ON POLYNOMIALS WITH CURVED MAJORANTS

D. J. NEWMAN AND T. J. RIVLIN

A well-known result of Chebyshev is that if $p_{n} \in P_{n},\left(P_{n}\right.$ is the set of polynomials of degree at most n) and

$$
\begin{equation*}
\left|p_{n}(x)\right| \leqq 1, \quad-1 \leqq x \leqq 1 \tag{1}
\end{equation*}
$$

then $a_{n}\left(p_{n}\right)$, the leading coefficient of p_{n}, satisfies

$$
\begin{equation*}
\left|a_{n}\left(p_{n}\right)\right| \leqq 2^{n-1} \tag{2}
\end{equation*}
$$

with equality holding only for $p_{n}= \pm T_{n}$, where T_{n} is the Chebyshev polynomial of degree n. (See [6, p. 57].) This is an example of an extremal problem in which the norm of a given linear operator on P_{n} is sought. Another example is A. A. Markov's result that (1) implies that

$$
\begin{equation*}
\max _{-1 \leqq x \leqq 1}\left|p_{n}^{\prime}(x)\right| \leqq n^{2} . \tag{3}
\end{equation*}
$$

There are also results for the linear functionals $p_{n}{ }^{(k)}\left(x_{0}\right), x_{0}$ real, $k=$ $1, \ldots, n-1$ ([8]).

Suppose $\varphi(x) \geqq 0$ on $[-1,1]$ and (1) is generalized to

$$
\left|p_{n}(x)\right| \leqq \varphi(x), \quad-1 \leqq x \leqq 1,
$$

as suggested by Rahman [4] (polynomials with curved majorants), what can then be said about the analogue of (3) or similar extremal problems?

Chebyshev himself established the analogue of (2) in the case that

$$
\varphi(x)=q_{m}(x)>0, q_{m} \in P_{m}, m \leqq n,
$$

a result which was generalized by A. A. Markov (see [1]) to

$$
\varphi(x)=\sqrt{q_{k}(x)}
$$

where $q_{k} \in P_{k}, q_{k}>0$ on [$-1,1$] and $k \leqq 2 n$. According to Rahman [4], Turán proposed estimation of the derivative with the assumption $\varphi(x)=\left(1-x^{2}\right)^{1 / 2}$, i.e., when the graph of $p_{n}(x)$ is contained in the closed unit disc. Important progress in Turán's program was made by Rahman [4], [5] and Pierre and Rahman [3]. We wish to present two more results concerning polynomials with curved majorants.

1. Let K_{n} denote the real polynomials, $p(x)$, of degree at most n, satisfying

$$
|p(x)| \leqq\left(1-x^{2}\right)^{1 / 2}, \quad-1 \leqq x \leqq 1
$$

We prove
Received August 12, 1981.

Theorem 1. If $p \in K_{n}, n \geqq 2$, then for $-1 \leqq x \leqq 1$

$$
\max _{p \in K_{n}}|p(x)|=\left\{\begin{array}{l}
\left(1-x^{2}\right)^{1 / 2},|x| \leqq \cos \frac{\pi}{2(n-1)} \\
\left(1-x^{2}\right)\left|U_{n-2}(x)\right|, \cos \frac{\pi}{2(n-1)}<|x| \leqq 1
\end{array}\right.
$$

where $U_{k}(x)$ is the Chebyshev polynomial of the second kind.
Theorem 1 is an immediate consequence of the following result. Let C_{n} denote the (real) polynomials of degree at most $n, P(x)$, satisfying

$$
|P(x)| \leqq\left(1-x^{2}\right)^{-1 / 2}, \quad-1<x<1 .
$$

Theorem 2. If $P \in C_{n}$ then

$$
\max _{P \in C_{n}} P(x)=\left\{\begin{array}{l}
\left(1-x^{2}\right)^{-1 / 2}, 0 \leqq x \leqq \cos \frac{\pi}{2(n+1)} \\
U_{n}(x), \cos \frac{\pi}{2(n+1)}<x \leqq 1
\end{array}\right.
$$

For if $p \in K_{n}, n \geqq 2$ then $p(x)=\left(1-x^{2}\right) P(x)$ for some $P \in C_{n-2}$. Therefore, we turn to a proof of Theorem 2.
Proof. (i) Suppose
(4) $\cos \frac{\pi}{2(n+1)}<x \leqq 1$.

Let

$$
\xi_{j}=\cos \frac{(2 j-1) \pi}{2(n+1)}, \quad j=1, \ldots,(n+1)
$$

be the zeros of $T_{n+1}(x)$, the Chebyshev polynomial (of the first kind) of degree $n+1$. The Lagrange interpolation formula for $P \in C_{n}$ gives

$$
\begin{aligned}
& P(x)=T_{n+1}(x) \sum_{j=1}^{n+1} \frac{P\left(\xi_{j}\right)}{\left(x-\xi_{j} T_{j}^{\prime}\left(\xi_{j}\right)\right.} \\
&=\frac{T_{n+1}(x)}{n+1} \sum_{j=1}^{n+1} \frac{P\left(\xi_{j}\right)(-1)^{j-1}\left(1-\xi_{j}^{2}\right)^{1 / 2}}{x-\xi_{j}} .
\end{aligned}
$$

Note that (4) implies that each of the denominators in the last sum is positive, as is $T_{n+1}(x)$. Thus, since $P \in C_{n}$ we obtain

$$
P(x) \leqq \frac{T_{n+1}(x)}{n+1} \sum_{j=1}^{n+1} \frac{1}{x-\xi_{j}}=\frac{T_{n+1}(x)}{(n+1)} \frac{T_{n+1}^{\prime}(x)}{T_{n+1}(x)} \leqq \frac{T_{n+1}^{\prime}(x)}{n+1}=U_{n}(x) .
$$

Finally, observe that $U_{n}(x) \in C_{n}$.
(ii) Suppose

$$
0 \leqq x \leqq \cos \frac{\pi}{2(n+1)}
$$

Let S_{k} denote the sine polynomials of degree at most $k, S(t)$, satisfying

$$
|S(t)| \leqq 1
$$

for all t. Note that if $P \in C_{n}$ then $(\sin t) P(\cos t)=S(t) \in S_{n+1}$. Thus, to complete the proof of the theorem it suffices to show for $k=2,3, \ldots$,

$$
\max _{S \in S_{k}} S(\theta)=1, \frac{\pi}{2 k} \leqq \theta \leqq \frac{\pi}{2}
$$

That is, we need only show that given $\theta \in[\pi /(2 k), \pi / 2]$ there exists $S \in S_{k}$ such that $S(\theta)=1$, and, indeed, it is therefore enough to show that given $\theta \in[\pi /(2 k), \pi /(2(k-1))]$ there is an $S \in S_{k}$ such that $S(\theta)=1$, for all $k>1$, since $S_{j} \subset S_{k}, j=2, \ldots, k-1$. To this end we use the following result.

Lemma. If $k>1$ and $\lambda>0$ then $T(t)=\sin k t+\lambda \sin (k-1) t$, attains its maximum modulus in $[0, \pi]$ at exactly one point which, furthermore, lies in $(\pi /(2 k), \pi / 2(k-1))$ and at which $T(t)$ is positive.

Proof. Consider the derivative

$$
T^{\prime}(t)=k \cos k t+\lambda(k-1) \cos (k-1) t
$$

It is positive at $\pi /(2 k)$ and negative at $\pi /(2(k-1))$. Similarly, a sign change occurs from $(2 j-1) \pi /(2 k)$ to $(2 j-1) \pi /(2(k-1)), j=$ $2,3, \ldots, k-1$. If $T^{\prime}(t)$ has 2 distinct zeros in $(\pi /(2 k), \pi /(2(k-1)))$ then it has 3 zeros (counting multiplicities) there and hence, at least $k+1$ zeros in $(0, \pi)$ which is impossible. Thus, we conclude that $T^{\prime}(t)$ has only one zero in $(\pi /(2 k), \pi(2(k-1)))$. This point is clearly a local maximum of $T(t)$ (the only such point in the interval), and the value of $T(t)$ at this point is bigger than its endpoint values

$$
T\left(\frac{\pi}{2 k}\right)=1+\lambda \cos \frac{\pi}{2 k}, T\left(\frac{\pi}{2(k-1)}\right)=\cos \frac{\pi}{2(k-1)}+\lambda
$$

Next observe that $T(t)$ is monotone increasing from zero to $T(\pi / 2 k)$ for $0 \leqq t \leqq \pi /(2 k)$. Also that

$$
\begin{aligned}
& T^{\prime}\left(\frac{\pi}{2(k-1)}\right)<0 \\
& T^{\prime}\left(\frac{3 \pi}{2 k}\right)<0
\end{aligned}
$$

hence, $T^{\prime}(t)$ must be negative throughout $\left.[\pi /(2 k-1)),(3 \pi) /(2 k)\right]$ for otherwise T^{\prime} has at least two zeros in that interval and at least $k+1$ zeros in $(0, \pi)$ which is impossible. Thus $T(t)$ decreases from $T(\pi /$
$(2(k-1)))$ to $T((3 \pi) /(2 k))$. We can now conclude our proof of the lemma by showing that

$$
\begin{aligned}
& |T(t)|<\max \left(T\left(\frac{\pi}{2 k}\right), T\left(\frac{\pi}{2(k-1)}\right)\right), \frac{3 \pi}{2 k} \leqq t \leqq \pi \\
& |T(t)|=\left|\operatorname{Im}\left(e^{i k t}+\lambda e^{i(k-1) t}\right)\right| \leqq\left|e^{i k t}+\lambda e^{i(k-1) t}\right| \\
& \quad=\left(1+\lambda^{2}+2 \lambda \cos t\right)^{1 / 2} \leqq\left(1+\lambda^{2}+2 \lambda \cos \frac{3 \pi}{2 k}\right)^{1 / 2}
\end{aligned}
$$

Case I. $0<\lambda \leqq 1$. We show that

$$
\left(1+\lambda^{2}+2 \lambda \cos \frac{3 \pi}{2 k}\right)^{1 / 2}<1+\lambda \cos \frac{\pi}{2 k} .
$$

Namely,

$$
\begin{aligned}
& \left(1+\lambda \cos \frac{\pi}{2 k}\right)^{2}-\left(1+\lambda^{2}+2 \lambda \cos \frac{3 \pi}{2 k}\right) \\
& \quad=\lambda\left(\sin ^{2} \frac{\pi}{2 k}\right)\left(8 \cos \frac{\pi}{2 k}-\lambda\right) \geqq \lambda\left(\sin ^{2} \frac{\pi}{2 k}\right)\left(8 \cos \frac{\pi}{4}-1\right)>0
\end{aligned}
$$

Case II. $\lambda>1$. We show that

$$
\left(1+\lambda^{2}+2 \lambda \cos \frac{3 \pi}{2 k}\right)^{1 / 2}<\lambda+\cos \frac{\pi}{k} \leqq \lambda+\cos \frac{\pi}{2(k-1)} .
$$

Namely, consider

$$
\begin{equation*}
\left(\lambda+\cos \frac{\pi}{k}\right)^{2}-\left(1+\lambda^{2}+2 \lambda \cos \frac{3 \pi}{2 k}\right)=4 \lambda \sin \frac{5}{4} \frac{\pi}{k} \sin \frac{\pi}{4 k}-\sin ^{2} \frac{\pi}{k} \tag{5}
\end{equation*}
$$

(5) is positive if $k=2$, and if $k>2$ it is greater than the positive quantity

$$
\sin \frac{\pi}{k}\left(4 \sin \frac{\pi}{4 k}-\sin \frac{\pi}{k}\right)
$$

The lemma is proved.
Now suppose $\theta \in(\pi /(2 k), \pi /(2(k-1)))$. Consider

$$
\begin{aligned}
S(t)= & \frac{(k-1) \cos (k-1) \theta \sin k t-k \cos k \theta \sin (k-1) t}{(k-1) \cos (k-1) \theta \sin k \theta-k \cos k \theta \sin (k-1) \theta} \\
= & \frac{(k-1) \cos (k-1) \theta}{(k-1) \cos (k-1) \theta \sin k \theta-k \cos k \theta \sin (k-1) \theta} \\
& \quad \times\left(\sin k t-\frac{k \cos k \theta}{(k-1) \cos (k-1) \theta} \sin (k-1) t\right) .
\end{aligned}
$$

The lemma (applied with $\lambda=(-k \cos k \theta) /((k-1) \cos (k-1) \theta)$ implies that, since $S^{\prime}(\theta)=0$,

$$
1=S(\theta)=\max _{0 \leqq t \leqq \pi}|S(t)|
$$

which establishes the theorem.
2. Schur [7, p. 285] proves a result which is easily seen to be equivalent to the following:

If $p \in P_{n}$ satisfies

$$
|p(x)| \leqq \frac{1}{|x|}, \quad 0<|x| \leqq 1
$$

then

$$
\max _{-1 \leqq x \leqq 1}|p(x)| \leqq \begin{cases}n, & n \text { odd } \\ n+1, & n \text { even }\end{cases}
$$

This suggested to us the complex result that follows.
Theorem 3. Suppose $q(z)$ is a (complex) polynomial of degree at most n which satisfies
(6) $\quad|q(z)| \leqq \frac{1}{|1-z|}, \quad|z| \leqq 1$
then
(7) $\max _{|z| \leqq 1}|q(z)| \leqq(n+1) / 2$.

Equality holds only for

$$
e^{i \alpha} \frac{1-z^{n+1}}{2(1-z)}=e^{i \alpha} q^{*}(z)
$$

α an arbitrary real number.
Proof. We begin by observing that when $n=0$ the result is obvious. Suppose henceforth that $n \geqq 1$.

$$
t(\theta)=\left|q\left(e^{i \theta}\right)\right|^{2}
$$

is a trigonometric polynomial of degree at most n satisfying, for all θ,
(8) $\quad 0 \leqq t(\theta) \leqq \frac{1}{2(1-\cos \theta)}$.

The same is true of

$$
s(\theta)=\left|q^{*}\left(e^{i \theta}\right)\right|^{2}=\frac{1}{4}\left|\frac{1-e^{i(n+1) \theta}}{1-\mathrm{e}^{i \theta}}\right|^{2}=\frac{1}{4} \frac{1-\cos (n+1) \theta}{1-\cos \theta},
$$

which, additionally, satisfies
(9) $s\left(\frac{j \pi}{n+1}\right)=\left\{\begin{array}{l}0, j=2,4, \ldots, 2 n, \\ 2\left(1-\cos -\frac{j \pi}{n+1}\right)\end{array}, j=1,3, \ldots, 2 n+1\right.$.

We consider two cases.
(i) Suppose $|\theta| \geqq \pi /(n+1)$ or

$$
\frac{|\theta|}{2} \geqq \frac{\pi}{2(n+1)}
$$

which implies that

$$
\sin \frac{|\theta|}{2}>\frac{1}{n+1}
$$

or, after squaring both sides,

$$
\frac{1-\cos \theta}{2}>\frac{1}{(n+1)^{2}},
$$

hence,

$$
\frac{1}{2(1-\cos \theta)}<\frac{(n+1)^{2}}{4}
$$

Thus, in this case,

$$
t(\theta)<\frac{(n+1)^{2}}{4},
$$

and so
(10) $\max _{|\theta| \geqq(\pi) \mid n+1}\left|q\left(e^{i \theta}\right)\right|<\frac{(n+1)}{2}$.
(ii) Suppose $|\theta|<\pi /(n+1)$. We wish to show that in this case $t(\theta) \leqq s(\theta)$. To this end we use the following.

Lemma. If a (real) trigonometric polynomial of degree at most $n, v(\theta)$, satisfies

$$
(-1)^{i} v\left(\theta_{i}\right) \geqq 0, \quad i=0, \ldots, 2 n+1
$$

where

$$
\theta_{0}<\theta_{1}<\ldots<\theta_{2 n+1}<\theta_{0}+2 \pi
$$

then $v=0$.
Proof. There is no loss in generality in assuming that $v\left(\theta_{0}\right) \neq 0$ (since if v is zero at every θ_{i} the lemma is trivial) and we do so. We now note the following:

1. If $v\left(\theta_{i}\right) \neq 0$, then $\operatorname{sgn} v\left(\theta_{i}\right)=(-1)^{i}$.
2. If $v\left(\theta_{i}\right) \neq 0, v\left(\theta_{i+1}\right)=\ldots=v\left(\theta_{i+j-1}\right)=0, v\left(\theta_{i+j}\right) \neq 0$ then v has j zeros (counting multiple zeros as many times as their multiplicities) in $\left(\theta_{i}, \theta_{i+j}\right)$. For, v has at least $j-1$ zeros in (θ_{i}, θ_{i+j}) and if j is even $v\left(\theta_{i}\right)$ and $v\left(\theta_{i+j}\right)$ are of like sign, hence, v has an even number of zeros in (θ_{i}, θ_{i+j}), so at least j of them, while if j is odd $v\left(\theta_{i}\right)$ and $v\left(\theta_{i+j}\right)$ differ in sign, hence, v has an odd number of zeros in $\left(\theta_{i}, \theta_{i+j}\right)$, so at least j zeros.

Suppose the non-zero $v\left(\theta_{i}\right)$ occur for the indices $i=n_{0}(=0), n_{1}, \ldots, n_{m}$ $(\leqq 2 n+1)$. Each interval ($\theta_{n j}, \theta_{n_{j+1}}$), $j=0, \ldots, m-1$ contains at least $n_{j+1}-n_{j}$ zeros, as we have just shown. Thus, v has

$$
\sum_{j=0}^{m-1}\left(n_{j+1}-n_{j}\right)=n_{m}
$$

zeros in $\left(\theta_{0}, \theta_{n m}\right)$. If $n_{m}=2 n+1$ then $v=0$. If $n_{m}<2 n+1$, the interval $\left(\theta_{n m}, \theta_{2 n+1}\right]$ contains the zeros $\theta_{n_{m}+1}, \ldots, \theta_{2 n+1}, 2 n+1-n_{m}$ in number, giving a total of $2 n+1$ zeros in $\left(\theta_{0}, \theta_{2 n+1}\right]$, and again $v=0$. This establishes the lemma.

We claim next that for $|\theta|<\pi /(n+1)$ we have $t(\theta) \leqq s(\theta)$. Let

$$
\theta_{j}=\frac{j \pi}{n+1}, j=1, \ldots, 2 n+1
$$

and suppose that there exists $\theta_{0},\left|\theta_{0}\right|<\pi /(n+1)$, such that

$$
\begin{equation*}
t\left(\theta_{0}\right)>s\left(\theta_{0}\right) . \tag{11}
\end{equation*}
$$

In view of (8) and (9) we also have

$$
\begin{aligned}
& t\left(\theta_{1}\right) \leqq s\left(\theta_{1}\right) \\
& t\left(\theta_{2}\right) \leqq s\left(\theta_{2}\right) \\
& \cdot \\
& \cdot \\
& \cdot \\
& t\left(\theta_{2 n+1}\right) \leqq s\left(\theta_{2 n+1}\right) .
\end{aligned}
$$

Consider $v(\theta)=t(\theta)-s(\theta)$. It satisfies the lemma, hence $t=s$, contradicting (11). This establishes our claim.

Now,

$$
s(\theta) \leqq(n+1)^{2} / 4
$$

for all θ, with equality only for $\theta=0$. Therefore,

$$
\begin{equation*}
t(\theta) \leqq \frac{(n+1)^{2}}{4},|\theta| \leqq \frac{\pi}{n+1} \tag{12}
\end{equation*}
$$

with equality possible only for $\theta=0$. Recalling the maximum principle
for analytic functions we see that (10) and (12) prove (7). Finally, if $t(0)=s(0)=(n+1)^{2} / 4$, then the lemma yields $t=s$. Thus, every zero of s is a zero of t and $q(z)=c q^{*}(z)$, which can only hold if $|c|=1$. Theorem 3 is proved.

Remark. We have also shown that, if (6) holds then

$$
\begin{equation*}
\left|q\left(e^{i \theta}\right)\right| \leqq\left|q^{*}\left(e^{i \theta}\right)\right| \tag{13}
\end{equation*}
$$

when $|\theta|<\pi /(n+1)$, or $\theta=\theta_{j}, j=1,3,5, \ldots, 2 n+1$. But (13) certainly does not hold for $\theta=\theta_{j}, j=2,4, \ldots, 2 n$. Also, a result of [2] implies that, for q subject to (6)

$$
\max |q(0)|=\left[\cos \frac{\pi}{2(n+1)}\right]^{n+1}, n \geqq 1
$$

The problem of maximizing the linear functional, $q(z),(z$ arbitrary in $|z| \leqq 1$), among q satisfying (6) seems difficult.

References

1. V. K. Dzjadyk, On a problem of Chebysher and Markov, Analysis Mathematica 3 (1977), 171-175.
2. M. Lachance, E. B. Saff and R. S. Varga, Inequalities for polynomials with a prescribed zero, Math. Z. 168 (1979), 105-116.
3. R. Pierre and Q. I. Rahman, On a problem of Turán about polynomials, Proc. Amer. Math. Soc. 56 (1976), 231-238.
4. Q. I. Rahman, On a problem of Turán about polynomials with curved majorants, Trans. Amer. Math. Soc. 163 (1972), 447-455.
5. Addendum to "On a problem of Turán about polynomials with curved majorants", Trans. Amer. Math. Soc. 168 (1972), 517-518.
6. T. J. Rivlin, The Chebyshev polynomials (John Wiley \& Sons, New York, 1974).
7. I. Schur, Über das Maximum des absoluten Betrages eines Polynoms in einem gegebenen Interval, Math. Z. 4 (1919), 271-287.
8. E. V. Voronovskaja, The functional method and its applications, Translations of Mathematical Monographs 28 (Amer. Math. Soc., Providence, 1970).

Temple University, Philadephia, Pennsylvania; Watson Research Center, IBM, Yorktown Heights, New York

