
possibility of dangling pointers (Hallenberg et al., 2002; Elsman, 2003). Shallow point-
ers (e.g., pointers from values in 7, to values in ;) are allowed only between regions
that are allocated and deallocated simultaneously. Consider, for instance, a list of type
((int,pp)list, p;)1list. The outer list’s spine is stored in region p;, while the spines of
the inner lists are stored in region p,. If region p, is deallocated before region p;, refer-
ences from the outer list to the inner lists would become dangling pointers. The scheme
that we first describe does not allow for pointers to point from an old generation to a young
generation (i.e., the pointers labeled 3 and 7); mutable objects, which may violate this prin-
ciple, are treated later in Section 4.3. Further notice that newly allocated objects always go
in a young generation (pointers 1, 2, 5, and 6). Moreover, pointers 4 and 8 can only be
created by the garbage collector.

When an object in a young generation of a region is evacuated, the object may be
promoted to the old generation of the region. The collector implements the following
promotion strategy, which guarantees that only long-living values are promoted to old
generations:

Definition 1 (Promotion Strategy). Promote objects when they have survived precisely
one collection. The first time a value in a region r is evacuated, the value stays allocated
in the young generation. During the following garbage collection, the value is promoted
(moved) to the old generation of r.

During a minor garbage collection, objects that have survived one collection must be
promoted to the old generation, whereas objects that have not yet survived a collection
should remain in the young generation. However, the implementation must preserve a
generation upward-closure property, which states that, after a collection, whenever a value
v has been promoted to an old generation, all values v’ pointed to by v are also residing in
old generations.

Figure 9 shows two regions and their young generations. The black areas contain objects
that have survived one collection. The white areas signify objects that have been allocated
since the last collection. Objects allocated in the black areas will be promoted to an old
generation and objects allocated in the white area will stay allocated in a young generation.

https://doi.org/10.1017/50956796821000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000010

Integrating region memory management and tag-free generational GC 15

r

Jpy
fPo

)

77777777777 7
y A 777820072777
ﬁJO

Fig. 9. The black areas contain objects that have survived one collection and white areas contain
objects allocated since the last collection.

Figure 9 shows different combinations of pointers from white and black areas into white
and black areas.

To implement the promotion strategy, the generation upward-closure invariant must
disallow values in black areas to point at values in white areas (pointers 5 and 6 in
Figure 9):

Definition 2 (Generation Upward-Closure). If a value resides in an old generation and
points to a value v’ then v’ resides in an old generation. If a value resides in a black area
in a young generation and points to a value v’ then v’ resides in an old generation or in a
black area in a young generation.

We now argue that the promotion strategy satisfies the Generation Upward-Closure
invariant. The argument is a case-by-case analysis of the possible pointers shown in
Figure 9 (pointers 1, 2, 3a, and 3b), where each pointer takes the form v, — v; and where
v, is allocated in r, and v, is allocated in r;:

Pointer 1. Both v, and v; reside in black areas, which means that, given v, is live,
they will both be promoted to old generations according to the promotion strategy. The
possibly promoted pointer will thus trivially satisfy Definition 2, part 1.

Pointer 2. If v; is live then it will be promoted to the black area of the young generation
while v is promoted to the old generation. The possibly promoted pointer will trivially
satisfy Definition 2, part 2.

Pointer 3a and 3b. Both v, and v; reside in white areas of young generations, which
means that, given v, is live, they will both be promoted to black areas in young
generations. Again, the possibly promoted pointer will trivially satisfy Definition 2,
part 2.

Pointer 3a gives rise to some considerations because v; is allocated in a region page
containing both a black and a white area. How do we mark v; as being allocated in a
white area? One possibility is that we mark each object as being white or black, which will
require that all objects are stored with a tag. A less costful solution, which we shall pursue,
is to introduce the notion of a region page color pointer (colorPtr), which points at the
first white value in the region page. Given a value v located at a position p in a region page
and the color pointer colorPtr associated with the region page, if p < colorPtr then v is

https://doi.org/10.1017/50956796821000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000010

16 M. Elsman and N. Hallenberg

old old young young young

Fig. 10. From-space contains black region pages from old generations, black region pages from
young generations, white region pages from young generations, and partly white region pages from
young generations. No white region pages from old generations exist.

allocated in the black area of the region page; otherwise, v is allocated in the white area.’
Notice, that color pointers are updated and referenced only during a garbage collection; it
does not change when allocating new values.

For the scheme to be sound, we need to make sure that pointers of the form of pointer
4a and pointer 4b never occur as the promotion strategy would otherwise lead to point-
ers from old generations to young generations, which would violate Definition 2. As we
have shown, the garbage collector will never introduce such pointers and, neither will the
mutator, except due to mutable data assignment, which we will treat in Section 4.3.

An alternative to the implemented promotion strategy is to add additional generations
and let a minor collection traverse all objects except those in an oldest generation. Such
a solution, however, could introduce a large amount of unused memory in region pages.
Another promotion strategy would be to promote objects when they have survived a num-
ber (N > 0) of collections, which generalises the implemented promotion strategy, but is
intractable as it requires tracking of the number of times each object in a young generation
has survived a collection.

4.1 Evacuating objects

The evacuation process copies live objects into fresh pages so that the copied-from pages
can be reclaimed, including the parts of the pages that hold unreachable values. Definition 2
is implemented as follows. During a major collection, the collector will evacuate objects
from old generations into old generations. During a minor collection, however, old gen-
erations will be left untouched and the collector will not attempt to traverse values stored
in old- generation pages. During a major or a minor collection, the collector will evacu-
ate objects in young-generation white areas into young-generation black areas. Moreover,
the collector will evacuate objects in young-generation black areas into old generations.
The evacuation strategy is implemented by marking all region pages in old generations
black, which means that the same algorithm can be used to evacuate objects in minor and
major collections. All objects in black areas are copied into black areas in old generations.
All objects in white areas are copied into black areas in young generations. All objects
allocated between two collections are allocated in white areas in young generations.

Before a major collection, all region pages are assembled to form the from-space
as shown in Figure 10. For a minor collection, from-space is formed from all young-
generation pages. After a collection (minor or major), the from-space pages are added
to the free list of pages.

To distinguish pointers from non-pointers, integers and other unboxed values (e.g.,
booleans and enumeration datatypes) are represented as tagged values with the least
significant bit set. Records are represented as a vector of values with a prefix tag word,

3 In the implementation, the color pointer associated with a region page is located in the header of the page. If
colorPtr points past the page, the entire page is black.

https://doi.org/10.1017/50956796821000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000010

Integrating region memory management and tag-free generational GC 17

which is used by the collector to identify the number of record components. Pairs and
triples, however, are represented without a prefix tag word. Given a pointer to a value in
a region page, the collector can determine that the value is a pair or a triple by inspect-
ing the region type associated with the region in which the object resides. In practice,
the implementation works with the region types RTY_BOT, RTY_PAIR, RTY_TRIPLE,
RTY_DOUBLE, RTY_REF, RTY_ARRAY, and RTY_TOP. Here, the region type RTY_TOP
is used for specifying regions that can contain values of arbitrary type, except those asso-
ciated with the other region types. The region type RTY_BOT never occurs at run time,
but is used for specifying type and region-polymorphic functions. The region unification
algorithm will fail to unify two regions with different types (except if one of the region
types is RTY_BOT), which provides the guarantee that values stored in a region at run time
are classified according to the region type of the region. For efficiency, the region type
for a region is stored both in the generation descriptor for the old generation and in the
generation descriptor for the young generation.

We mentioned earlier that a region representation analysis aims at identifying so-called
finite regions, which are regions that have been inferred to hold at most one value (Birkedal
etal., 1996). In the implementation, values stored in finite regions on the stack are traversed
by the garbage collector, but never copied or collected.

4.2 The GC algorithm
The GC algorithm makes use of a series of auxiliary utility functions:

e in_oldgen_and_minor (p): Returns TRUE iff the collection is a minor collection
and p points to an object in a region page for which the old-generation bit is set.

e is_int(p): Returns TRUE iff the least-significant bit in p is set.

e tag_is_fwd_ptr(w): Returns TRUE iff the tag word w is the reserved forward
pointer tag, which is different from other tags used for tagged objects.

e is_pairregion(r): Returns TRUE iff the runtime type associated with the region
descriptor r is REGION_PAIR.

e in_tospace(p): Returns TRUE iff p points to an object in a region page for which
the to-space bit is set.

e acopy_pair(r,p): Allocates a pair in the region associated with the region
descriptor r and copies into the newly allocated memory the two pointers (or
integers) contained in the pair pointed to by p.

e obj_sz(w): Returns the size of the object in words, given its tag word.

e gendesc(p): Returns the generation descriptor for the generation in which the
object pointed to by p resides. Each region page in the generation has associated
with it a generation pointer, pointing at the generation descriptor for the genera-
tion. Generation pointers are installed when a new region page is associated with a
generation.

e push_scanstack(a): Pushes the allocation pointer a onto the scan stack.

e pop_scanstack(): Pops and returns the top scan pointer from the scan stack.
Returns NULL if the scan stack is empty.

e target_gen(g,p): Returns the old generation associated with g’s region unless g
is a young generation and p appears in a white area in g, in which case it returns g.

https://doi.org/10.1017/50956796821000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000010

18 M. Elsman and N. Hallenberg

void* evacuate(void* p) {
if (is_int(p) || in_oldgen_and_minor(p)) { return p; }
g = gendesc(p);
gt = target_gen(g,p);
if (is_pairregion(g)) {
if (in_tospace (*(p+1))) { return *(p+1); } // fwd-ptr
a = acopy_pair(gt,p);
x(p+1) = a; // set fwd-ptr
} else {
if (tag_is_fwd_ptr(*p)) { return *p; }
a = acopy(g,p);
*p = a; // set fwd-ptr
}
if (gi->status == NONE) {
gi->status = SOME;
push_scanstack(a);

}

return a;

Fig. 11. The function evacuate assumes that the argument p points to an object and that it per-
haps resides in from-space and needs to be copied to to-space. After copying, a forward-pointer is
installed.

A central part of the GC algorithm is the function evacuate, shown in Figure 11,
which copies live values under consideration from from-space into to-space. It takes a
pointer p and copies the value pointed to into to-space provided it is not already copied
and that it is a prospect (i.e., under a minor collection, values in old generations are not
copied.) For brevity, only pairs are treated specially; the implementation also treats regions
of type RTY_TRIPLE and RTY_REF specially, as also triples and references are represented
untagged.

Another central function is the cheney function, which takes care of scanning the val-
ues that have been copied into to-space. During scanning, the cheney function may call
evacuate on values that have themselves not yet been copied, which may cause an update
to the generation allocation pointer. Once, for all regions, the scan pointer reaches the
allocation pointer, the collection terminates. The cheney function is shown in Figure 12.
Notice, again, that special treatment is required for dealing with untagged values (only the
case for pairs is shown.)

The main GC function, called gc is shown in Figure 13. It evacuates all values in the root
set and continues by calling the cheney function on all values on the scan stack. Notice
that the evacuate function pushes values that have been copied to to-space onto the scan
stack for further processing (the gi->status field is used to ensure that the scan pointer is
pushed at most once.)

To determines whether a minor or a major collection is run, a so-called heap-to-live
ratio is maintained, which by default is set to 3.0. Whenever the length of the free list of
pages becomes less than one-third of the total number of region pages that make up the
heap, garbage collection is initiated upon the next function entry (i.e., safe point). After

https://doi.org/10.1017/50956796821000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000010

Integrating region memory management and tag-free generational GC 19

void cheney(void* s) {
g = gendesc(s);
if (is_pairregion(g)) {

for (; s+1 != g->a ; s = next_pair(s,g)) {
(s+1) = evacuate ((s+1));
*(s+2) = evacuate (*x(s+2));
}
} else {
for (; s !'= g->a ; s = next_value(s,g)) {

for (i=1; i<obj_sz(*s); i++) {
*(s+i) = evacuate (¥(s+i));

}

}
g->status = NONE;
3

Fig. 12. The function cheney assumes that the argument scan pointer s points to a value that has
already been copied to to-space but for which the components have not yet been evacuated. The
function is named cheney because it degenerates to Cheney’s algorithm if multi-generations are
disabled.

void gc(void** rootset) {
while (p = next_root(rootset)) { *p = evacuate(*p); }
while (p = pop_scanstack()) { cheney(p); 2}

}

Fig. 13. The main GC function evacuates each of the values in the root set after which the cheney
function is called with scan pointers from the scan stack as long as there are scan pointers on the
stack.

each collection, it is ensured that the number of allocated region pages is at least 3.0 times
the number of region pages that make up to-space (given the heap-to-live ratio is 3.0). The
following rules are deployed for switching between major and minor collections, allowing
an arbitrary number of minor collections between two major collections:

1. If the current collection is a major collection, the next collection will be a minor
collection. The region heap is enlarged to satisfy the heap-to-live ratio.

2. If the current collection is a minor collection and the heap-to-live ratio is not
satisfied after the collection, the next collection will be a major collection.

4.3 Mutable objects

In the presence of mutable objects, the generation upward closure invariant may be violated
during program evaluation. In particular, a reference cell (which are rare in a functional
language) residing in an old generation, may be assigned to point at a value residing in a
young generation. We refine the generation upward-closure condition as follows:

https://doi.org/10.1017/50956796821000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000010

20 M. Elsman and N. Hallenberg

Definition 3 (Refined Generation Upward-Closure). For all values v, if v is non-mutable
and resides in an old generation then for all values v’ pointed to from v, v’ resides in an
old generation.

The refined generation upward-closure invariant is safe, if each minor collection tra-
verses all reachable mutable values (even those that reside in old generations). For minor
collections we extend the root set to contain, not only live values on the stack, but also all
references and arrays allocated. How does the collector locate all references and arrays?
Simply by arranging that such values are stored in regions with distinguished region types.
During a minor collection, the region stack is traversed and objects in regions of type
RTY_REF and RTY_ARRAY are traversed. Thus, we avoid the cost of a write barrier at each
reference assignment and the implementation of the usual “remembered set” of mutable
values that have been updated since the previous collection. This strategy can potentially
be more costly than if a proper “remembered set” is maintained, which we leave to future
work. A possible compromise could be to allow for a bit in a region page descriptor (or
in a region descriptor) for regions of type RTY_REF and RTY_ARRAY to record whether
a value in the page (or in the region) has been modified since the previous collection. For
applications that make extensive use of mutable data structures, such as certain implemen-
tations of unification and graph algorithms (a good example is the unification-based region
inference algorithm applied in the MLKit), this strategy introduces a small mutator over-
head (a write-barrier operation at each reference assignment), but may decrease the time
used in minor collections.

4.4 Large objects

Concerning the treatment of large objects, there are several options. In the implementa-
tion, we are currently treating large objects without dividing them into young and old
objects. Large objects are kept in one list associated with a region descriptor. Following
this strategy, large objects are not associated with a particular generation (nor need they
be associated with a color) and may therefore be collected only during major collec-
tions. However, following this scheme, large objects are traversed (not copied), when
reached, both during major and minor collections. A special account of the number of
bytes allocated in large objects, before and after major collections, makes it possible for
garbage collection to be triggered due to allocations of large objects (and the setting of the
heap-to-live ratio).

Two alternatives to dealing with large objects would be to have two lists of large
objects, one for each of the two generations, or one list where each object is annotated
with generation information.

5 Experimental results

In this section, we describe a series of experiments that serve to demonstrate the relation-
ship between region inference, non-generational garbage collection, and the generational
garbage collection algorithm presented in Section 4.

The experiments are performed with MLKit version 4.5.1 and MLton v20201023, which
both generate native x64 machine code. The two compilers are very different, however.

https://doi.org/10.1017/50956796821000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000010

Integrating region memory management and tag-free generational GC 21

Whereas MLton is a whole-program highly optimising compiler, MLKit features a smart-
recompilation system that allows for quick rebuilds upon modification of source code
(Elsman, 2008).

All benchmark programs are executed on a MacBook Pro (15-inch, 2016) with a
2.7GHz Intel Core 17 processor and 16GB of memory running macOS. Times and mem-
ory usage reported are measured using getrusage (BSD System Call) and the macOS
/usr/bin/time program. Measurements are averages over 30 runs. We use m to specify
memory usage (resident set size) and ¢ to specify execution time (in seconds). Subscripts
describe the mode of the compiler, with *, signifying region inference enabled, *, signify-
ing garbage collection enabled, and *g signifying generational garbage collection enabled.
Thus, f,g specifies execution time with region inference and generational garbage col-
lection enabled. We use mpjion and tmjion to signify memory usage and execution time for
executables running code generated by MLton. The benchmark programs span from micro-
benchmarks such as £ib37 and tak (7 and 12 lines), which only use the runtime stack for
allocation, to larger programs, such as vliw and mlyacc (3,676 and 7,353 lines), that solve
real-world problems. The program msort-rf is a region-friendly version of Mergesort for
which the merge function allocates its result in a region different from its arguments (by
copying the list tails). With no sharing between its arguments and its result, the use of the
merge function in the Mergesort algorithm leads to good region memory performance due
to region-polymorphic recursion, as shown in Section 2.

By disabling region inference, we mean instructing region inference to allocate all val-
ues that would be allocated in infinite regions in global regions (collapsed according to
their region type). Then not a single infinite region is deallocated at run time and the
non-generational garbage collection algorithm essentially reduces to Cheney’s algorithm.
Disabling region inference does not change the property that many values are allocated in
finite regions on the stack.

5.1 Comparison of execution times

In this section, we compare the execution time for the different benchmark programs com-
piled with MLton and with different configurations of the MLKit compiler. Figure 14
shows execution time for the benchmark programs compiled with the different compiler
configurations.

We see that for most of the programs, MLton outperforms the MLKit (with and with-
out garbage collection enabled). MLton’s whole-program compilation strategy, efficient
10 operations, and optimised instruction selection for the x64 architecture, are good candi-
dates for an explanation. For a few of the examples (i.e., DLX, £ib37, msort, msort-rf,
and simple), MLton is outperformed by MLKit’s region-inference only configuration (r),
and, in a few cases, also when region inference is combined with garbage collection.

Here are some of the conclusions that we can draw from comparing the MLKit
configurations:

1. GC adds an execution-time overhead. In all cases (except for the 1ife bench-
mark), combining region inference with a garbage collection mechanism has an
execution-time overhead compared to when region inference is used alone. The
region-inference only configuration, however, sometimes leads to the use of an

https://doi.org/10.1017/50956796821000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000010

22

Execution time (sec)

Execution time (sec)

0.5

25

0.5

M. Elsman and N. Hallenberg

miton == r 3 rg /3 G =3 [C — g == - -

4 % %
% %, s, K %% KN ., 75, %
s, %, (XN 7,
%, %, 7
% O
miton =21 r g | s— rG = G = g == & €3]

ﬂﬂmnﬂﬂﬁﬂm ﬁmﬂmﬂﬂ ooeem TR [0

<8,

% P s % % P B
L Y % & ‘S, Z)
) /4 %/ % 2 Ty, é,ﬁ 2

Fig. 14. Execution times for MLKit-generated executables compared to execution times for MLton
generated executables. For each vertical bar, markers specify the absolute standard deviation for the
corresponding 30 runs. GC times are visualised as shaded areas, which are also marked with the
absolute standard deviation.

excessive amount of memory (as we shall see in the next section), which makes
the configuration unendurable in practice for non-region-optimised programs.

The GC-only configurations (i.e., g and G) most often involve an overhead com-
pared to the other MLKit configuration. There are a few cases where a GC-only
configuration performs slightly better than when a garbage collection strategy is
combined with region inference (i.e., barnes-hut, kbc, and ray). For these cases,
region inference introduces an overhead by leading to the management of an exces-
sive number of regions at runtime (e.g., functions are passed a large number of
regions as parameters).

. Configuration rG, which combines region inference and generational garbage-

collection, performs as good or better than configuration rg, which combines region
inference with ordinary garbage collection, for almost all benchmarks. Exceptions
include the benchmarks kbc, mandelbrot, ray, and simple, for which we see a
small overhead caused by the programs having to manage multiple generations for
each region.

. For a number of the benchmarks, configuration rG performs significantly better

than configuration rg (i.e., lexgen, logic, mlyacc, msort, nucleic, and zern),
which is primarily caused by shorter accumulated garbage collection times; we shall
discuss the aspect of accumulated garbage collection times further in Section 5.3.

https://doi.org/10.1017/50956796821000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000010

Integrating region memory management and tag-free generational GC 23

MLton r(RI) rg(RI+GC) | rG(RI+GENGC) | G(GENGC) g(GC)
Program t(s) m(Mb)| t(s) m(Mb)| t(s) m(Mb)| s) m(Mb) | t(s) m(Mb)| t(s) m(Mb)
DLX 030 31.7|0.11 6.1 0.12 6.3]10.13 6.510.35 8.1/0.24 9.2
barnes-hut | 0.14 19| 047 185.0| 0.70 23| 0.71 2.5(0.62 2210.83 22
£ib37 0.33 1.0 0.31 1.1]| 0.40 1.1]| 0.40 1.1]0.40 1.1]0.41 1.1
kbc 0.05 2.1| 0.14 68| 0.17 331 0.20 4.1]0.11 2.110.11 2.1
lexgen 039 184| 057 73.0| 0.84 69| 0.72 85(0.72 6.0/ 099 5.9
life 0.48 20| 0.82 14.4| 0.79 1.5] 0.81 1.6 0.82 1.410.82 1.4
logic 0.12 2.1| 0.27 277| 0.60 2.5| 047 2.510.47 2.510.58 2.5
mandelbrot | 0.30 0.8] 0.38 1.3] 042 14| 045 141042 141042 1.4
mlyacc 024 10.8| 0.26 127.0| 0.34 69| 0.32 7.810.37 6.910.45 6.0
mpuz 0.27 09| 0.46 1.1 0.72 1.1} 0.71 1.210.71 1.1]0.70 1.1
msort-rf 0.73 583.0| 044 103.0| 0.71 120.0|10.71 126.0| 1.19 139.0| 1.50 138.0
msort 0.74 424.0| 0.46 410.0| 1.31 139.0|f1.14 139.0(1.19 139.0(1.50 144.0
nucleic 0.14 2.0 030 266.0| 0.44 2.6| 0.31 2.710.34 241048 2.4
professor |[0.32 1.3] 035 10.2| 043 1.2] 043 1.3]0.42 1.1]0.50 1.1
ratio 037 473| 1.18 384 141 10.6 | 1.41 10.6 | 1.65 10.6(1.64 10.5
ray 024 140| 042 12.7| 0.51 63| 0.61 6.710.43 6.0(0.71 59
simple 0.25 741 0.18 231 0.23 271 027 2.810.37 3.310.38 33
tak 0.68 0.8] 0.78 1.0 0.84 1.0 0.84 1.0 0.84 1.0]0.84 1.0
tsp 0.13 10.5(0.12 6.2 | 10.15 10.4| 0.15 9.110.17 13.3]0.18 14.2
vliw 0.29 9.0 043 454| 0.55 521 057 7.0 | 0.60 4.810.83 4.6
zebra 0.44 1.3] 1.82 133.0| 2.09 1.2 2.08 1.412.20 1.1]2.35 1.1
zern 0.28 10.5| 0.68 43| 1.70 371 1.10 3.8(1.24 4.8(2.42 3.7

Fig. 15. Execution times (in seconds) and memory usage (in Mb) for executables generated with
MLton and different configurations of MLKit.

5.2 Comparison of memory usage

In this section, we present the memory usage for the different configurations and discuss
the memory usage in relation to the execution time for the various benchmarks and configu-
rations. Raw numbers for the configurations are shown in Figure 15. Again, measurements
reported are averages over 30 runs. The relative standard deviation varies between 0%
and 11.9%; only eight measurements (those measurements annotated with a dagger () in
Figure 15) have a relative standard deviation exceeding 4.3%.

When comparing the MLKit configurations, we see that even though the time perfor-
mance of all benchmarks are better with region inference alone (i.e., the r configuration),
for some of the benchmark programs (i.e., those with numbers marked in bold in
Figure 15), region inference alone does not suffice to obtain good memory performance.
For a few of the benchmarks, the r configuration results in better memory usage than any of
the other configurations. Possible reasons for this behavior are (1) that the r configuration
introduces less fragmentation than the other MLKit configurations (each region contains
only one list of region pages) and (2) that the r configuration permits dangling pointers.

Another important observation that we shall mention here is that the rG configura-
tion does not result in a drastically larger memory usage than the rg configuration. In
Section 5.4, we shall investigate the fragmentation issues caused by region inference
dividing memory into pages and generations dividing regions into multiple page lists.

For the MLKit configurations that make use of garbage collection, a heap-to-live ratio of
3.0 is used, which is the default. The default heap-to-live ratio used by MLton is 8.0, which
explains the larger memory usage for many of the MLton-compiled executables, compared
to MLKit-compiled executables. Moreover, as we shall see in Section 5.5, it turns out that

https://doi.org/10.1017/50956796821000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000010

24 M. Elsman and N. Hallenberg

8rg Prg PrG

Program crg (s) (%) G gG(s) (%) Cg g(s) G 8a(s)

DLX 5000 0 8 (4) 0.00 (0.00) 0 104 0.11 205 (102) 0.22 (0.10)
barnes-hut | 1645 0.20 63| 1393 (440) 0.11 (0.06) 63| 3861 0.45| 3818 (1210) 0.25 (0.15)
fib37 1000 0 2 (1) 0.00 (0.00) 5 1 0.00 2 (1) 0.00 (0.00)
kbc 37 0.00 44 33 (12) 0.00 (0.00) 43 225 0.01 305 (64) 0.02 (0.00)
lexgen 485 0.25 81| 343 (30) 0.10 (0.01) 79 866 0.46 888 (109) 0.20 (0.05)
life 147 0.01 17| 132 (19) 0.01 (0.00) 17 789 0.02 938 (167) 0.02 (0.01)
logic 2610 0.36 100| 2696 (432) 0.23 (0.06) 100| 2574 0.33| 2680 (434) 0.23 (0.06)
mandelbrot 1000 0 2 () 0.00 (0.00) 3 1 0.00 2 (D) 0.00 (0.00)
mlyacc 160 0.08 63 178 (29) 0.05 (0.01) 63 421 0.18 445 (115) 0.11 (0.06)
mpuz 2 0.00 2 4 (2) 0.00 (0.00) 2 2 0.00 3 () 0.00 (0.00)
msort-rf 21 0.15 4 30 (15) 0.18 (0.12) 7 40 0.92 49 (22) 0.62 (0.41)
msort 32 0.62 57 40 (18) 0.44 (0.26) 53 40 0.93 49 (22) 0.63 (0.41)
nucleic 1751 0.18 94| 1506 (102) 0.05 (0.01) 94| 2253 0.22| 2412 (233) 0.08 (0.03)
professor 1772 0.02 28| 1086 (33) 0.01 (0.00) 27| 16675 0.15| 14025 (766) 0.06 (0.01)
ratio 34 0.05 24 40 (10) 0.05 (0.01) 23 106 0.20 151 (30) 0.25 (0.05)
ray 22 001 3 28 (12) 0.01 (0.01) 3 523 041 425 (73) 0.14 (0.06)
simple 7 0.00 3 10 (5) 0.00 (0.00) 5 18 0.01 23 (10) 0.01 (0.00)
tak 1000 0 1 (0) 0.00 (0.00) O 1 0.00 1 (0) 0.00 (0.00)
tsp 11 0.01 2 18 (99 0.02 (0.01) 2 17 0.04 25 (12) 0.03 (0.01)
vliw 93 0.03 13 54 (13) 0.02 (0.00) 12| 1088 0.36 1136 (135) 0.13 (0.05)
zebra 5009 0.06 63| 3008 (55) 0.04 (0.00) 63| 39044 0.36| 31033 (6007) 0.23 (0.06)
zern 84251 0.84 97(53436 (4) 0.23 (0.00) 91158546 1.56|112904 (102) 0.40 (0.00)

Fig. 16. GC counts (cx) and GC times (g4) for the different configurations. Reported counts are
the total number of collections with the number of major collections and the accumulated major
collection time in parentheses. The p, columns show the percentage of bytes reclaimed by GC (in
contrast to region inference).

we can improve the performance of benchmarks with high garbage collection times by
adjusting the heap-to-live ratio

5.3 Generational garbage collection

By looking at the performance graphs in Figure 14 and the performance numbers in
Figure 15, we see that generational garbage collection alone (without region inference)
performs better than or equivalent to non-generational garbage collection, except in one
case (i.e., benchmark DLX). We shall return to this case when we report on the number of
major collections versus the number of minor collections performed for the benchmarks in
each configuration.

Figure 16 shows the garbage collection counts (¢, ¢r, cg, and cg) for the different
configurations. Notice that the garbage collection counts (and times) are smaller when
region inference is enabled, which indicates that region inference takes care of a large
amount of memory recycling, which again means that the reference-tracing garbage col-
lection is triggered less often. Notice also that, for the configurations that combine region
inference and garbage collection, the accumulated garbage collection time for the con-
figuration using generational collection (column g;g) is smaller than or identical to the
accumulated garbage collection time for the configuration using non-generational garbage
collection (column gy,), for all benchmarks, except for the benchmark msort-rf for which
generational garbage collection introduces a small overhead (less than 20% in accumulated
garbage collection time). However, the improvements are often significant, which can also
be seen in Figure 14. For the benchmarks barnes-hut, lexgen, nucleic, and zern, the

https://doi.org/10.1017/50956796821000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000010

Integrating region memory management and tag-free generational GC 25

improvement in accumulated garbage collection time is about 50% or larger, which are
caused by a significant decrease in the number of major collections. For other benchmarks,
including logic, mlyacc, msort, and zebra, we see a more modest improvement in accu-
mulated garbage collection time (between 20% and 50%), again caused by a decrease in
the number of major collections.

Finally, notice that the percentage of memory reclaimed by the garbage collector is
(close to) invariant to whether the garbage collector is generational or not (p, versus p;g).

The MLKit features a region profiling tool (Hallenberg, 1996), which allows for show-
ing a program’s use of regions over time. Figure 17 shows region profiles of MLYacc
computations for four different MLKit runtime configurations. The profiles show that gen-
erational garbage collection combined with region inference often requires more memory
than when region inference is combined with non-generational garbage collection, but also,
that the profile obtained alone with generational garbage collection is similar to the pro-
file obtained with region inference and non-generational garbage collection enabled. The
figure also demonstrates a crucial point, namely that the global regions are often those
that need to be collected by the reference tracing collector, which means that schemes that
attempt to collect only the topmost regions will probably fail to be effective.

5.4 Memory waste

Figure 18 reports memory waste percentages (percentages of unused memory in region
pages) for the configurations wy, (region inference and non-generational garbage collec-
tion), w,g (region inference and generational garbage collection), w, (non-generational
garbage collection), and wg (generational garbage collection).* Notice the (at first) mys-
terious numbers for the benchmarks £ib37 and mandelbrot, which, for all configurations
allocate very few objects in infinite regions, which are therefore almost empty.

As expected, the waste is high for the region inference configurations. Moreover, region
inference combined with generational garbage collection results in more memory waste
(unused memory in region pages) than when combined with non-generational garbage col-
lection (up to 17% points more, not considering the £ib37 and mandelbrot benchmarks).
The reason is that, with generational garbage collection, each infinite region contains
two lists of region pages (one list for each generation), each of which may not be fully
utilised. As mentioned earlier, each region page is fixed at size 1Kb. A different page size
would most likely lead to different percentage waste numbers; smaller pages would lead
to internal fragmentation, while larger pages would have more last-page underutilisation.

5.5 Adjusting the heap-to-live ratio

For a few of the benchmarks, we see that a significant part of the execution time is
spent during garbage collection in the configurations that make use of garbage collec-
tion. Particularly, for the rG configuration, we see from Figure 14 and Figure 16 that the
accumulated garbage collection times for the logic and msort programs account for 49%

4 The memory waste that we account for here only relates to unused memory in region pages. A different kind
of memory waste, which we do not account for, has to do with dead values in old generations. Such waste is
eliminated, however, whenever a major garbage collection is run.

https://doi.org/10.1017/50956796821000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000010

26 M. Elsman and N. Hallenberg

| conf: rG - Region profiling Fri Nov 13 20:58:37 2020
Maximum allocated bytes in regions (1113796) and on stack (405908) —
[rsinf

B ine

D stack

1200K | [

[r200132inf
B 285461inf
[rsinf

[r290107inf
[r285457int
[r285458inf
[r290106inf
[r290105inf
[r219025fin
[r288624inf
B 223444inf
[r222046inf
B 222047inf
[r82735fin
[r182938fin

V4 Ml other

bytes

seconds
‘conf: r - Region profiling Fri Nov 13 20:56:40 2020] [[conf: rg - Region profiling Fri Nov 13 20:58:35 2020
s Tytes s —
3 W s 3 [stacc
| B 100K | |
et
“am. [P
" O stack O 200132int
kS Wl 2eszsi a00k. W et
[(mp
aan
W 2s51200n1 [2ssas7int
o O esstzri [essesant
| W 21002560
2 2205120t 200107t
[- [-
100, W 22840800t [200108int
[[re2r3sin
1 [- Wl s
[22088600t 11820381
[- P
O zes7700t \ AT WY j [J 1828390
B sz VDA AN VTN [R
OTHER |) | [OTHER

seconds 00 02 04 06 08 10 seconds

[Lcont: g - Region profiling Fri Nov 13 20:58:322020] [conf: G - Region profiling Fri Nov 13 20:58:33 2020
2 75T00 I

3| W st

| B

O stack

W s

800k O eame
W ez
[rezsssin
[rezsaom
O rrezssin

oint
O 219025

et
[219008

[oese

bytes

00 02 06 08 0 seconds.

00 02 04 12 seconds

Fig. 17. Region profiles showing memory usage over time for different runtime configurations (top:
rG, middle-left: r, middle-right: rg, bottom-left: g, and bottom-right: G). Notice that, for the g and
G configurations, there are no non-global infinite regions. Notice also that, without reference-tracing
garbage collection (configuration r), the values in global regions are never freed.

https://doi.org/10.1017/50956796821000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000010

Integrating region memory management and tag-free generational GC 27

Wrg WG Wgo waG Wrg WG Wgo waG
Program (%) (%) | (%) (%) Program (%) (%) | (%) (%)
DLX 26 42 1 2 mpuz 69 86| 46 79
barnes-hut 12 20 2 5 nucleic 12 19 3 5
fib37 0 91 0 91 professor | 31 39 16 25
kbc 41 57 5 10 ratio 6 9 1 2
lexgen 8 16 1 2 ray 9 17 1 2
life 8 18 5 9 simple 17 31 4 9
logic 3 6 3 6 tak 0 0 0 0
mandelbrot 0 91 0 91 tsp 10 16 7 13
mlyacc 7 18 1 2 vliw 11 19 1 2
msort-rf 5 11 3 7 zebra 30 38| 22 30
msort 4 8 3 7 zern 1 2 0 0

Fig. 18. Memory waste. The numbers show the average percentage of region waste (unused memory
in region pages) measured at each collection.

and 39%, respectively. The following table reports the total execution time and the accu-
mulated garbage collection time for the two benchmark programs with a heap-to-live ratio
of 3 (as reported earlier) and a heap-to-live ratio of 8:

Heap-to-live ratio =3 Heap-to-live ratio =8
Program | #6(s) gw(s) mg(MD) | tig(s) gw:(s) miG(Mb)
logic 047 023 2.5 028 0.05 2.9

msort 1.14 044 140 0.77 0.28 201

We see that, in these two cases, a larger heap-to-live ratio decreases the overall execution
time, while the overall memory usage is increased.

6 Related work

This paper is an extended version of the paper “On the Effects of Integrating Region-Based
Memory Management and Generational Garbage Collection in ML”, which appeared in
the proceedings of the PADL ’20 symposium (Elsman & Hallenberg, 2020). The present
paper includes a presentation of the theoretical foundations of the work and an extended
empirical evaluation. In particular, the paper includes a novel theoretical justification that,
using typed regions, region- annotated intermediate expressions can be guaranteed to have
the property that regions will only contain values of the same type. This property is essen-
tial for allowing a tag-free representation of pairs, triples, and references, which provides
dramatic savings on allocated memory and execution time.

Most related to this work is the previous work on combining region inference and
garbage collection in the MLKit (Hallenberg ef al., 2002). Compared to the earlier work,

5 Notice that the overall memory usage, measured in maximum resident set size (determined by the underlying
operating system) is not in a simple way related to the heap-to-live ratio, which relates directly to the number
of allocated region pages.

https://doi.org/10.1017/50956796821000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000010

28 M. Elsman and N. Hallenberg

the present work investigates how generational garbage collection can be combined with
region inference and how the concept of typed regions can be used to circumvent the need
for a generation write barrier. In particular, without using a generation write barrier, typed
regions allow for the garbage collector to apply a conservative strategy that scans only a
small fraction of the old-generation heap during a minor collection (i.e., regions containing
mutable data). There is a large body of related work concerning general garbage collection
techniques (Jones et al., 2011) and garbage collection techniques for functional languages,
including (Doligez & Leroy, 1993; Reppy, 1994; Huelsbergen & Winterbottom, 1998;
Ueno & Ohori, 2016).

Incremental, concurrent, and real-time garbage collection techniques for functional lan-
guages have recently obtained much attention. In particular, the presence of generations
has been shown useful for collecting parts of the heap incrementally and in a concurrent
and parallel fashion (Marlow et al., 2009; Anderson, 2010; Marlow & Peyton Jones, 2011).
We leave it to future work to investigate the use of regions and generations in the MLKit
for supporting concurrency and parallelism in the language.

There are a series of proposals for tag-free garbage collection schemes (Appel, 1989;
Goldberg, 1991; Goldberg & Gloger, 1992; Aditya et al., 1994; Tolmach, 1994) and nearly
tag-free garbage collection schemes (Morrisett et al., 1996; Tarditi et al., 1996).

The partly tag-free garbage collection scheme that we present here does not involve
untagging of all values. In particular, unboxed objects (e.g., integers and booleans) are
tagged in our system, which makes it possible to distinguish pointers from unboxed objects
at runtime. However, the scheme allows for commonly used data structures, such as tuples,
reals, and reference cells, to be untagged, which, as mentioned, can lead to significant time
and memory savings, in particular because pairs and triples are used for the implementation
of many dynamic data structures, including lists and trees.®

As is the case for other techniques that support full untagging, our technique does not
involve traversing the runtime stack to determine types during garbage collection (Appel,
1989; Goldberg, 1991; Goldberg & Gloger, 1992) or require special type information to be
passed to functions at runtime (Tolmach, 1994). By requiring values in certain regions to
be of the same kind, our approach has much in common with BIBOP (Big Bag Of Pages)
systems, with regions as pages (Hanson, 1980).

Another particular body of related work investigates the notion of escape analysis for
improving stack allocation in garbage collected systems (Blanchet, 1998; Salagnac et al.,
2005). Region inference and MLKit’s polymorphic multiplicity analysis (Birkedal et al.,
1996) allow more objects to be stack allocated than traditional escape analyses, which
allows only local, non-escaping values to be stack allocated. Other work investigates the
use of static prediction techniques and linear typing for inferring heap space usage (Jost
et al.,2010).

Cyclone (Swamy et al., 20006) is a region-based type-safe C dialect, for which, the pro-
grammer can decide if an object should reside in the GC heap or in a region. Another
region-based language is Gay and Aiken’s RC system, which features limited explicit
regions for C, combined with reference counting of regions (Gay & Aiken, 2001). A
modern language for system programming is Rust, which is based on ownership types

6 The scheme works well together with support for unboxed data constructors, such as cons (: :), which, for
instance, leads to a compact representation of linked lists (Elsman, 1998).

https://doi.org/10.1017/50956796821000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000010

Integrating region memory management and tag-free generational GC 29

for controlling the use of resources, including memory (Aldrich ef al., 2002). Ownership
types are also used for real-time implementations of Java (Boyapati et al., 2003). None
of the above systems are combined with techniques for automatic generational garbage
collection.

Also related to the present work is the work by Aiken et al. (1995), who show how
region inference may be improved for some programs by removing the constraints of the
stack discipline, which may cause a garbage collector to run less often. Other work in
this area includes (Fluet et al., 2006), which removes the constraints of the region stack
discipline for an intermediate language using a linear type system.

Region inference has also been used in practical settings without combining it with
reference-tracing garbage collection. In particular, it has been used as the primary memory
management scheme for a web server (Elsman & Hallenberg, 2003; Elsman et al., 2018).

7 Conclusion and future work

We have presented a technique for combining region inference and generational garbage
collection in a functional language. Whereas region inference alone can be beneficial
when a program is optimised for regions, in general, a combination with reference-tracing
garbage collection is necessary to make region inference perform well in practice.

Whereas region inference significantly reduces the number of garbage collections
needed, and therefore also reduces the accumulated garbage collection time, combining
region inference with generational garbage collection is shown to decrease the accumulated
garbage collection time even further. The combination of region inference and generational
garbage collection is therefore found to be superior to the combination that involves non-
generational garbage collection, despite the overhead introduced by a larger amount of
memory waste, due to region fragmentation.

In relation to the performance differences between MLton and MLKit, a first obvious
candidate for future work is to improve the x64 code generator and to apply some of the
datatype specialisation techniques that are implemented in the MLton compiler. Second,
for making the combination of region inference and generational garbage collection useful
for applications that make heavy use of mutable objects, a proper implementation of a
“remembered set” would be an appropriate next step. Finally, an obvious candidate for
future work is to investigate the possibility of combining region inference and, perhaps,
generations, with features for concurrency and parallelism.

Acknowledgments

We are grateful to the anonymous referees for their many helpful comments on earlier
drafts of this paper.

Conflicts of interest

None.

https://doi.org/10.1017/50956796821000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000010

30 M. Elsman and N. Hallenberg

References

Aditya, S., Flood, C. H. & Hicks, J. E. (1994) Garbage collection for strongly-typed languages using
run-time type reconstruction. In LISP and Functional Programming, pp. 12-23.

Aiken, A., Fihndrich, M. & Levien, R. (1995) Better static memory management: Improving region-
based analysis of higher-order languages. In ACM Conference on Programming Languages and
Implementation. PLDI 1995.

Aldrich, J., Kostadinov, V. & Chambers, C. (2002) Alias annotations for program understanding.
In ACM Conference on Object-oriented Programming, Systems, Languages, and Applications.
OOPSLA 2002.

Anderson, T. A. (2010) Optimizations in a private nursery-based garbage collector. In ACM
International Symposium on Memory Management. ISMM 2010.

Appel, A. W. (1989) Runtime tags aren’t necessary. Lisp Sym. Comput. 2, 153-162.

Birkedal, L., Tofte, M. & Vejlstrup, M. (1996) From region inference to von Neumann machines via
region representation inference. In ACM Symposium on Principles of Programming Languages.
POPL 1996.

Blanchet, B. (1998) Escape analysis : Correctness proof, implementation and experimental results.
ACM Symposium on Principles of Programming Languages (POPL 1998). ACM Press, pp. 25-37.

Boyapati, C., Salcianu, A., Beebee, Jr., W. & Rinard, M. (2003) Ownership types for safe region-
based memory management in real-time Java. In ACM Conference on Programming Language
Design and Implementation. PLDI 2003.

Calcagno, C., Helsen, S. & Thiemann, P. (2002) Syntactic type soundness results for the region
calculus. Inform. Comput. 173(2).

Doligez, D. & Leroy, X. (1993) A concurrent, generational garbage collector for a multi-
threaded implementation of ML. In ACM Symposium on Principles of Programming Languages.
POPL ’93.

Elsman, M. (1998) Polymorphic equality—no tags required. In Second International Workshop on
Types in Compilation.

Elsman, M. (2003) Garbage collection safety for region-based memory management. In ACM
Workshop on Types in Language Design and Implementation. TLDI 2003.

Elsman, M. (2008) A4 Framework for Cut-Off Incremental Recompilation and Inter-Module
Optimization. Technical report. IT University of Copenhagen, Rued Langgaards Vej 7, DK-2300
Copenhagen S, Denmark.

Elsman, M. & Hallenberg, N. (1995) An Optimizing Backend for the ML Kit Using a Stack of
Regions. Student Project 95-7-8, University of Copenhagen (DIKU).

Elsman, M. & Hallenberg, N. (2003) Web programming with SMLserver. In International
Symposium on Practical Aspects of Declarative Languages (PADL 2003). Springer-Verlag.

Elsman, M. & Hallenberg, N. (2020) On the effects of integrating region-based memory management
and generational garbage collection in ML. In Practical Aspects of Declarative Languages. PADL
2020. Springer International Publishing, pp. 95-112.

Elsman, M., Munksgaard, P. & Larsen, K. F. (2018) Experience report: Type-safe multi-tier
programming with Standard ML modules. In Proceedings of the ML Family Workshop. ML 2018.

Fluet, M., Morrisett, G. & Ahmed, A. (2006) Linear regions are all you need. Program. Lang. Syst.
ESOP 2006. Springer Berlin Heidelberg, pp. 7-21.

Gay, D. & Aiken, A. (2001) Language support for regions. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2001). ACM Press.

Goldberg, B. (1991) Tag-free garbage collection for strongly typed programming languages. In ACM
Conference on Programming Language Design and Implementation pp. 165-176.

Goldberg, B. & Gloger, M. (1992) Polymorphic type reconstruction for garbage collection without
tags. In LISP and Functional Programming pp. 53—65.

Hallenberg, N. (1996) 4 Region Profiler for a Standard ML compiler based on Region Inference.
Student Project 96-5-7, Department of Computer Science, University of Copenhagen (DIKU).
Hallenberg, N., Elsman, M. & Tofte, M. (2002) Combining region inference and garbage collection.
In ACM Conference on Programming Language Design and Implementation (PLDI 2002). ACM

Press. Berlin, Germany.

https://doi.org/10.1017/50956796821000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000010

Integrating region memory management and tag-free generational GC 31

Hanson, D. R. (1980) A portable storage management system for the icon programming language.
Softw. Pract. Exp. 10, 489-500.

Helsen, S. & Thiemann, P. (2000) Syntactic type soundness for the region calculus. In International
Workshop on Higher Order Operational Techniques in Semantics. Published in Volume 41(3) of
the Electronic Notes in Theoretical Computer Science.

Huelsbergen, L. & Winterbottom, P. (1998) Very concurrent mark-&-sweep garbage collection
without fine-grain synchronization. In ACM International Symposium on Memory Management.
ISMM 1998.

Jones, R., Hosking, A. & Moss, E. (2011) The Garbage Collection Handbook: The Art of Automatic
Memory Management. Chapman & Hall/CRC.

Jost, S., Hammond, K., Loidl, H.-W. & Hofmann, M. (2010) Static determination of quantitative
resource usage for higher-order programs. In ACM Symposium on Principles of Programming
Languages. POPL 2010.

Marlow, S. & Peyton Jones, S. (2011) Multicore garbage collection with local heaps. In ACM
International Symposium on Memory Management. ISMM 2011.

Marlow, S., Peyton Jones, S. & Singh, S. (2009) Runtime support for multicore Haskell. In ACM
International Conference on Functional Programming. ICFP 2009.

Morrisett, G. (1995) Compiling with Types. PhD thesis, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA 15213.

Morrisett, G., Felleisen, M. & Harper, R. (1995) Abstract models of memory management. In
International Conference on Functional Programming Languages and Computer Architecture,
San Diego, pp. 66-77.

Morrisett, G., Tarditi, D., Cheng, P., Stone, C., Harper, R. & Lee, P. (1996) The TIL/ML Compiler:
Performance and Safety through Types.

Reppy, J. H. (1994) A High-performance Garbage Collector for Standard ML. Tech. rept. AT&T
Bell Laboratories.

Salagnac, G., Yovine, S. & Garbervetsky, D. (2005) Fast escape analysis for region-based memory
management. Electron. Notes Th. C. S. 131(May), 99-110.

Salagnac, G., Nakhli, C., Rippert, C. & Yovine, S. (2006) Efficient region-based memory man-
agement for resource-limited real-time embedded systems. In Workshop on Implementation,
Compilation, Optimization of Object-Oriented Languages, Programs and Systems.

Swamy, N., Hicks, M., Morrisett, G., Grossman, D. & Jim, T. (2006) Safe manual memory
management in cyclone. Sci. Comput. Program. 62(2), 122—144.

Tarditi, D., Morrisett, G., Cheng, P., Stone, C., Harper, R. & Lee, P. (1996) TIL: A type-directed opti-
mizing compiler for ML. In Proceedings of ACM SIGPLAN 1996 Conference on Programming
Language Design and Implementation, pp. 181-192.

Tofte, M. & Birkedal, L. (1998) A region inference algorithm. Trans. Program. Lang. Syst.
(TOPLAS) 20(4), 734-767.

Tofte, M. & Birkedal, L. (2000) Unification and polymorphism in region inference. In Proof,
Language, and Interaction. Essays in Honour of Robin Milner May. (25 pages).

Tofte, M. & Talpin, J.-P. (1993) 4 Theory of Stack Allocation in Polymorphically Typed Languages.
Tech. rept. DIKU-report 93/15. Department of Computer Science, University of Copenhagen.

Tofte, M. & Talpin, J.-P. (1997) Region-based memory management. Inform. Comput. 132(2),
109-176.

Tofte, M., Birkedal, L., Elsman, M. & Hallenberg, N. (2004) A retrospective on region-based
memory management. Higher-Order Symb. Comput. 17(3), 245-265.

Tofte, M., Birkedal, L., Elsman, M., Hallenberg, N., Olesen, T. H. & Sestoft, P. (2006) Programming
with Regions in the MLKit (Revised for Version 4.3.0). Tech. Rept. IT University of Copenhagen,
Denmark.

Tolmach, A. P. (1994) Tag-free garbage collection using explicit type parameters. In LISP and
Functional Programming pp. 1-11.

Ueno, K. & Ohori, A. (2016) A fully concurrent garbage collector for functional programs on
multicore processors. In ACM International Conference on Functional Programming. ICFP 2016.

Wright, A. K. & Felleisen, M. (1994) A syntactic approach to type soundness. Inform. Comput.
115(1), 38-94.

https://doi.org/10.1017/50956796821000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000010

	Integrating region memory management and tag-free generational garbage collection
	Introduction
	An introduction to region-based memory management
	A region type system with typed regions
	Region types, variables, and effects
	Types and substitutions
	Terms
	Typing rules
	A small step dynamic semantics
	Type safety

	Generational garbage collection
	Evacuating objects
	The GC algorithm
	Mutable objects
	Large objects

	Experimental results
	Comparison of execution times
	Comparison of memory usage
	Generational garbage collection
	Memory waste
	Adjusting the heap-to-live ratio

	Related work
	Conclusion and future work

