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The dynamic model for large-eddy simulation of turbulence samples information 
from the resolved velocity field in order to optimize subgrid-scale model coefficients. 
When the method is used in conjunction with the Smagorinsky eddy-viscosity model, 
and the sampling process is formulated in a spatially local fashion, the resulting 
coefficient field is highly variable and contains a significant fraction of negative Val- 
ues. Negative eddy viscosity leads to computational instability and as a result the 
model is always augmented with a stabilization mechanism. In most applications the 
model is stabilized by averaging the relevant equations over directions of statistical 
homogeneity. While this approach is effective, and is consistent with the statistical 
basis underlying the eddy-viscosity model, it is not applicable to complex-geometry 
inhomogeneous flows. Existing local formulations, intended for inhomogeneous flows, 
are most commonly stabilized by artificially constraining the coefficient to be positive. 
In this paper we introduce a new dynamic model formulation, that combines advan- 
tages of the statistical and local approaches. We propose to accumulate the required 
averages over flow pathlines rather than over directions of statistical homogeneity. 
This procedure allows the application of the dynamic model with averaging to in- 
homogeneous flows in complex geometries. We analyse direct numerical simulation 
data to document the effects of such averaging on the Smagorinsky coefficient. The 
characteristic Lagrangian time scale over which the averaging is performed is chosen 
based on measurements of the relevant Lagrangian autocorrelation functions, and on 
the requirement that the model be purely dissipative, guaranteeing numerical stability 
when coupled with the Smagorinsky model. The formulation is tested in forced and 
decaying isotropic turbulence and in fully developed and transitional channel flow. In 
homogeneous flows, the results are similar to those of the volume-averaged dynamic 
model, while in channel flow, the predictions are slightly superior to those of the 
spatially (planar) averaged dynamic model. The relationship between the model and 
vortical structures in isotropic turbulence, as well as ejection events in channel flow, 
is investigated. Computational overhead is kept small (about 10% above the CPU 
requirements of the spatially averaged dynamic model) by using an approximate 
scheme to advance the Lagrangian tracking through first-order Euler time integration 
and linear interpolation in space. 

1. Introduction 
The dynamic model (German0 et al. 1991) is a method for evaluating subgrid-scale 

(SGS) model coefficients directly from information contained in the resolved turbulent 
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velocity of a large-eddy simulation (LES). In essence, the model samples turbulent 
stresses from a band of the smallest resolved scales and then effectively extrapolates 
this information to the subgrid-scale range. The foundation for the model is the 
algebraic identity 

which relates subgrid-scale stresses computed at two different filter widths. The 
individual terms in the identity are defined as 

L I J  = - z l J >  (1-1) 

- -  A - - .  
(1.2) L - a u - - -  T -fi--- - UJ,, and z,, = i&il, -iiliiJ. 

I ]  - I J u l u l ,  

In the above expressions, 0 represents filtering at scale A ,  whereas () represents 
filtering at scale 24. t i , (x,t)  is the resolved turbulent velocity field computed in an 
LES and zlJ is the corresponding subgrid-scale stress. Zir(x, t )  and T,, are the analogous 
quantities at scale 24 and may be thought of as the velocity and subgrid-scale stress 
from a hypothetical simulation performed on a coarser mesh. The quantity L,, is the 
stress formed by turbulent motions of scale intermediate between A and 24 and is 
directly computable from the resolved velocity field, a,. 

The identity is put to use by introducing modelling approximations for z,, and 
T,, and then solving for unknown model coefficients. In most applications, the 
Smagorinsky model is used for (the deviatoric part of) z,, at scale A, 

zij = -2c;A21SISij, 

and for Tij at scale 24, 

Tij = -~c:(~A)~I$IS~~. 

(1.3~)  

(1.3b) 
- 
S, ,  and s, are the resolved rate-of-strain tensors at scale A and 24, respectively. 
Substitution of these expressions into the Germano identity, (Ll), leads to an over- 
determined system of five equations for the model coefficient c:. These five equations 
cannot be satisfied simultaneously, and as a result, it is not possible to satisfy (1.1) 
exactly within the framework of the Smagorinsky model. The error associated with 
use of the Smagorinsky model in the Germano identity is defined as 

A 
2 - -  = L,, - 2A2 C, ISIS,, - 4Cs ISIS,, . (1.4) 

This error should be minimized, and the various formulations of the dynamic model 
(beginning with the approaches of Germano et al. 1991 and Lilly 1992 - see below) 
can be interpreted as attempts to minimize the error in different ways. Ghosal et al. 
(1995) observed that cf appears inside a filtering operation and thus (1.4) is actually a 
system of integral equations. They used a variational approach to minimize the error 
in a global least-square sense. This operation leads to a single integral equation for c,' 
that is solved numerically. Ghosal et al. (1995) also showed that simpler expressions 
for ct could be derived by including various constraints in the global minimization 
procedure. For example, if c: is constrained to have no variation over homogeneous 
spatial directions, the following algebraic formula arises : 

2 - -  1 [ 

where 
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and where () denotes an average over homogeneous directions. In the original work, 
Germano et al. (1991) opted to neglect the spatial variations of c: and brought it 
outside the filter operator in (1.4). This operation reduced the integral equations to 
algebraic ones and the error was minimized locally by requiring that it be orthogonal 
to the resolved strain-rate tensor. Later Lilly (1992) showed that the equations were 
better conditioned if the error was made orthogonal to Mij ,  which corresponds to a 
least-squares minimization over the independent tensor elements. Lilly’s modification 
leads to an expression identical to (1.5), except for the absence of averaging operators. 
This expression is often referred to as the local dynamic model. 

The local dynamic model was found to predict a highly variable eddy-viscosity field 
that contained a significant fraction of negative values. The presence of negative eddy 
viscosity proved to be highly destabilizing in numerical simulations and solutions 
could not be obtained with the local model. Germano et al. (1991) circumvented this 
problem by averaging the expression for c: over homogeneous directions. (Although 
proper justification was lacking at the time, the apparently ad hoe averaging operation 
effectively lead to (1.5), which was derived later by Ghosal et al. 1995 using the 
constrained minimization procedure.) When averaged, the numerator in (1.5) was 
almost always positive, thus recovering the statistical notion of energy transfer from 
the resolved to the subgrid scales. Removal of negative eddy viscosity also rectified the 
stability problem and simulations could be run with the dynamic model. The model 
was found to give accurate results in a variety of flows where spatial averaging was 
possible. For example, Germano et al. (1991) and Piomelli (1993) obtained accurate 
results in channel flow by averaging the equations over planes parallel to the walls, 
and Akselvoll & Moin (1993) obtained similar quality in a backward-facing step flow 
by averaging over the spanwise direction. 

While the averaged formulation effectively stabilizes the model, at least one ho- 
mogeneous direction is required. This fact precludes the computation of fully inho- 
mogeneous flows. In order to circumvent this limitation, a few attempts have been 
made to formulate procedures that do not require homogeneous directions. To date, 
these general formulations have replaced the averaging operation with a constraint in 
order to stabilize the calculation. Ghosal et al. (1995) developed two general models 
that make use of the global minimization procedure. The first is stabilized by simply 
imposing the constraint that the model coefficient be non-negative. The second allows 
for negative eddy viscosity but enforces a budget for the reversed energy transfer 
through inclusion of a subgrid-scale kinetic energy equation. Piomelli & Liu (1995) 
have developed a simplified constrained model which is similar to that of Ghosal et 
al. (1995). These general models have been validated in a variety of flows and are 
applicable to complex-geometry flows under unsteady conditions. While the work of 
Ghosal et al. (1995) and Piomelli & Liu (1995) has provided local methods applicable 
to fully inhomogeneous flows, some limitations remain. The constraint c,” 2 0 is hard 
to justify on other than heuristic grounds, and the numerical solution of the integral 
equation in Ghosal’s formulation can be expensive (the approximate formulation of 
Piomelli & Liu 1995 eliminates the additional expense however). The kinetic energy 
formulation removes the conceptual problem associated with the constraint c,” 2 0, 
but only at the additional expense of two more integral and one transport equation, as 
well as new heuristic constraints for model coefficients in the kinetic energy equation. 

In this paper we develop an alternative general dynamic model that combines 
some of the best features of the local and averaged formulations. To do this, we 
enforce the Germano identity in a more average than a local sense. Partial motivation 
for our approach comes from consideration of the physical processes underlying 
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the Smagorinsky parameterization. Since the Smagorinsky model is of the eddy- 
viscosity type, it can only be justified when one considers the ensemble effect of 
the small-scale motions on much larger scales. It is not apparent that the model 
should apply on a local, instantaneous level. In support of this line of reasoning, 
evaluations of the Smagorinsky model from both direct numerical simulation (DNS) 
(e.g. Clark, Ferziger & Reynolds 1979; McMillan & Ferziger 1979; Meneveau, Lund 
& Moin 1992) and experimental (Liu, Meneveau & Katz 1994; Meneveau, 1994) data 
consistently indicate that the model predictions are quite inaccurate on a local level. 
In fact, poor local agreement has been found even when locally optimized coefficients 
are used (Lund & Novikov 1992). In light of such findings, it may be more appropriate 
to enforce the German0 identity in some average sense, instead of insisting that it 
be obeyed locally. Such a procedure can be viewed as the modern analogue of the 
statistical approach used by Lilly (1967) to evaluate the Smagorinsky coefficient based 
on a balance of the mean SGS dissipation rate in isotropic turbulence. 

In order to incorporate averaging in an inhomogeneous, complex-geometry and 
unsteady flow, we propose to accumulate the required statistics over fluid-particle 
trajectories, instead of averaging over directions of statistical homogeneity. Averaging 
over particle trajectories can be justified by considering the following points. (i) 
Fluid-particle trajectories are always well defined, Galilean-invariant objects that do 
not rely on special boundary conditions or assumptions of statistical homogeneity. (ii) 
Particle trajectories are the natural directions associated with fluid flow and possibly 
with the turbulent energy cascade. Eddies evolve along particle paths and, as reported 
by Meneveau & Lund (1994), there is evidence to suggest that the turbulence energy 
cascade is most apparent when viewed in a Lagrangian frame of reference. Thus it 
seems natural to postulate that the subgrid-scale model coefficient at a given point x 
depends on the history of the flow along the trajectory leading to x. (iii) As will be 
shown in $2, averaging increases the validity of the assumption that the same value 
of cf applies simultaneously at the two scales A and 24. 

In $3 we show that averaging along fluid trajectories leads to a pair of relaxation- 
transport equations that carry the statistics forward in time. We show further that 
these equations can be solved in an approximate fashion in a numerically efficient 
way. Several fundamental properties of the Lagrangian model are documented. In $4, 
the model is applied to a variety of test cases including forced and decaying isotropic 
turbulence, fully developed channel flow, and transitional channel flow. In each case, 
the model is shown to produce results equal or superior to those of spatially averaged 
versions of the dynamic model. At the same time, the numerical solutions to the trans- 
port equations increase the computational workload by only about 10% as compared 
with the spatially averaged approach. A summary and conclusions are given in 95. 

We end this section with a further remark on the Smagorinsky model. Although we 
have chosen to work with this model, our approach is not limited to this parameteri- 
zation. Several other models have been proposed, some of which have demonstrated 
advantages over the Smagorinsky model. For example, it is often argued that the local 
behaviour of SGS stresses is better reproduced by similarity-type models (Bardina, 
Ferziger & Reynolds 1980; Zang, Street & Koseff 1993; Liu, Meneveau & Katz 
1994, 1995). On the other hand, more refined statistical analyses support spectral 
eddy viscosity (Kraichnan 1976; Leslie & Quarini 1979; Chollet & Lesieur 1981) or 
hyperviscosity (Morris & Ferziger 1994) models, and also give support for stochastic 
backscatter models (Leith 1990; Chasnov 1991; Mason & Thomson 1994; Schumann 
1995; Carati, Ghosal & Moin 1995). Some of these alternative approaches are not suf- 
ficiently dissipative, and they are commonly used in conjunction with a Smagorinsky 
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term (mixed models). While it is not the purpose of this paper to consider alternative 
or complementary parameterizations, we remark that the Lagrangian formulation 
proposed here may be applied to such models in a straightforward manner. As a 
case in point, Wu & Squires (1995) have recently developed and tested a Lagrangian 
mixed model. 

2. Effects of time averaging on local coefficients at two scales 
In this section we use DNS data of isotropic turbulence to study the effects 

of averaging on the properties of local Smagorinsky coefficients computed at two 
different scales. In particular, we investigate the effectiveness of time averaging both 
as a means to reduce high-amplitude spatial variations in the coefficient field, and as 
a means to limit the occurrence of negative eddy-viscosity values. At the same time, 
we measure the correlation between coefficients computed at two different scales and 
quantify the increase in this correlation when either Eulerian or Lagrangian time 
averaging is used. The results of this study will provide evidence that time averaging 
enhances the stability of the dynamic model, returns the Smagorinsky model to its 
proper statistical basis, and improves the accuracy of a key assumption in the dynamic 
model derivation. 

The basic procedure is to filter the DNS data at scale A, (a multiple of the mesh 
spacing), thereby separating it into large-scale and subgrid-scale fields. With the 
subgrid-scale velocity field known, the subgrid-scale stress and dissipation rate ( Z i j S i j )  

are computed exactly. The Smagorinsky coefficient is then computed point-wise by 
requiring that the modelled SGS dissipation rate equal the exact value at each grid 
point (Lund, Ghosal & Moin 1993): 

By filtering at a scale 24, we define an analogous coefficient as 

(2.la) 

( 2 . l b )  

It should be remarked that this procedure for computing the Smagorinsky coef- 
ficient differs from that used in the dynamic model, which only makes use of the 
stresses formed by the smallest resolved scales. Here we have made use of the exact 
subgrid-scale stress (which is unknown in LES) to optimize the coefficient. 

Using this procedure, we measure C&x,t) and Cg:)(x,t) from DNS of forced 
isotropic turbulence at microscale Reynolds number, Ri = 95.8. The data were 
generated on a 1283 mesh using the pseudo-spectral code developed by Rogallo 
(1981). The filters ( A  and 24) were set equal to 4 and 8 mesh units respectively. A 
physical-space tophat filter was employed at both scales (tests were also performed 
with Gaussian and cutoff filters). In figure l(a), we show the spatial variability of 
the coefficient fields, as observed along a line through the database. Large positive 
and negative excursions can be seen. It is also apparent that the fields at the two 
scales are only loosely correlated. The correlation coefficient, as calculated over the 
entire database, is p o 0.27 (the line shown in figure 1 was selected because it has a 
similar level of correlation). The low correlation is significant since it conflicts with 
the usual assumption of the local dynamic model, where the coefficient is taken to be 
the same at the two scales. We will show below that the correlation can be improved 
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FIGURE 1. Traces of cdiss at two filtering scales measured in DNS of isotropic turbulence: (a) 
computed from an instantaneous field, (b)  com uted from an Eulerian average over a time of 

in space. This line was chosen carefully so that the statistics measured along it are very close to 
those accumulated over the entire field. 

3.4(S$rj)-'/2. Solid curve: C:,; dotted curve: Cd$ Y The traces in (a) and (b) are for the same line 

significantly by averaging the equations for the coefficients. As an aside, we note that 
the low correlation between the two coefficients in the local model may justify the 
use of two model coefficients, as was suggested by Moin (1991). 

The effect of temporal averaging was investigated by optimizing the coefficients so 
that the Eulerian average of the dissipation was predicted correctly. - -  To do this, the 
simulation was carried forward in time for a period equal to 3.5(S$ij)-1 and a total 
of 25 fields were saved at nearly equally spaced intermediate times t,, n = 1,2, ... 25 
(for more details, see Meneveau & Lund 1994). Coefficients were recomputed with 
the numerators and denominators in (2.1~)  and (2.lb) averaged in time in an Eulerian 
fashion. The averaging time scale was varied by including anywhere between 1 and 
all 25 fields. Figure l(b) shows traces of the two coefficients obtained when the terms 
in (2.1~)  and (2.1b) are time-averaged over all 25 fields. As can be seen, averaging 
has decreased the variance, has diminished the frequency of negative coefficients, and 
has increased the correlation between the two scales. 

Figure 2(a) shows a plot of the root-mean-square value of the coefficients (both 
local and time averaged), normalized by their mean value and plotted as a function 
of the averaging time. At the initial time ( t  = 0), both local and 'averaged' values 
coincide. The coefficient r.m.s. is seen to drop as the averaging time is increased. It 
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0 1 2 3 4 

FIGURE 2. (a) Root-mean-square values of the dynamic model coefficient, normalized with its mean 
value, as function of time. The coefficient is defined based on energy dissipation, and is measured 
from DNS of isotropic turbulence. - , Local model, at scale A ; - - - - , local model, at scale 
24; , Eulerian time average, at scale A ;  ..--...- , Eulerian time average, at scale 24. (b) 
Correlation coefficient between coefficients at two scales A and 24, as function of time. ...-.... , Fully 
local coefficients; - - - - , coefficients 
obtained after Lagrangian time average, with spatial interpolation. 

- , coefficients obtained after Eulerian time average; 

is also evident that a significant drop in r.m.s. is achieved by averaging over a fairly 
short interval. In particular, _ _  an averaging interval of roughly two grid-scale turnover 
times (as measured by ( S i j S i j ) - l )  is sufficient to produce more than 60% of the 
asymptotic r.m.s. drop. Averaging also reduces the frequency of negative coefficient 
values. Figure 2(b) shows the correlation between the coefficients at the two scales. 
The lower curve, corresponding to the instantaneous coefficients, fluctuates around 
p - 0.27. The correlation between the averaged coefficient fields, however, rises to a 
value close to 0.6. Again much of the change takes place in the order of two grid-scale 
turnover times. Similar increase in correlation was observed when the tophat fi'lter 
was replaced by a Gaussian. (A rise with respect to its initial value was also observed 
when using the cutoff filter, but at very low levels - from p - 

The dashed line in figure 2(b) shows the correlation when time averaging is per- 
formed along fluid-particle trajectories (Lagrangian). The method employed to follow 
fluid trajectories uses bilinear interpolation between grid points, and is the same as 
described in Meneveau & Lund (1994). The higher correlation in this case can be 

to p - 0.03.) 
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attributed to even lower r.m.s., due to the additional smoothing that occurs from 
spatial interpolations in the Lagrangian tracking scheme. 

The results presented here suggest that optimizing the Smagorinsky coefficient from 
time averaged rather than instantaneous fields has several benefits. In particular, the 
frequency of occurrence of negative values is reduced and the correlation between 
coefficients computed at two scales is increased. These factors are significant since 
a reduction in negative values enhances stability (we will later propose an averaging 
scheme that eliminates negative values altogether), while an increased correlation 
between the two scales increases the validity of an assumption in the dynamic model 
derivation. On a more physical level, time averaging adds a statistical element which 
we feel should be present in the Smagorinsky parameterization (for experimental 
evidence supporting a statistical instead of a purely local interpretation of this model, 
see Meneveau 1994). It is also important to note that averaging over a few small- 
scale turn-over times is sufficient to produce these benefits while still allowing for 
considerable spatial variation in the coefficient field (figure lb). This issue will be 
discussed in more detail in 53.5 where the relationship between flow structures and 
the coefficient field is studied. 

As a final note, we should mention that the Lagrangian model will reduce temporal 
as well as spatial fluctuations. Once again, we see this as more of a strength than a 
weakness since meaningful low-frequency variations are accounted for directly while 
high-frequency fluctuations are represented only in an average sense. 

3. The Lagrangian dynamic model 
3.1. Formulation 

The Lagrangian model is derived by minimizing the error incurred by inserting the 
Smagorinsky model in the German0 identity along fluid-particle trajectories. The 
derivation is most natural in a Lagrangian frame of reference and we start by 
considering a fluid particle located at position x at time t. Its trajectory for earlier 
times t’ < t is given by 

~ ( t ’ )  = x - l Ic[z(t”), t”]dt”. (3.1) 

(3.2) 

In terms of the Lagrangian description the error to be minimized, (1.4), is 

eij(z, t‘) = ~ i j ( z ,  t’) - c~(x ,  t ) ~ i j ( ~ ,  t’), 
where Mij is defined in (1.6). Note that we have removed c:(x,t)  from the filter 
operation, by assuming that it does not vary strongly in space over the scale of the 
test filter. A posteriori justification for this assumption is based on the fact that cf(x, t )  
is determined from averaged equations. In $3.6, we use isotropic turbulence to study 
the error associated with this assumption. 

The model coefficient to be used at time t and position x (c:(x,t))  is determined 
by minimizing the error over the trajectory of the fluid particle. In other words, we 
employ previous information along the pathline in order to determine the current 
value of the coefficient. The total error which is to be minimized is defined as the 
pathline accumulation of the local error squared, 

E = L  eij(z(t’), t’) eij(z(t’), t’) W( t  - t’) dt’ (3.3) 

The weighting function W(t  - t’) is introduced here in order to control the relative 
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importance of events near time t with those of earlier times. As described below, we 
shall weight the error at time t most strongly and assign a decreasing weight to earlier 
times. The total error is then minimized with respect to cs by enforcing 

W ( t  - t’) dt‘ = 0. 
aE 

Making use of (3.2) and solving for c:, one obtains 

2 ~ L M  c,(x, t)  = -, 
.PMM 

(3.4) 

(3.5) 

where 

YLM(X, t )  = lm LijMij(Z(t’), t’) w ( t  - t’) dt’, (3.6) 

YMM(X, t )  = MjjMj j ( z ( t ’ ) ,  t’) W ( t  - t’) dr’. (3.7) L 
The function W ( t  - t’) is a free parameter, essentially defining the extent backward 
along the pathline over which we choose to minimize the error. Although several 
appropriate weighting functions are possible, an exponential weighting of the form 
W(t  - t’) = T-le-(t-t’)/T has the distinct practical advantage that the integrals 9~~ 
and YMM are solutions to the following relaxation-transport equations : 

(3.8) 

In the context of LES, solving such transport equations is much more natural than 
having to perform integrals backwards in time according to (3.6) and (3.7). Figure 3 
illustrates the basic idea of averaging over pathlines with an exponentially decreasing 
memory. This picture should be contrasted with that of conventional schemes where 
global spatial averaging completely removes information about the flow structure, and 
the turbulence development history is completely ignored. Eulerian time averaging 
suffers from similar deficiencies, since the advection of structures is ignored. Also 
noteworthy is the partial resemblance with the k - E model; the Lagrangian dynamic 
eddy viscosity also involves the ratio of two variables, each of which is the (history- 
dependent) solution of a transport equation. 

3.2. Relaxation time scale 
The time scale T controls the memory length of the Lagrangian averaging, and 
several choices can be made. In $2 we found that averaging on the time scale of the 
smallest resolved turbulent motions was sufficient to eliminate unwanted noise and 
improve the correlation between coefficients at two different scales. In light of these 
findings, it seems appropriate to base the averaging interval on a characteristic time for 
motions near the grid scale. Some possible choices are the following: ( a )  T - IgI-], 

(f) T - d9;Z4, and (g) T - A[~LMYMM]-”’. In fully developed turbulence, all of 
these time scales are of the same order of magnitude. The first four choices are based 
on local values, which makes T is a strongly fluctuating variable. Options (e-g) are 
based on the smoother Lagrangian averages, which is preferable. 

A 9 - ’ / 4  (b )  T - IS\-’, (c) T - A(M1$41J)-’/4, ( d )  T - A(LIJM,,)-1’4, ( e )  T - MM 9 
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L.M[z(t”’), t”’] 
MtM[z(t”’), t”’] 

m 
t 

FIGURE 3. Sketch of fluid trajectory of the resolved LES velocity field. The error associated with the 
German0 identity is weighted with an exponentially decreasing function (indicated as different grey 
levels), backwards in time, to yield a current value for the model coefficient at point x and time t .  

We have chosen to use option ( g ) ,  which has the following useful properties. Since 
it depends on both YMM and YLM, the memory time is reduced in regions of high 
straining (where M2 is large), as well as in regions of large nonlinear energy transfer 
(where LijMij is large). Furthermore, if LijMij  6 0 for a persistent time along the 
pathline, then ~ L M  approaches zero. T evaluated according to (g) then tends to 00, 
i.e. the memory time increases. In other words, the current values are weighted less 
strongly relative to the past ones, if they are of the backscattering type. This is useful 
in the implementation with the Smagorinsky model where we wish to restrict the 
Smagorinsky expression for the modelling of energy dissipation only. The expressions 
for c, are weighted much less heavily when L i j M f j  < 0 in a persistent fashion, i.e. 
we opt for ‘learning’ as little as possible about the coefficient from the resolved field 
when it would predict backscatter. 

Equation (3.8) can now be written as 

(3.10) 

where 8 is a dimensionless coefficient of order unity. If Y L M  reaches zero, its 
rate of change is zero as well. Therefore, Y L ~  cannot become negative, and the 
resulting dynamic model will not suffer from numerical instability due to negative 
eddy viscosities. We point out, however, that if LijMij 6 0, the approach of 9~~ to 
zero is not exponential, but of the power-law type (as (to - t)8/7). This means that 
after the (finite) time to at which YLM = 0, the solution becomes complex. Thus, 
in practice, the solution must still be ‘clipped‘ to zero during such times. This type 
of clipping is much less drastic than previous approaches since it is only required 
occasionally, and because cf approaches zero with zero slope. 

A judicious choice for the dimensionless coefficient 8 must now be made. Intuitively, 
we must average over a few ‘events’ of the variable LijMij or MijMij along the 
pathline. The average duration of such events is expected to be of the order of 
A(  (LijMij) (MijMij))-1/8, but in order to quantify this assertion, we analyze results 

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

96
00

73
79

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112096007379


Lagrangian dynamic model 
I . O k  I , I I 1 

363 

0.8 t \  

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

td-’((Lq Mq)(Lv M,))”S 

FIGURE 4. Lagrangian and Eulerian autocorrelation functions calculated from a filtered DNS of 
forced isotropic turbulence. +, Lagrangian autocorrelations of LljMij ; , Lagrangian autocor- 
relations of M i j M L j ;  ---- , Eulerian temporal autocorrelations of L,,Mij; .-...-.. , Eulerian 
temporal autocorrelations of M,,M,]. 

from DNS of forced isotropic turbulence. The goal is to compute the Lagrangian 
autocorrelation function of the scalar variables LiiMji and MiiMij. We employ the 
same tracking method as described in $2. For comparison, we also compute their 
Eulerian fixed-point two-time autocorrelation functions. The Lagrangian tracking was 
done in the sequence of DNS velocity fields described in $2. Each field was filtered 
with a Fourier cutoff filter at a scale corresponding to 4 mesh spacings. Lagrangian 
and Eulerian autocorrelations were then computed for quantities derived from the 
filtered velocity fields. 

As expected, the Lagrangian 
autocorrelations decay at a slower rate than the Eulerian ones, but the difference is 
small due to the fact that the mean velocity of this flow is zero. Also, the decay of the 
LM and M M  terms is quite similar. After a time-delay - ~ d [ ( L j i M , ) ( M i i M i , ) ] - ’ / 8 ,  
the autocorrelation has already fallen below the l / e  point. This suggests that 
averaging over Lagrangian time spans equal to this interval is sufficient to significantly 
smooth instantaneous fluctuations. In summary, during the present work we choose 

T = 8 d (YLMSJMM)-”~; 0 = 1.5 (3.11) 

as the time scale characterizing the exponential memory with which the German0 
identity is enforced. An analysis of the sensitivity of LES to this choice of 0 will 
be performed when applying the model to a non-homogeneous flow (channel flow in 
$4.3). 

Figure 4 shows the computed autocorrelations. 

3.3. Numerical method 
In principle, the implementation of the Lagrangian dynamic model requires the 
solution of two additional transport equations ((3.8) and (3.9)) during the LES. This 
undoubtedly increases the computational cost associated with the subgrid modelling. 
However, the considerable flexibility of choice of the averaging domain suggests that 
high numerical accuracy in solving (3.8) and (3.9) may be unnecessary. Therefore, we 
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use a particularly simple formulation based on discretizing (3.8) in time as follows: 

C. Meneveau, T. S. Lund and u! H .  Cabot 

Equation (3.9) is dealt with in a similar manner. Positions x are coincident with grid 
points of the simulation. The value of YIM at the previous time step and at the 
upstream location x - iPAt can be obtained by multilinear interpolation. Finally, the 
new values at the grid points are solved for. The result is a weighted sum of the 
interpolated prior value and the current source term at the grid point: 

f!g(~) = H { E [LijMij]"+'(~) + (1 - .)Y;M(x - Z A t )  } (3.13) 

Y;~(x) = E [MijMij]"+'(~) + (1 - E ) Y ~ M ( x  - ii"At), 
and 

where 
(3.14) 

and T" = 1.5 d ( 9 ~ M Y ~ M ) - ' / s ,  
A t / T n  

1 + At /Tn '  
E s z  (3.15) 

and where H ( x )  is the ramp function ( H { x )  = x if x 2 0, and zero otherwise). The 
ramp function is introduced to clip the solution away from complex values. 

Finally, we point out that the approximate spatial interpolation between grid 
points inevitably introduces some numerical diffusion into (3.8) and (3.9). Physically, 
such diffusion acts to smooth the Y L M  and S M M  fields, and can be interpreted as an 
additional local spatial average. Although we observed no adverse effects of numerical 
diffusion, it could be reduced if necessary by the use of higher-order interpolation 
operators (although only at additional numerical cost). 

3.4. Statistical features of the model 
As a next step, the model is implemented in LES of forced isotropic turbulence on a 
323 grid, using a variant of the Rogallo (1981) code. Forcing is achieved by holding 
the Fourier amplitudes fixed within the sphere k < 2. Test filtering is achieved through 
a Fourier cutoff at twice the grid scale. 

The velocity field is initialized in the usual manner by superposing Fourier modes 
with a prescribed spectrum but random phases, and projection onto the divergence- 
free space. Additionally, the initial condition for the fields Y L ~  and ~ M ~ . I M  must be 
prescribed. For initializations corresponding to turbulent flows, we propose to set 

(3.16) 

where c;(O) = 0.162 = 0.0256 is the traditional value of the Smagorinsky constant. 
Thus at the initial time, the model involves a position-independent, prescribed coeffi- 
cient. For initializations corresponding to laminar flows, we propose to set c, = 0 in 
the above expressions. 

When the LES of forced isotropic turbulence is started, fluctuations of the La- 
grangian dynamic coefficient c, quickly build as different values of LijMij begin to 
affect the averages. Once a statistical steady state has been reached, these fluctuations 
are characterized by the probability density function of the coefficient shown by solid 
circles in figure 5. Notice the small spike at c, = 0, arising from the regions in which c, 
is clipped at zero, away from complex values (on about 5% of the points in this case). 
Initial transients leading to such a steady-state distribution are relatively short. This 
can be appreciated by observing the time development of the p.d.f.s when the 'wrong' 
initial condition is employed for c,(O). In one case, we start with c:(O) = 0.005, and in 

x M M ( x ,  0) = MijMij(x7 01, ~ L M ( x ,  0) = c:(o) MijMij(x,O), 
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FIGURE 5. Probability density functions of the coefficient cs, computed from the Lagrangian 
dynamic model in a pseudo-spectral LES of forced isotropic turbulence at Re = 00, on a 323 mesh. 
The circles represent the asymptotic p.d.f. long after initial transients have passed (obtained here 
at t = 12(T), where ( T )  = 1.5d((L1,M,,)(L,,M1,))-'/8). Evolving p.d.f.s on both sides illustrate 
how delta function p.d.f.s with the wrong initial conditions quickly reach the asymptotic statistics. 
Curves that peak to the left of the asymptotic curve correspond to c;(O) = 0.005; those peaking 

t = 0.9(T); , t = 1.9(T). For reference, the time scale associated with the resolved strain 
rate is (S,,s,)-'/' = 0.5(T). 

to the right evolve starting from cs = 0.075. - , 1 time step; ---- , t = 0 4 7 7 ;  -...-.. 

FIGURE 6. Probability density functions of numerators: : evaluated locally (Li jMi j ) ;  
, after Lagrangian averaging ( 9 L ~ ) .  These distributions are calculated from a 323-node, 

pseudo-spectral LES of forced isotropic turbulence that uses the Lagrangian dynamic Smagorinsky 
model. To increase the sample, p.d.f.s are accumulated over several independent fields. The spike at 
the origin represents a &function that integrates to 0.05. 

another case with c:(O) = 0.075. In both cases the asymptotic distribution is reached 
after times of the order of 2 ( T )  where T is the time scale defined by (3.11). We 
conclude that the proposed method of initialization is acceptable since the simulation 
'forgets' the initial state after only few grid-scale turnover times. This is comparable 
to the time it takes the simulation to build up realistic phases in the resolved velocity 
field, starting from the random-phase initial condition. 
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0'15 I 

0 5 10 15 20 25 30 

Mj Mj, ~ M M  

FIGURE 7. Probability density functions of denominators: , evaluated locally ( M i j M i j ) ;  
, after Lagrangian averaging ( X M M ) .  Details as in figure 6. 

FIGURE 8. Probability density functions of model coefficients taken from a 323 Lagrangian dynamic 
model LES of forced isotropic turbulence: - , coefficient 
from the Lagrangian model. The spike at the origin represents a &function that integrates to 0.05. 

, coefficient evaluated locally; 

To further document the effect of the Lagrangian averaging, we compute the 
probability density functions of 9 , ~  and SMM and compare them with those of the 
local values LijMij and MijMij .  Figures 6 and 7 show these results. As expected, 
the distributions become narrower after the Lagrangian averaging. By construction, 
there are no negative values of 9 ~ ~ .  In terms of denominators, the averaging is seen 
to virtually eliminate values near zero. The p.d.f. of 9MM approaches the origin with 
negligible slope while the probability of the local value of MijMij  being close to zero 
is considerable. In figure 8, we show the measured p.d.f. of the coefficient cf itself. As 
can be seen, the variance of the coefficient in the local formulation is greatly reduced 
by the Lagrangian averaging. Also, no negative values exist although a finite number 
of points (- 5 % )  exhibit cf = 0 as indicated by the small spike at the origin. 
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FIGURE 9. Visualization of high-magnitude vorticity regions in LES of isotropic forced turbulence at 
Re = x. Surfaces correspond to points at which (75 = 2.4(W2)'/'. On planes, contours of different 
variables are shown: (a)  -aLM, ( b )  .9.M~, ( c )  131 (proportional to eddy viscosity with volume-averaged 
coefficient) and (d) ( .YLM/,YMM) 1st (proportional to eddy viscosity computed from the Lagrangian 
dynamic model). 

3.5. Relationship to vortical ,flow structures 
The goal of this section is to make qualitative observations pertaining to possible 
relations between the terms X L ~ ,  YM,,  and discernible flow structures that may 
appear in the resolved velocity field during LES. 

First, we report the existence of tubular structures that characterize regions in which 
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the resolved vorticity vector has high magnitude, in our 323 LES. Figure 9 shows 
iso-surfaces of vorticity magnitude (at a threshold of IWlth = 2.4(0~)’/~). Clearly, 
‘fat worms’ exist in the solution. The existence of tubular vortical structures in LES 
has also been observed recently by Briscolini & Santangelo (1994), using a different 
subgrid model. One interesting question to be answered is whether the prediction 
of such ‘fat worms’ by LES is realistic. We recall that DNS predicts worms with 
very small diameters of about four Kolmogorov scales (Jimenez et al. 1993). Surely 
they cannot be captured by an LES at Re = co. The relevant question is whether a 
field generated by DNS and then low-pass filtered at inertial-range scales comparable 
to the LES grid size exhibits ‘fat worms’ that are comparable to those predicted by 
LES. We have performed such an operation based on the 1283 forced DNS described 
earlier and have visualized regions of high vorticity magnitude. We indeed observed 
‘fat worms’ that were of similar appearance than those of the LES (see also figure 17 
of Vincent & Meneguzzi 1991). It must be recognized that the ‘high-vorticity’ regions 
in the filtered DNS correspond to much lower vorticity magnitudes than those of the 
unfiltered fields. This is the reason why these ‘fat worms’ are not visible when analysing 
the unfiltered DNS fields. In summary, we observe elongated vortical regions in LES 
and believe that their existence is a realistic prediction by the simulation since they 
also exist in low-pass-filtered DNS fields. 

The next issue to be addressed is whether the Lagrange-averaged quantities that 
enter our dynamic model bear any relationship to such local structures. Figure 9(a) 
shows contour plots of 9 L ~  on two planes of the computational cube, selected to cut 
some of the most visible vortical structures. The field is chosen at some time long 
after the simulation has reached statistical steady state. Figure 9(b) shows a similar 
graph for Y,,. Generally, it is apparent that the contours of both YLM and Y M M  
are somewhat ‘correlated’ with the presence of worms. The contours peak in the 
neighbourhood of the worms while not much activity is seen in regions that are far 
removed from the structures. Upon closer examination, we observe that the peaks in 
9LM and .aMM are most often located near the cores of the worms but not inside 
them. Many times the maximum values occur between two closely spaced worms. 
These are expected to be regions of large straining and turbulence generation. Also, 
correlation is seen between fields Y L M  and 9 M M ,  which is instrumental in decreasing 
the variance of the predicted model coefficient. 

Clearly, a detailed understanding of the relationship between the coefficient ct  and 
local flow structures, and of their dynamical interplay and relevance, is still elusive. 
Nevertheless, we have shown that the Lagrangian averaging preserves some spatial 
locality in the model. Spatially localized events in the numerators and denominators 
used to compute the model coefficient have some relationship to local flow structures. 
The volume-averaged dynamic model would have generated a position-independent 
coefficient that is oblivious to local flow structures. To observe the effect on the 
predicted eddy viscosity, figures 9(c) and 9(d) show contour plots of the strain-rate 
magnitude 131 and of the expression (9LM/9MM)131. The former is proportional to 
the eddy viscosity predicted with a volume-averaged coefficient while the latter is 
proportional to the eddy viscosity predicted by the Lagrangian dynamic model. Both 
show peaks surrounding the worms, but the precise location of these peaks differs. 
Also, the Lagrangian dynamic eddy viscosity appears to be more concentrated near 
the structures while being lower and fluctuating less in the regions far away from the 
structures. 
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3.6. Error in extracting c: from the$ltering operation 
In $3.1 it was assumed in advance that, by virtue of the averaging process, c: 
should vary negligibly over the scale of the test filter. This assumption allowed c: 
to be extracted from the filter operation, thereby reducing the problem from an 
integral equation to an algebraic one. In this section we will (partially) justify this 
approximation a posteriori by quantifying the error introduced by neglecting the 
spatial variation of c% in the test filtering operation. 

The approximation made in (3.2) amounts to replacing c:l%IS,j with C:lSlSij in 
(L4). Although this is a poor approximation if (3.2) were solved locally, the error can 
be reduced to acceptable levels if c: is determined by some averaged version of (1.1). 
Most previous versions of the dynamic model have employed spatial averaging to 
reduce (or eliminate) the error in removing cs from the test filter operation (as noted 
before, an exception is in the work of Ghosal et al. 1995 where the spatial variation 
of c: is taken into account through the solution of an integral equation). In this work 
we rely on the Lagrangian time average to smooth the spatial variations of the model 
coefficient so that c: is approximately constant over the scale of the test filter (two 

A - 

mesh cells). 
The efficacy of our approach is 

Lagrangian averaging is performed 

averaging). We define the error, q ,  as 

and B,, = c:lsIS,,. Errors are scaled 
case. Thus 

n 

evaluated here by comparing the error when 
and when (1.4) is solved directly (i.e. with no 

the r.m.s. of the difference between Aij = C:lS(Sij 
with the r.m.s. of Aij  of the unaveraged (local) 

,-----. 

(3.17) 

where () denotes an average over the volume. q is evaluated in 12g3 and 323 LES 
of forced isotropic turbulence (to be described in more detail in $4.1). The error 
was found to be q = 1.3 for the local case (no averaging), and only q = 0.18 when 
the coefficient is obtained after Lagrangian averaging. Thus, Lagrangian averaging 
significantly reduces the magnitude of the error. Of course it also reduces the r.m.s. of 
Aj j  and B,, so that the relative error (defined by scaling with the r.m.s. of Aij obtained 
from Lagrangian averaging) decreases less dramatically. But, one still obtains smaller 
values than for the local case ( q  = 0.51 for the 12g3 simulation, and q = 0.33 for the 
323 simulation). 

In the case of isotropic turbulence, the error in removing the coefficient from the 
test filter operation could be reduced further by increasing the Lagrangian average 
time scale (increasing the parameter 8 in (3.11)). Increasing the time scale, however, 
limits the ability of the model to respond to local variations in space and time, and 
in fact was found to lead to a slight degradation in the LES results for turbulent 
channel flow (to be discussed in $4.3). Thus a compromise must be made between 
mathematical consistency and the ability of the model to reflect the local state of 
the flow. We believe that 8 = 1.5 is a good compromise and the resulting error 
is acceptable for typical LES purposes. The test cases presented in $4 support this 
conjecture and it appears that an error of the size observed here does not have an 
adverse effect on the LES results. 

It is important to note that the forgoing analysis is for a homogeneous flow where 
space and time averages converge as the sample becomes large. Thus the Lagrangian 
average is certain to reduce the spatial variability of c:. Inhomogeneous flows will 
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not necessarily behave in the same manner, however, and it is possible that stronger 
fluctuations at the scale of the test filter may be present, even after long Lagrangian 
averaging. For applications in which this issue is thought to be critical, we note 
that the errors associated with extracting ci from the test filter operation can be 
reduced to an arbitrary level if our model is reformulated in terms of the approximate 
localization model of Piomelli & Liu (1995). This would involve a straightforward 
redefinition of the numerator and denominators to be Lagrangian averaged. 

4. Applications 
In this section, we report applications of the Lagrangian dynamic model to several 

test cases. We consider forced and decaying isotropic turbulence, as well as transitional 
and fully developed channel flow. While these flows could have been treated with 
the spatially averaged dynamic model, our purpose in choosing these simple flows is 
to test the model in a controlled setting where other (less general) dynamic model 
formulations have produced good results. We will also compare a few of our 
results with spatially averaged dynamic model predictions in order to highlight some 
important differences. Tests such as these are a necessary first step before applications 
to unsteady and complex-geometry flows are attempted where many other effects 
such as numerics, etc. may influence the results and obscure the role of the subgrid 
model. A variant of the Lagrangian model has also been tested with success by Wu 
& Squires (1995) in LES of a three-dimensional boundary layer and Wang & Squires 
(1996) in particle-laden channel flow. 

4.1. Forced isotropic turbulence 
LES of forced isotropic turbulence is performed on both 323 and 1283 grids, using 
the code already described in $3.4. The simulation is run for 15000 and 6000 time 
steps on the 323 and 1283 grids, respectively. 

Figures 10(a) and 10(b) show the resulting radial energy spectra. The wavenumbers 
and energy density are normalized by the grid wavenumber and the averaged subgrid- 
scale energy dissipation ( - - (Si jqj)) .  Figure 10(b) is premultiplied by k 5 / 3 .  In these 
‘mesh-Kolmogorov units’, one expects simulations with different meshes to collapse 
at high wavenumbers, and the spectra to follow the universal power law in the 
inertial range. The dotted line in figure 10(a) shows a power law ( k / k A ) - 5 / 3 .  A slight 
decay below the power law for k/kd > 0.3 and a ‘pile-up’ very close to the cutoff 
wavenumber k d  are visible. These are known effects of physical-space eddy-viscosity 
closures, which do not have a ‘cusp’ near kA (Kraichnan, 1976). These defects appear 
not to be remedied by the dynamic model in its Lagrangian implementation. We 
have confirmed that the same is true for the traditional dynamic model by running 
the same program with the volume-averaged dynamic coefficient. 

With regard to computational cost, we find that the CPU time for the simulation 
with the Lagrangian averaging was higher by about 9% than that of the volume- 
averaged dynamic model. Most of the additional time was spent in the linear 
interpolations. Two additional scalar arrays had to be defined, for .YLM and .YMM. 
Compared to overall memory requirements, this addition was not significant. 

4.2. Decaying isotropic turbulence 
In order to test the model in an unsteady case, we perform LES of decaying isotropic 
turbulence and compare the results with the experimental data of Comte-Bellot & 
Corrsin (1971). The initial three-dimensional energy spectrum is made to match the 
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FIGURE 10. Radial energy spectra of LES using the Lagrangian dynamic Smagorinsky model at 
Re = co. Wavenumbers are scaled with the grid wavenumber while the energy density is scaled on 
the grid wavenumber as well as the mean subgrid-scale energy dissipation rate, E = -(qjSij). (a) 
Conventional spectra, (b) premultiplied spectra: -, 1283 simulation; ---- , 323 run; -.....-. , 
slope -5/3. 323 spectrum averaged over 240 independent samples taken from 15000 time steps 
(approximately 13 integral large-scale turnover times L/u', with L = 2%). The 1283 spectrum is 
based on 290 samples taken from 6000 timesteps (approximately 4 large-scale turnover times). 

experimental measurements at their earliest time. The phase of the Fourier coefficients 
is chosen to be random so that the initial velocity field has Gaussian statistics. The 
dimension of the computational box is chosen to be roughly 4 integral scales. 

Figure 11 shows the decay of the kinetic energy compared with the experimental 
results of Comte-Bellot & Corrsin (1971). The predicted initial decay appears to be a 
little slower than the experimental rate, but the overall agreement is good. Of course 
the agreement could have been improved by using a slightly larger value of c:(O) as 
initial condition - an after-the-fact adjustment that we opted to avoid. A comparison 
of the spectra at the three different times at which experimental results are available 
is shown in figure 12. The decrease in overall kinetic energy and the decrease of k at 
which the spectra peak (increasing integral scale) is clearly reproduced well. 

We conclude that the model is able to reproduce important features of this time- 
dependent flow. 
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FIGURE 11. Temporal decay of turbulent kinetic energy in isotropic turbulence: - , 323 LES 
using the Lagrangian dynamic model; 0 , filtered experimental results (Comte-Bellot & Corrsin 
1971). Uo and M are the mean fluid speed and the spacing of the turbulence-generating grid in the 
experiment. 

10-4 

L- 

kL/(2rc) 

FIGURE 12. Radial energy spectra for decaying isotropic turbulence at different times: lines: 323 
LES with the Lagrangian dynamic model; solid, dotted and dashed curves: U, t / M  = 42, 98 and 
171 respectively. Solid symbols: experimental results of Comte-Bellot & Corrsin (1971) at the same 
time. VO and M are defined in figure 11. L = 10.8M is the computational box size. 

4.3. Fully developed channel $ow 
In this section we describe the application of the Lagrangian dynamic model to a 
pseudo-spectral simulation of plane channel flow. For comparison, another LES is 
performed with the traditional implementation of the dynamic model in which the 
terms are averaged over planes parallel to the wall. The flow Reynolds number is 
selected to match the experimental data by Hussain & Reynolds (1970) to permit 
detailed comparison. 

The channel flow simulations are performed with a pseudo-spectral code (Kim, 
Moin & Moser 1987) in a numerical domain with streamwise, wall-normal, and 
spanwise dimensions of 3n x 2 x 3n/4 (in units of channel half-width d )  on a 
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48 x 65 x 64 mesh. Chebyshev polynomials are used in the wall-normal direction on 
a collocated grid; Fourier transforms are used in the homogeneous streamwise and 
spanwise directions on a uniform grid. Real-space (tophat) filtering is used for the 
dynamic test filtering procedure and is performed explicitly only in horizontal planes. 
The equivalent filter width A,, is taken to be the geometric mean of unidirectional grid 
widths (this procedure is justified for moderate grid anisotropies, as shown in Scotti, 
Meneveau & Lilly 1993). For the plane-averaged LES, averaging of the dynamic 
coefficient is performed in horizontal planes. 

The approximate Lagrangian interpolation for the horizontal directions is imple- 
mented in this code as described in 43.3. The wall-normal direction requires different 
treatment due to the stretched mesh used in that direction. The transformation 
8 = cos-'(y/d) is used to map the stretched mesh into a uniform one. The wall- 
normal advection term, v d l d y ,  is recast as vea/d6' and the interpolation is performed 
in 6' identically to the horizontal directions, but using = -v/ sin 8. The wall planes 
are treated specially with 9LM = 0 and .aMM approximated by values at the nearest 
off-wall plane. There was also the possibility that the interpolation might attempt 
to place approximated points at the previous time step beyond the walls; however, 
the explicit time-step stability restriction gives sufficiently small time steps that this 
situation is never encountered. 

A target friction Reynolds number Re, (= u,d/v, where the friction speed u, is 
the square root of the mean total wall stress, d is the channel half-width, and v is 
the molecular viscosity) of 650 was chosen, corresponding to one set of experimental 
data by Hussain & Reynolds (1970). The channel flow is started from a flow field 
at lower Reynolds number and is allowed to evolve to near statistical equilibrium, 
with Re, = 641 in the last runs. The initial conditions for 4 L M  and Y M M  are chosen 
as in the homogeneous case but with cS(0) as function of y matching the values of 
a previous plane-averaged dynamic simulation. Using the Lagrangian formulation 
proved to be more expensive than the standard plane-averaged method by roughly 
lo%, in part due to the need to perform a division at each point to compute the 
dynamic coefficient rather than at each plane. The Lagrangian method also requires 
extra mass storage of -aLM and ~ ~ Z . I M  between runs. 

The averaged statistics will be shown first, followed by a more detailed analysis of 
additional variables. 

Figure 13 shows the mean velocity profile in the half-channel, in outer units ( a )  
and wall units (6). As can be seen, at the resolution of the present LES, the plane- 
averaged model overpredicts the centreline velocity (smaller losses) for the prescribed 
pressure gradient. In the buffer layer, the velocity predicted by the Lagrangian 
model is slightly below the measured values. However the magnitude of the error 
is considerably smaller than that of the plane-averaged case, and elsewhere the 
agreement is good. Figure 14 shows the profiles of r.m.s. velocities and Reynolds 
shear stress of the resolved fields, and a comparison of the r.m.s. streamwise velocity 
with the measurements of Hussain & Reynolds (1970). In the core region (for 
y / d  > 0.2), the LES with both models fall slightly below the measured values. Closer 
to the wall, both LES overpredict urms, but the Lagrangian model does a better job 
than the plane-averaged one. 

The mean eddy viscosity predicted by both LES is shown in figure 15. It is 
computed according to 

( V t ) ( Y )  = (Cf(%Y,Z,t)  ~ ~ q l ~ \ ) ~ , ~ , t 7  (4.1) 

where the averaging is performed over (x,z) planes and time. The coefficient c,' is 
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0 0.2 0.4 0.6 0.8 1 .o 
Yld 

25 1 I 

t I 
100 10' 102 103 

Y +  
FIGURE 13. Mean velocity profiles in fully developed channel flow: .-...... , LES with the 
plane-averaged dynamic model; - , LES with the Lagrangian dynamic model; o : Experi- 
mental measurements of Hussain & Reynolds (1970). (a) Wall distance in units of the half-channel 
width d,  ( b )  in wall units. 

computed according to either the plane-averaged or the Lagrangian dynamic model. 
It can be seen that over much of the log-layer, the Lagrangian model generates a 
lower eddy viscosity than the plane-averaged dynamic model. We have checked that 
this reduction is due primarily to a decrease in the dynamic coefficient cf as opposed 
to reduced strain-rate magnitudes. Figure 15(b) shows that the reduced eddy viscosity 
in the case of the Lagrangian model results in less SGS dissipation which in turn 
is probably the cause for the increased resolved shear stress observed before. Figure 
15(b) also indicates that, on a local basis, both models contribute more than 50% of 
the total dissipation rate over much of the channel. This is significant since it indicates 
that the subgrid-scale model plays a key role in the resolved-scale turbulence energy 
budget. 

An important feature of the original dynamic model is that it exhibits the proper 
near-wall scaling for the SGS eddy viscosity when the sublayer is numerically resolved 
(German0 et al. 1991), namely v t  - ( Y + ) ~ .  As can be seen in figure 15(a), this scaling is 
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1 I 

375 

Urms 

Wrms 

0 0.2 0.4 0.6 0.8 1 .o 
Yld 

FIGURE 14. Profiles of second-order moments of the resolved velocity field: ---- , urmS from 
the plane-averaged LES; , u,,, from the Lagrangian model; o , urmS from the experimental 
measurements of Hussain & Reynolds (1970). o , Spanwise w,,, from Lagrangian LES; --...--- , 
from the plane-averaged model. n , Wall-normal u,,, from Lagrangian LES; ---- , from the 
plane-averaged model. *, Resolved shear stress (u’u’) from Lagrangian LES; , from the 
plane-averaged model. 

followed quite well by the plane-averaged case (as observed before by German0 et al. 
1991 ; Piomelli 1993). The Lagrangian model deviates slightly, producing a near-wall 
distribution that is closer to vt - ( Y + ) ~ . ~ .  We shall comment on this small discrepancy 
later in this section. For now, we simply note that the deviation in slope is rather 
small and that its manifestation is limited to an increase of the eddy viscosity in the 
viscous sublayer. The eddy viscosity is one to four orders of magnitude smaller than 
the molecular viscosity in this region, however, and it seems unlikely that differences 
at this level could have a measurable impact on the computed results. 

With the purpose of documenting the statistics of the model coefficient c: and 
its evolution away from the initial condition, we show in figure 16(a-c) probability 
density functions of c: at different times and different elevations from the wall. 
The p.d.f. at t = 0 is a delta-function at the plane-averaged value of the dynamic 
coefficient, which is used as initial condition. As can be seen, the convergence of the 
p.d.f. to the asymptotic value (circles) is nearly complete after 80 time steps. This 
duration corresponds to about v/u,’ - 25 viscous times or d/u, - 0.04 outer times. 
Figures 16(b) and 16(c) clearly show the considerable decrease of typical c: values in 
the Lagrangian model as compared to the plane-averaged model. 

The main issue left to answer is why the Lagrangian model generates such decreased 
coefficients in the log-layer. For this purpose, the average values of numerators and 
denominators are evaluated separately for both models on some sample planes as 
given in table 1. 

The largest discrepancy can be seen by comparing the denominators (Mi jMi j )  and 
(YMM)  at yf = 108. A possible reason for this discrepancy can be deduced by 
comparing ( M i j M i j )  at y+ = 12 and at y+ = 108. (Mi jMi j )  and (YMM) are several 
orders of magnitude higher in the near-wall region, as is to be expected for a variable 
based on the strain rate (to the fourth power). During ejection events, fluid particles 
that were close to the wall reach deep into the log-layer, thus convecting elevated 
values of Y h l ~  upwards. This feature can be deduced from figure 17, which shows 
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10' . ., 

(4 
I 

Y +  

FIGURE 15. (a) Ratio of plane-averaged eddy viscosity to molecular viscosity taken from the channel 
flow simulation. o , Lagrangian dynamic model; .......- , 
vt - ( Y ' ) ~  power-law. ( b )  Ratio of plane-averaged SGS dissipation rate to plane-averaged total 
(SGS + molecular) dissipation rate. - , Lagrangian; - - - - , plane-averaged dynamic model. 

, plane-averaged dynamic model; 

LES - plane-averaged 
Y+ 12 108 640 

(M,jM,) 1.030 x lo5 3.341 x lo2 7.015 
(LijMij) 9.819 x 10' 3.632 0.1102 

LES - local Lagrangian 
Y+ 12 108 641 

(9MM) 1.549 x lo5 6.090 x lo2 8.917 
( 9 ' L M )  9.464 x 10' 4.186 0.1071 

TABLE 1. Numerators and denominators in the expressions for the dynamic coefficients averaged 
over sample planes. 
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FIGURE 16. Probability density functions of dynamic model coefficient c: for different time steps, n :  
__ n =  2. ........ , n = 640; 
o , n - 5 x lo4, Different graphs are at different heights above the wall: (a) yf = 641, ( b )  y+ = 108 
and ( c )  y+ = 12. 

= 10. -_-- n =  20. ---, n = 80. --- , n = 320; 

a scatter plot of the Lagrangian denominator X M M  as function of the local vertical 
velocity. Clearly, large values of -aMM are associated with positive values of u’, which 
are indicative of ejection events. 

The net effect is that the Lagrangian model is less dissipative as far as ejection 
events are concerned. They can survive longer and feed more turbulence into the 
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1 5 t  . ‘ 

. I .  

-3  0 3 6 
V’ 

FIGURE 17. Scatter plot of ~ ~ Z . I M  versus vertical velocity v’ in LES of channel flow, using the 
Lagrangian dynamic model. 

channel flow, producing more realistic (higher) levels of Reynolds-averaged (resolved) 
eddy viscosity and losses than the plane-averaged case. 

It is likely that a similar phenomenon causes the near-wall scaling of Lagrangian 
eddy viscosity to be less steep than that of the plane-averaged model. Occasionally, 
‘sweeps’ bring log-layer material into the sublayer and effectively increase the model 
coefficient and eddy viscosity above that of the plane-averaged model. Numerical 
diffusion is also likely to play a role in reducing spatial differences in 9~~ and .aMM. 

As mentioned in $3.2, some arbitrariness is involved in selecting the time scale 
for the Lagrangian average. This time scale, T ,  is controlled by the parameter 8 in 
(3.11). An important question is whether the LES results are sensitive to changes in 
8. We have seen that Lagrangian averaging in channel flow has a considerable impact 
on the simulation due to the spatial non-homogeneity, and we may therefore expect 
some variation in the computed statistics with variations in 8. We have made an 
attempt to quantify the sensitivity to the parameter 8 by performing two additional 
channel flow simulations: one where the time scale was decreased by a factor of two 
(0 = 0.75) and another where the time scale was increased by a factor of two (8 = 3). 
(The simulation discussed previously was run with 8 = 1.5.) The results are shown 
in figures 18(a) and 18(b) where the mean velocity, r.m.s., and shear-stress profiles 
are plotted. As can be seen, there indeed is an impact of the time scale on the final 
results, more so in the mean velocity profiles than in the second-order moments. The 
differences are not particularly large however, and all three choices of the time scale 
yield results that are closer to the experimental results of Hussain & Reynolds than 
the plane-averaged case. The trends follow what is expected on intuitive grounds: as 
the time-scale becomes small, the model becomes more local and more dissipative 
(higher mean viscosity); for very large time scales, the averaging encompasses a large 
volume, including regions (too) close to the wall, which yields smaller coefficients 
and generates less SGS dissipation, leading to higher shear stresses and thus to lower 
mean velocity. In summary, we have documented the sensitivity of the simulation 
within a reasonable range of values for the free parameter 8. We have found that 
some sensitivity exists, but that it is not unreasonably large (for further discussion of 
this issue see 95). 
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FIGURE 18. Impact of Lagrangian averaging time scale on mean profiles in fully developed channel 
flow. ( a )  Mean velocity profiles: . . - - - . . -  , LES with the plane-averaged dynamic model; ---- , 
LES with the Lagrangian model, B = 0.75; - , LES with the Lagrangian model, 0 = 1.5; 

o , experimental measurements of Hussain & 
Reynolds (1970). (b)  Second-order moments of the resolved velocity field. Symbols (Lagrangian 
model with B = 1.5: , streamwise u,,,; o , spanwise wrma; A , wall-normal qmS; *, resolved 
shear stress (u'v'). ---- , Same as symbols but with 0 = 0.75; - , same as symbols but with 
6 = 3. 

, LES with the Lagrangian model, B = 3; 

4.4. Transitional channel JEow 
A known drawback of the traditional eddy viscosity closure for LES of transitional 
flows is that it is overly dissipative, possibly eliminating instabilities altogether (Pi- 
omelli & Zang 1991). The dynamic model, on the other hand, yields essentially zero 
eddy viscosity if the resolved part of the flow is not turbulent. Instabilities are thus 
allowed to grow initially in a realistic fashion, as shown in simulations of transitional 
channel flow using the dynamic model, with planar averaging (German0 et al. 1991). 
Once the nonlinear breakdown phase is reached, the SGS model must become active 
in order to prevent excessive growth of turbulent kinetic energy, wall shear stresses, 
etc. In the Lagrangian model, the variable YLM must be initialized to zero everywhere 
in the laminar region. As turbulence is generated, this variable (and therefore the 
eddy viscosity) will rise from zero. The rate at which . Y L ~  rises from zero is controlled 
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0 4  
120 160 200 240 280 

U,t/S 
FIGURE 19. Time history of wall shear stress from the transitional channel simulation: - , 
Lagrangian model LES; - - - - , plane-averaged dynamic model LES; 0 , DNS of Zang et al. 
(1990). 

in part by the memory time scale. If the memory time scale, T ,  is too long, the rise in 
eddy viscosity may occur too late in the transition process. In order to investigate this 
potential problem, we have performed an LES of transitional channel flow. In this sec- 
tion we attempt to ascertain if the Lagrangian model as proposed here (with the time 
scale given by (3.11)) is able to (i) allow for initial instabilities to grow in a realistic 
fashion, and then to (ii) sufficiently damp the turbulence at the appropriate time. 

The transition channel case is identical to that of Zang, Gilber & Kleiser (1990), 
Piomelli & Zang (1991) and German0 et al. (1991). The initial (laminar) centre- 
line Reynolds number is 8000. The initial condition consists of a parabolic mean 
flow plus a two-dimensional Tollmien-Schlichting wave of 2% amplitude and a pair 
of three-dimensional Tollmien-Schlichting waves of 0.02% amplitude. The stream- 
wise wavenumber for both the two-dimensional and three-dimensional modes is 1.0, 
whereas the spanwise wavenumber for the three-dimensional modes is k1.5. See 
Zang et al. (1990) for more details on the initial conditions. The dimensions of the 
computational domain (streamwise, wall-normal, and spanwise) are 2n: x 2 x 4n/3 (in 
units of 6). The term Y L M  is initialized to (instead of to zero) in order to allow 
the first-order Euler scheme (explicit in T")  to move ~ L M  away from zero once the 
source term LijMij becomes non-zero. 

The calculation is started on a 16 x 65 x 16 mesh. As the transition process 
proceeds, the solution is interpolated onto increasingly finer meshes. The timings 
of the remeshings are determined by monitoring the energy content in the highest 
resolved frequencies in the streamwise and spanwise directions. The remeshing 
procedure was found to introduce a complication in the Lagrangian SGS model. 
Refining the mesh while holding the test-to-grid filter ratio fixed results in different 
values of LijMij and MijMij. Because of its memory, the Lagrangian model requires 
a finite amount of time to adjust to the sudden changes in LijMii and MijMij (about 
At = 5,  or 100 time steps). In order to minimize this recovery time, the remeshing 
is performed with values of YLM and YMM rescaled so that their plane-averaged 
values are equal to those of the instantaneous Li,Mij and MijMij ,  respectively. Early 
in the transition process the SGS dissipation is minuscule and errors associated with 

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

96
00

73
79

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112096007379


Lagrangian dynamic model 381 

0 0.2 0.4 0.6 0.8 1 .o 
Y/6 

FIGURE 20. Streamwise velocity fluctuation profiles from the transitional channel flow simulation. 
Symbols: DNS of Zang et al. (1990): , t = 176; - . Lagrangian 
model LES; 

A ,  t = 200; , t = 220; 
---- , plane-averaged dynamic model LES. 
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FIGURE 21. Reynolds shear stress profiles from the transitional channel flow simulation. Symbols 
DNS of Zang et al. (1990): 0 ,  t = 176; A ,  t = 200; ___ , Lagrangian model 
LES; 

, t = 220. 
---- , plane-averaged dynamic model LES. 

remeshing probably have a negligible effect. However, the flow may be more sensitive 
to remeshing at later times when the SGS dissipation is not negligible. 

The 16 x 65 x 16 mesh is used until t = 145 (in units of initial centreline velocity 
U, and 6), when the grid is remeshed to 24 x 65 x 24. The run is then continued to 
t = 176 on both 24 x 65 x 24 and 32 x 65 x 32 meshes (with little notable difference). 
The field is then remeshed to 32 x 65 x 48. Another remeshing to 48 x 65 x 64 is 
performed at t = 200, and the simulation is then run without further remeshing to 

Figure 19 shows the time history of the wall shear stress compared with the DNS 
of Zang et al. (1990). Results from the plane-averaged dynamic model are included 
in this figure. The Lagrangian model is in good agreement with the DNS results 
up to t = 210. Then, the wall shear stress slightly overshoots around the peak after 

t = 280. 
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which it settles to a plateau, near the DNS value. The plane-averaged dynamic model 
results are similar, with the exception that the peak shear stress is underpredicted. 
Streamwise velocity fluctuations from the Lagrangian and plane-averaged models at 
times t = 176, 200, and 220 are compared with the (filtered) DNS data in figure 20. 
Overall the agreement is quite good, and at t = 176 it is excellent. At this time the 
Lagrangian and plane-averaged results are indistinguishable. Reynolds shear stresses 
are shown in figure 21. Very good agreement is obtained at t = 176, whereas some 
differences exist at t = 200 and t = 220. 

Overall these results show that the Lagrangian model is capable of simulating 
transition. The eddy viscosity does rise from zero with a delay which is small enough 
so that turbulence is sufficiently damped after the rapid growth of kinetic energy 
during transition. 

5. Summary and conclusions 
A new version of the dynamic Smagorinsky model has been developed where the 

German0 identity is averaged for some time along fluid pathlines rather than over 
directions of statistical homogeneity, as was common practice in previous applications 
of the dynamic model. The present method is not restricted to cases with homogeneous 
directions and is readily applicable to complex-geometry, unsteady flows. We have 
shown that if an exponential memory is employed, the required averages can be 
obtained by solving a pair of relaxation-transport equations. In order to allow for 
the implementation of this model with minimal computational complications, we 
have proposed discretizing the total derivatives that enter these equations using a 
first-order expression in time, coupled with linear spatial interpolation to find the 
values required at the ‘upstream’ locations. The resulting formulation (embodied in 
(3.13) and (3.14)) is very simple to implement. 

Our approach is motivated, in part, by the idea that the Smagorinsky parameteriza- 
tion is appropriate in an average rather than a local sense. Averaging used in conjunc- 
tion with the dynamic model introduces a statistical element that helps to return the 
Smagorinsky parameterization to a more solid foundation. Existing spatial averaging 
schemes are effective in this regard, but require one or more homogeneous directions. 
Averaging along particle trajectories also introduces a statistical element, but has the 
distinct advantage that it is applicable in inhomogeneous flows. Furthermore, while 
spatially averaged schemes remove all variations in the homogeneous directions, a 
Lagrangian average preserves a certain degree of locality in space. High-frequency, 
point-to-point oscillations are eliminated in the Lagrangian model, whereas statisti- 
cally significant large-scale variations in subgrid-scale activity can be captured. Tests 
in LES of isotropic turbulence showed that spatial variations present in the coefficient 
field are indeed correlated with the dominant structures in that flow (‘fat worms’). 

The effects of averaging have been investigated in DNS and LES of forced isotropic 
turbulence. A priori tests using DNS showed that averaging over a few small-scale 
turn-over times significantly reduces the coefficient scatter. For smooth filters (in 
Fourier space) such as the Gaussian and tophat, such averaging greatly increases the 
correlation between coefficients at two scales. This effect is much weaker when a sharp 
cutoff filter is used, however, and the correlation remains low even after averaging. 
Since the LES of isotropic turbulence performed here use cutoff test filtering, the 
simulations may not benefit from an increased correlation among the coefficients at 
the test and grid levels as a result of the Lagrangian average. However, the coefficient 
variance is reduced as a result of the Lagrangian average even with the cutoff filter 
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and this feature allows a numerically stable model that is able to capture large-scale 
variations in the coefficient field. 

The effect of the Lagrangian averaging on the p.d.f.s of various quantities involved 
in the model was also studied. Lagrangian averaging with a time scale that depends 
on the numerator itself was shown to produce a non-negative distribution for the 
numerator, and to eliminate the probability of vanishingly small denominators. The 
p.d.f. of the model coefficient was also observed to be non-negative and more strongly 
concentrated around its mean value. 

Applications of the Lagrangian model to LES of isotropic turbulence and fully 
developed and transitional channel flow have shown that it performs well. Compar- 
isons with the spatially averaged dynamic model indicate that the Lagrangian model 
is equally accurate in isotropic turbulence and slightly superior in channel flow. The 
increased accuracy in the latter case was attributed to a reduction of eddy viscosity in 
the buffer layer which results from tracking ejection events that transport near-wall 
information into the outer region. Good results were also obtained in transitional 
channel flow, indicating that the averaging time is short enough to allow the model 
to respond to unsteady phenomena. 

While we have presented evidence to suggest that averaging is beneficial in the 
dynamic model formulation, we recognize that generally applicable purely local 
formulations are also possible, such as those of Ghosal et al. (1995), and Piomelli & 
Liu (1995). Interestingly, both Piomelli & Liu (1995) and Ghosal et al. (1995) obtained 
slightly more accurate results with the local models than with models that average 
the equations over homogeneous directions. The fact that our model is also slightly 
more accurate than the spatially-averaged versions suggests that spatial variability 
of the coefficient field may, in general, lead to improved results. What is not clear, 
however, is how much spatial variation is required. Our results would seem to suggest 
that spatial variations at a scale of the dominant flow structures are sufficient. 

Although we have focused exclusively on the Smagorinsky model in this work, we 
reiterate that the Lagrangian averaging procedure can be used in conjunction with 
other subgrid-scale parameterizations. Alternative base models may add improved 
physical description of the subgrid-scale motions and averaging along fluid trajectories 
will add a statistical element, whenever this is deemed desirable. 

Finally, it is important to recognize that the Lagrangian dynamic model contains 
some arbitrary elements, in particular an adjustable memory time scale T .  This 
fact is unfortunate since it appears to conflict with the dynamic model philosophy 
of dispensing with adjustable parameters in favour of determining the subgrid-scale 
stress solely from information contained in the resolved velocity field. However, for 
any implementation that uses spatial averaging, there is a similar need for choosing, 
a priori, the extent of the domain over which Germano’s identity is to be enforced. 
At any rate, the sensitivity of the simulations to T was found to be acceptably small. 
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