MOTIONS OF MATRIX RINGS

ROY F. KELLER

Introduction. Metric spaces in which the distances are not real numbers have been studied by several people (2, 3, 4, 7, 9). Any ring R together with a mapping, $X \rightarrow \phi(X)$, of R into a lattice A with 0 and 1 satisfying

(1)
$$\phi(X) = \phi(0)$$
 if and only if $X = 0$,

(2)
$$\phi(X + Y) \subset \phi(X) \cup \phi(Y),$$

and

(3)
$$\phi(X \cdot Y) = \phi(X) \cap \phi(Y),$$

is called a "lattice-valued ring," where the operations union, \cup , and intersection, \cap , are the usual lattice operations. The mapping ϕ is called a "valuation" and A is a "valuation lattice." If R is a lattice-valued ring and a mapping d is defined by

$$d(X, Y) = \phi(X - Y),$$

which maps $R \times R$ into A, then d is called a distance function on R. It is easily seen that d satisfies

(4) $d(X, Y) = \phi(0)$ if and only if X = Y,

(5)
$$d(X, Y) = d(Y, X),$$

and

(6)
$$d(X, Y) \cup d(Y, Z) \supset d(X, Z).$$

The ring *R* together with mapping ϕ and distance function *d* is called a "lattice metric space."

If we take a ring R with identity together with a mapping $X \to \phi(X)$ of R into a lattice L, which satisfies (1) and (2) above but instead of (3) the following:

(3')
$$\phi(-X) = \phi(X),$$

we then call R a "weak lattice-valued ring," and L a "weak valuation lattice." If d is defined by

$$d(X, Y) = \phi(X - Y)$$

X, $Y \in R$, then d is a distance function satisfying (4), (5), and (6) which maps $R \times R$ into L. The ring R together with the mapping ϕ and distance function d is again called a "lattice metric space."

Received February 25, 1963.

ROY F. KELLER

In this paper we determine the motions of the ring of all linear transformations on an arbitrary vector space over a division ring. Since the ring of rowfinite matrices with elements from a division ring is isomorphic to the ring of all linear transformations over the division ring, we can consider motions of the ring of row-finite matrices.

Let R be a division ring, R' the ring of row-finite matrices with elements from R, and L the lattice of right ideals of R'. R satisfies (1), (2), and (3') and if we define

$$d(X, Y) = \phi(X - Y)$$

X, $Y \in R'$, then d is a distance function satisfying (4), (5), and (6) which maps $R \times R$ into L. The principal result is the following theorem.

THEOREM 1. If R is a division ring and R' the ring of row-finite infinite matrices over R, the mapping $X \to F(X)$, $X \in R'$, is a motion of R' with respect to the distance function d if and only if F(X) = XA + B, where A and B are fixed elements of R' and A is non-singular.

1. Definitions. Consider an arbitrary ring R and I_R the lattice of right ideals of R.

DEFINITION 1. Let ϕ be a mapping from R into I_R such that if $A \in R$, $\phi(A)$ is the principal right ideal in I_R generated by A. (We shall denote $\phi(A)$ by $[A]_r$.)

It is easily shown that the mapping ϕ satisfies (1), (2), and (3') above and clearly I_R contains a first, the null ideal, and a last, the whole ring, element; thus R with the mapping ϕ and "distance function" d is a lattice metric space.

DEFINITION 2. A one-to-one mapping of R onto R which preserves distances is a motion of R relative to the distance function d. Thus, if $A, B \in R$ and f is a motion of R, then

$$[f(A) - f(B)]_r = [A - B]_r.$$

2. Row-finite infinite matrices. Let V be a left vector space of infinite dimension over a division ring R. The ring L of linear transformations on V is isomorphic to the ring R' of row-finite matrices with elements from R. (See 5, Chap. IX.) To determine the group of motions of L it is sufficient to study the motions of R'.

DEFINITION 3. Any infinite matrix A is "row-finite" provided each row of A has only a finite number of non-zero elements.

Remark. For $A \in R'$,

$$[A]_r = (Y : Y = AX, \text{ for all } X \in R').$$

Proof. Any element of $[A]_r$ is in the form AX + nA, $X \in R'$, $n \in N$, where N is the ring of integers. R' contains an identity I; thus

$$AX + nA = AX + AnI = A(X + nI).$$

Let E_{ij} , i, j any ordinal numbers, be the matrix with 1 in the *i*th row and *j*th column and zeros elsewhere and consider any motion f which sends zero into zero. For any ordinal j

$$[E_{1j}]_r = [f(E_{1j})]_r$$

and hence $f(E_{1j})$ has non-zero elements only in the first row. Let

$$f(E_{1j}) = \begin{pmatrix} a_{j1} a_{j2} \dots a_{jn} \dots \\ O \end{pmatrix}, \quad j \text{ any ordinal,}$$

and define a matrix A such that the *j*th row of A is identical with the first row of $f(E_{1j})$. Thus

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & \dots \\ & \ddots & & \ddots & \\ & \ddots & & \ddots & \\ a_{n1} & a_{n2} & \dots & a_{nn} & \dots \\ & \ddots & & \ddots & \end{pmatrix}$$

and it is clear that $f(E_{ij}) = E_{ij}A$, *j* any ordinal. In any row of *A* there are only a finite number of non-zero elements; hence $A \in R'$.

LEMMA 1. For $f, f(E_{ij}) = E_{ij}A$, i and j being any ordinal numbers.

Proof. Let $f(E_{ij}) = (x_{ks})$. Since $f(E_{ij})$ is a right multiple of E_{ij} it is clear that $x_{ks} = 0$ for $k \neq i$. Now f is a motion; hence

$$[f(E_{ij}) - f(E_{1j})]_r = [E_{ij} - E_{1j}]_r,$$

$$[(x_{ks}) - E_{1j}A]_r = [E_{ij} - E_{1j}]_r,$$

so there exists a $T \in R'$ such that

$$(x_{ks}) - E_{1j}A = (E_{ij} - E_{1j})T.$$

In matrix $(E_{ij} - E_{1j})T$ the *i*th row is the negative of the first row; hence the same is true in $x_{ks} - E_{1j}A$. Thus

 $x_{is} = a_{js}$ for any ordinal s,

and hence

$$f(E_{ij}) = E_{ij}A.$$

COROLLARY 1. For any $\alpha \in R$,

$$f(\alpha E_{ij}) = \alpha E_{ij}A = \alpha f(E_{ij})$$
 i, j any ordinals.

ROY F. KELLER

Proof. Let $(x_{ks}) = f(\alpha E_{ij})$. Then using the same procedure as in the proof of Lemma 1 we obtain

$$x_{is} = \alpha a_{js}$$
 for any ordinal s,

and hence

$$f(\alpha E_{ij}) = \alpha E_{ij}A = \alpha f(E_{ij}).$$

Let $I_i + E_{w_1w_1} + E_{w_2w_2} + \ldots + E_{w_iw_i}$, where w_1, w_2, \ldots, w_i is any finite set of ordinal numbers. Thus, I_i is a matrix with *i* 1's arbitrarily down the diagonal and zeros elsewhere.

LEMMA 2. For
$$f, f(I_i) = I_i A$$
, with $i = 1, 2, ..., n$.

Proof. $I_1 = E_{w_1w_1}$; hence $f(I_1) = I_1A$. We complete the proof by finite induction. Suppose

$$f(I_{\iota}) = I_{\iota}A$$

and consider I_{t+1} . Let $f(I_{t+1}) = (x_{ks})$. Then

$$[f(I_{t+1}) - f(E_{w_{t+1}w_{t+1}})]_r = [I_{t+1} - E_{w_{t+1}w_{t+1}}]_r = [I_t]_r,$$

and hence there exists a $T \in R'$ such that

$$(x_{ks}) - E_{w_{t+1}w_{t+1}}A = I_{t}T.$$

Therefore

$$x_{t+1 s} = a_{w_{t+1}s}$$
, s any ordinal.

Also,

$$[f(I_{t+1}) - f(I_t)]_r = [I_{t+1} - I_t]_r = [E_{wt + 1wt + 1}]_r$$

Hence there exists a $T \in R'$ such that

$$(x_{ks}) - I_{t}A = E_{wt + 1wt + 1}T.$$

Therefore,

$$x_{ks} = a_{ks}, \qquad k = w_1, w_2, \ldots, w_t, \quad s \text{ any ordinal},$$

and with $x_{ks} = 0$ for k > t + 1 we have

$$f(I_{t+1}) = I_{t+1}A,$$

which completes the induction.

Let $\alpha_{w_1}, \alpha_{w_2}, \ldots, \alpha_{w_i}$ be a finite set of arbitrary but fixed elements of R for any finite *i*, and define

$$N_i(\alpha_{w_1}, \alpha_{w_2}, \ldots, \alpha_{w_i}) = \alpha_{w_1} E_{w_1 w_1} + \alpha_{w_2} E_{w_2 w_2} + \ldots + \alpha_{w_i} E_{w_i w_i},$$

where w_1, w_2, \ldots, w_i is any finite set of ordinal numbers.

LEMMA 3. For $f, f(N_i) = N_i A$, for $i = 1, 2, \ldots, n$, with n finite.

162

Proof. $N_1 = \alpha_1 E_{w_1 w_1}$; hence for I = 1, $f(N_i) = N_i A$. Suppose the lemma is valid for i = t, that is

$$f(N_t) = N_t A_t,$$

and let

$$f(N_{t+1}) = (x_{ks}).$$

Now, $[f(N_{t+1}) - f(N_t)]_r = [N_{t+1} - N_t]_r$, so there exists a $T \in R'$ such that $(x_{ks}) - N_t A = (N_{t+1} - N_t)T.$

Thus $x_{ks} = \alpha_k a_{ks}$, for $k = w_1, w_2, \ldots, w_t$, and s any ordinal. Also

$$[f(N_{t+1}) - f(\alpha_{w_{t+1}} E_{w_{t+1}w_{t+1}})]_r = [N_{t+1} - \alpha_{w_{t+1}} E_{w_{t+1}w_{t+1}}]_r.$$

Hence there exists a $T \in R'$ such that

$$(x_{ks}) - \alpha_{wt+1} E_{wt+1wt+1} = (N_{t})T.$$

Thus, $x_{ks} = \alpha_k a_{ks}$ for $k = w_{t+1}$ and s any ordinal. This combined with $x_{ks} = 0$ for k > t + 1 gives

$$f(N_{t+1}) = N_{t+1}A,$$

which completes the induction. Hence $f(N_i) = N_i A$ for i = 1, 2, ..., n.

Again let $\alpha_{w_1}, \alpha_{w_2}, \ldots, \alpha_{w_i}$ be an arbitrary but fixed finite set of elements of R and define for any ordinal w,

$$M_w = \alpha_{w_1} E_{ww_1} + \alpha_{w_2} E_{ww_2} + \ldots + \alpha_{w_i} E_{ww_i},$$

where w_1, w_2, \ldots, w_i is any finite set of ordinal numbers. Note that M_w has α_{w_i} in the wth row and w_i th column while N_i has α_{w_i} in the w_i th row and w_i th column. Thus, if we look at the sum of the non-zero elements (there are only a finite number) of each column of $M_w - N_i$, it is always zero. Also, the only columns with non-zero elements are w_1, w_2, \ldots, w_i .

LEMMA 4. For f, $f(M_w) = M_w A$, for any ordinal w.

Proof. Let $f(M_w) = (x_{ks})$; then

$$[(x_{ks}) - f(N_i)]_r = [M_w - N_i]_r,$$

so there exists a $T \in R'$ such that

$$(x_{ks}) - N_i A = (M_w - N_i) T.$$

But the sum of the non-zero elements of each column of $(M_w - N_i)T$ is zero; hence we have

$$x_{ks} = \sum_{j=1}^{i} \alpha_{w_j} a_{w_j s},$$
 for $k = w$, s any ordinal.

This, with the fact that $x_{ks} = 0$ for $k \neq w$, establishes that

$$f(M_w) = M_w A.$$

Let $S = (\alpha_{ij})$ be an arbitrary but fixed matrix in R', and denote by M_w the matrix whose wth row is identical with the wth row of S, the remaining rows consisting entirely of zeros.

LEMMA 5. For f, f(S) = SA.

Proof. Let $f(S) = (x_{ks})$. Since f is a motion we know that f(S) is a right multiple of S. Thus, any particular row in f(S) is obtained by multiplying the corresponding row vector of S by a row-finite matrix. Now

$$[f(S) - f(M_w)]_r = [S - M_w]_r.$$

Hence there exists a $T \in R'$ such that

$$(x_{ks}) - M_w A = (S - M_w)T.$$

The wth row of $(S - M_w)T$ has all elements zero; hence the wth row of (x_{ks}) is identical with the wth row of M_wA . Thus, the wth row of f(S) is the wth row of S times A. Since this is true for any w, it follows that f(S) = SA.

The preceding lemmas establish that for any motion f of R' which sends zero into zero there exists a matrix $A \in R'$ such that

$$f(X) = SA$$
, for all $X \in R'$,

where A is determined as indicated from $f(E_{1j})$, j = 1, 2, ... A matrix M is a unit in R' provided M has an inverse. The matrix A is unique and a unit, for assuming otherwise leads immediately to a contradiction of the fact that f is a motion. It is clear that for any unit matrix $A \in R'$, the mapping $X \to XA$ is a motion of R'.

Proof of Theorem 1. Let A, B be fixed elements of R' with A a unit, and consider the mapping F such that F(X) = XA + B, $X \in R'$. Suppose for $X, Y \in R'$ that F(X) = F(Y); then

$$XA + B = YA + B$$
 and $XA = YA$,

which implies that X = Y. Thus, F is a one-to-one mapping.

Consider any $Y \in R'$, and let $X = (Y - B)A^{-1}$; then

$$F(X) = (Y - B)A^{-1}A + B = Y.$$

Hence F maps R' onto R'.

Let X, Y be arbitrary elements of R'.

 $[F(X) - F(Y)]_r = [XA + B - (YA + B)]_r = [XA - YA]_r = [(X - Y)A]_r;$ therefore

$$[F(X) - F(Y)]_r \subset [X - Y]_r.$$

Now, let $Z \in [X - Y]_r$; that is, there exists some $T \in R'$ such that

Z = (X - Y)T. Also, $Z = (X - Y)AA^{-1}T$, which is clearly an element of $[(X - Y)A]_{\tau} = [F(X) - F(Y)]_{\tau}$; hence

$$[F(X) - F(Y)]_r \supset [X - Y]_r.$$

Therefore $[F(X) - F(Y)]_r = [X - Y]_r$ and we have established that F is a motion of R'.

Next, let F be any motion of R' and define a mapping f such that

$$f(X) = F(X) - F(0), \qquad X \in R'.$$

Clearly, f maps zero into zero, so there exists a unique unit matrix $A \in R'$ such that F(X) = XA. Hence

$$XA = F(X) - F(0)$$
 or $F(X) = XA + F(0)$.

Let B = F(0) and we have

$$F(X) = XA + B,$$

where A, B are fixed elements of R' and A is a unit.

It is worth noting that any motion of R' can be thought of as a rotation followed by a translation.

References

- A. A. Albert, Structure of algebras, American Mathematical Society Colloquium Publications, Vol. 24 (New York, 1939).
- 2. L. M. Blumenthal, Boolean geometry I, Rend. Circ. Mat. Palermo, (2), 1 (1952), 343-360.

3. David Ellis, Autometrized Boolean algebras I, Can. J. Math., 3 (1951), 87-93.

- 4. ——Geometry in abstract distance spaces, Publ. Math. Debrecen, 2 (1951), 1-25.
- 5. Nathan Jacobson, Lectures in abstract algebras II (New York, 1953).
- 6. Cyrus MacDuffee, Introduction to abstract algebra (London, 1940).
- 7. Karl Menger, Beiträge zur Gruppentheorie I, Math. Z., 33 (1931), 396-418.
- 8. Olga Taussky, Zur Metrik der Gruppen, Anz. Akad. Wiss. Wien (1930), 140-142.
- 9. J. L. Zemmer, A Boolean geometry for the integers, Amer. Math. Monthly, 67 (1960), 56-57.

University of Missouri, Columbia, Missouri