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Abstract. In this paper we prove that if the entropy of an ergodic measure preserved
by a C? surface diffeomorphism is positive then it is equal to the product of the
Hausdorff dimension of the quotient measure defined by the family of stable
manifolds and the positive Lyapunov exponent.

0. Introduction
In [6] Manning proved that for an Axiom A diffeomorphism f of a surface M, which
preserves an ergodic Borel probability measure u, its entropy h, (f) satisfies

h,(f)=8.x., (1)
where 8, is the Hausdorff dimension of the intersection of an interval of an unstable
manifold with the set of generic points of u, and x,, is the positive Lyapunov
exponent for s. The number 8, could be reinterpreted as follows: Take x € support
i, let A be the basic set supporting u, choose £ >0 small enough and put

R= U Wiy,

ye Wi (x)nA

where Wi(x) (W3.(x)) denotes the stable (unstable) manifold of size £ through x.
Obviously u(R)>0.

The family of stable manifolds { W(¥)},c w*(x)~a is @ partition of R, thus we can
define the transverse measure i, on W(x) as the quotient measure on Wi(x)n A
given by the stable manifolds, i.e. if Ac Wi(x)n A then

px(A) = ,u( UA Wi(y)>.

From Manning’s proof of (1) it follows that
8, =i1)1/f{6( Y): YecWix)nA and g, (Y)=u(R)},

where 6(Y) denotes the Hausdorff dimension of Y. So if we define the Hausdorff
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dimension of a Borel measure u on a compact metric space X as
8(p)=inf{8(Y): Ye X and u(Y)=p(X)},
then Manning’s 8, = 6(1,).

Unfortunately, the proof of (1) in [6] cannot easily be extended to the non-uniform
hyperbolic case because it relies on the invariance of the basic set A and the
continuous splitting of the tangent space. However, combining ideas of Manning
[6], Mané [5] and Young [12]}, in the setting of Pesin’s theory 8], [9], we are able
to extend (1) to any C? surface diffeomorphism preserving an ergodic measure.

THEOREM 1. Let f: M > M be a C* diffeomorphism of a surface M preserving an
ergodic Borel probability measure w with h,(f)>0. Choose 1> 1 such that the Pesin
set A, has positive measure, consider x a p-density point of A, ; and let S ;(x) denote
the family of stable manifolds through a neighbourhood of x. Let V be a transverse
submanifold to S;(x) and let i1y be the transverse measure on V defined on V S;(x)
by S;(x). Then

h(f)=8(ghv)x.,
where x, is the positive Lyapunov exponent for p.

CoROLLARY 1. If iy is absolutely continuous with respect to the Riemannian measure
on V then h,(f)=x,..

Let us recall that a point x € M is said to be generic for p if for every continuous
function ¥V: M >R

. T V(G- I ¥ dy.

CorOLLARY 2. If G, denotes the set of generic points for u, then

8(G.)=1+h, () X,

The proof of the above corollary follows from the fact, see §1I of this paper, that
for any 0 < 6 <1 the family of local stable manifolds is 8-Holder continuous. This
also implies that for any submanifold V transverse to S;(x) the dimension 8(uy)
is constant; let us call this number §(w*). Similarly define §(u") for the family of
local unstable manifolds U’ (x).

COROLLARY 3. 8(u)=8(u")+8(un").

This corollary follows from [12].

The proof of theorem 1 relies on the definition and properties of the family of
local stable manifolds S;(x), which we summarize in §11. Also we shall need Bowen’s
definition of entropy for non-compact sets [1] and local approaches to entropy [5]
and Hausdoft dimension [12].

The results presented in this paper are basically contained in the author’s Ph.D.
thesis [7] written under the supervision of Dr. Anthony Manning, whom we thank
for his guidance.
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1. Entropy and dimension
We recall from [1] Bowen’s definition of a topological entropy for a possibly
non-compact subset Y of a compact metric space X and a continuous map f: X > X.
Let & be a finite open cover of X and write E < ¢ if E is contained in some
member of . Write ny(E) or simply n( E) for the largest non-negative integer such
that f*E < o for 0= k<n(E). *
Let Y < X, possitdy non-compact. If €={E,, E,,...} has union containing Y,
set for A >0

Du(8,0)= T, exp (~Ang(E).
Define H,, by

Hﬂ,,\(Y)=lirr(1)inf{@ﬂ($, A):€={E,E,..},3 JE>Y
e~ i=1

and exp—ny(E;)<e for each i},

and then
hyo(f, Y)=inf{A: Hy,(Y) =0},
and
h(f, Y)=supy  hy(f Y).

Its connection with the measure theoretic entropy, see [2] for definition, is made
clear by the following proposition.

ProposiTION 1.1 [1]. If f: X - X is a continuous map of a compact metric space X,
preserving an ergodic Borel probability measure u, then

h(f)=inf{h(f, Y): Y= X and u(Y)=1}.

LEMMA 1.2. Let {s4,}5-1 be a collection of finite open covers of M, with diam «, -0,
and {A,}n-, a collection of sets of positive measure, then

h/.l.(f) = Sl:p h&{,,(Amf)'

Proof. It is easy to verify that for any finite open cover &« and any set Y < M,

ha(Y, f)=ha(fY, f) and
m( 0 £Y.) =50 haHY, 1) = Vo).

For each n=1 let B, =Uf=0 f"A,,, then by ergodicity each B, has measure 1, and
so does B=(")._, B,. Then for each n=1,

h&l,,(BLf)Shd,.(Bn’f):hsl,,(Amf)'
Since diam &f, >0, as n >0
h(Baf) =Su"p hd,,(Baf)SSI:p h&i,,(Amf)a

and by proposition 1.1 h,(f) =< h(B, f) from which the lemma follows. O
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Now suppose ¢: X >R™ is a function, for xe X and n=0 define
B(x, ¢, n)={ye X|d(f'x, fx)<¢(fx) 0<i<n}.

ProrosITION 1.3 [5]). Let f: M > M be a continuous map of a compact manifold M,
preserving an ergodic Borel probability measure u. Let Y < M be of positive measure
and denote by .y the conditional measure on Y, then

1
lim sup—;log wy(B(x, ¢, n)) =< h,(f),

n->oco

for almost every x € Y and every yy: M > (0, 1) such that log ¢ is u-integrable.

The Hausdorff dimension 5(Y) of Y < X, a compact metric space, is defined as
follows: Let

m(Y) =]in(1) inf{ Y (diam E))*: | J E;>Y and diam E,<e¢ for all i};
£ i=1 i=1

define
8(Y)=inf{A: m(Y)=0}.

The next proposition is the dimensional analogue to proposition 1.2.

PROPOSITION 1.4 [12). Let u be a Borel probability measure on R" and A=R" be
measurable and of positive measure. Suppose that for every x € A

1 B _
lim sup og u( (x,p))gs’
p=0 log p

then 8(A)=< 6.

I1. Lyapunov exponents and Pesin’s theory

Let f: M > M be a C? diffeomorphism of a surface M, preserving an ergodic Borel
probability measure p. For xe M and ve T, M, the tangent space at x, define the
Lyapunov exponent of f at (x, v) to be the number

) 1
x(x, v)=lim sup - log || D f"v]].

For each x € M the restriction of y to T, M takes at most two values y_{x) =< y.(x).
The exponents are f-invariant, i.e. y.(x) = x.(fx), and by the Multiplicative Ergodic
Theorem [11] for p-almost every xe M TM=ES®EY and if ve E{",
lim, .o (1/n) log | D.f™v|| = x=(x) exists. The Subadditive Ergodic Theorem [4]
allows us to study the growth rate of | D,f"||, and for u-almost every xe M

1 .
lim —log [| Dof™|| = x+(x)-

The proofs of the facts and theorems mentioned below are due to Pesin [8], [9],
many of them also appear in [3].

Since u is ergodic the exponents are constant almost everywhere, so let x,, = x-(x)
and x}, = x+(x). Let x =min {—x}, x.} >0 and /> 1; denote by A, the set of points
x € M with the following properties: there exists a decomposition TM = E.®@ E
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such that for every n€Z*, meZ we have
for ve DfMES.:

Dy f"v] =1 exp—ny exp (x107(n+|m))] o],

)

| Dy f~"0l| = 17" exp nx exp (=x 107 (n+|m|))||v
for ve DfTE}:

| Dprf"vll = 17" exp nx exp (—x 107 (n+[m|)){v],
| Dyrf~ o] = I exp—nyx exp (—x 107> (n+|m|))| v];
and for the angle y(x) between the subspaces E; and E}:
y(f"x)=1"exp —x107%|m|.
Write A, =U,>, A,; and if 8(x) is a positive measurable function on A, write
B*(8(x))={ve E*™: |v]| < &(x)},
B(8(x)) = B*(8(x)) x B*(8(x)),
and
U(x, 8(x)) =exp, B(6(x)).

STABLE MANIFOLD THEOREM (S.M.T.) [8]. There exist measurable functions 8(x)
and K(x), xe A,, and a family of maps ¢(x): B°(8(x))~> B*(8(x)) of class C'
depending measurably on x € A satisfying the following conditions:

(1) The set W*(x)={expx (v, ¢(x)v): ve B*(8(x))} is a C' submanifold.

(2) xe W¥(x) and T,W*(x)=E3.

(3) Forye W'(x), neZ™ and 0< ' < y we have

d(f"x, f"y)= K(x)exp —x'nd(x, y).

The submanifold W*(x) is called the local stable manifold through x. If we apply
the theorem to f ' we get W*(x) the local unstable manifold through x.

ProrosiTION 2.1. (1) The sets A, are closed.
(2) The subspaces E;, E} depend on x continuously on A,
(3) m(a)=1.
(4) K;=supyca,, K(x)<o0.
(5) 8, 1=inf,c4 ,6(x)>0.

For x € A, the collection of local stable manifolds passing through U(x, §,,/8) N A, ,
is called the family of local stable manifolds S'(x). Choose g, 0<q=§,,/8 and put

Agx)= U W (y)n U(x, q)

veA,inU(x,q)

Let V' and V? be two C' submanifolds transversal to the family S;(x). There exist
open sets V'< V' and V2c V2 for which the Poincaré map

piA(x) N Vis Ay(x)m V2,

defined by p(y)= Vi W3(w), for we U(x,q)nA,,; and {y}= VA Wi(w), is a
homeomorphism. We say that the family of local stable manifolds S;(x) is 8-Holder
continuous, for 0< 9 <1, if each Poincaré map between any two C' transverse
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submanifolds is 8-Holder continuous with constant depending continuously on the
C' distance between the two submanifolds.

THEOREM 2.2 [8]. For any 0< 8 <1 the family of local stable manifolds is 6-Hdolder
continuous.

For the proof of the above theorem we refer to Pesin’s proof of the absolute continuity
of the family of local stable manifolds.

II1. Proof of theorem 1.
Since h,(f)=h,(f~') by Ruelle’s inequality [10] h,(f)=<min {-x,, x.}, therefore
by hypothesis y > 0.

Choose I> 1 such that A, ; has positive u measure, let x € M be a u-density point
of A, and consider the family of local stable manifolds S;(x). Let V= W*(x) be
the C' submanifold transversal to S;(x).

From Pesin [9] there exists h = h(I) > 0 such that for all ye A ,(x), D(z(y), h)<
W*(y), where {z(y)} = W(y) n V and D(z(y), h) is a 1-disk of radius h centred at
z(y). For 0<gq<h put

R,= U D(z(y), 9.

yeA(x)

Since x is a density point of A, ;, u(R,)>0 and
h(f, E)Ofqu) =h(f,R,),  h.(f)=h(f Ry).
Let G, denote the of generic points of x and for £ >0, r>0 and n>0 set

=€

1 m-1
'S tog (D1 + 1)~ [ 0g (ID.111+ 1

Gun= {ye M
for every m = n}.

Let V,,={z(y)e G..lye A (x)} and V, =\, V... If U, ={U} is a cover of V,,
by sets U contained in V, ,, write %%, ={U%} where
Us= U D(z(y),9).
2(y)eU
veAy(x)
Now let o be a finite open cover of M and let L be a Lebesgue number for «;
furthermore choose & such that || D.f|| does not change more than r>0 in each
element of «. Choose q such that 8K,q < L.
Suppose y,, y,€ U¥, then by the Mean Value Theorem, the S.M.T. and proposi-
tion 2.1 there exists K;> 0 such that for k>0

k-1
d(ka’l,ka2)52Klq exp —kx+d(z(y,), z(y2)) [l (”Df]z(y|)f“+r)’
j=0

if d(f*"'2(p), f*'2(y)) < L/2.
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It is clear that if 'W*(y) exists and y is generic then so is any ze€ W?*(y); therefore
since 2K,q < L/4 and for U} e U}, diam /"' U¥ < L/2, we have

diam f*U* < diam U exp ('[ log (I]sz||+rd,u.+2s)k+L/4,

so if A%, is fine enough
Zexp _n.ﬂ(U*)<J’ log (| D.f ||+ r) du +2€)(5(V,L)+8)

=¥ (L/2)*"W** diam U®"W*e,
and therefore

ho(f, Ry G, ,)=8(V,) I log (|| D.f]| +r) du.

Since o, r, ¢ and n were arbitrarily chosen then by lemma 1.2

h.(f)=8(V,) J log | D.f]| du.

Applying the above procedure to f” it follows that

h.(f")=8(V,) J log | D.f"| dp,

and by the Subadditive Ergodic Theorem [4] we obtain that

h(f)=8(V.)xp. (2)
Note that we could have replaced R, by any set of stable manifolds contained in
Si(x) of positive measure.

In the rest of the proof of theorem 1 we shall follow very closely Mafé’s proof
of Pesin’s formula [5]. -

Fix >0 so small that u (A, ;) > Wa. By Egorov’s theorem there exists a compact
set A' < A,, with u(A')=1-a, such that T,M = E@® E varies continuously on A'
and for some N >0, if g=f", the inequalities

[ D<g"v]| = exp nN(x,.— )| o],
IDg 0| =<1,
hold for all xe A', n=0 and ve E¥. Observe that the Ergodic Theorem implies that
,u,({xllim In#{0=j<n|g'(x)g Al}Sx/;}) =1-Ve.
Then, applying Egorov’s theorem once more, there exists a compact set Alc A
with #(A2)=1-2Va and N,> 0 such that
#{0=<j<n|g/(x)2A"}=2nVa,
for all xe A’. Now let A>=A’nA,,; clearly u(A®) = u(A ) - 2Ja>0.

Let us choose x € M such that x is a u-density point for A’>. We define a measure

v, on Wi (x) as follows: if Ac Wi (x)n U(x, h/2), then
i) =n(( U W) n U 2)n8?) [uUis b2 ),

z(y)e A

where z(y) e Wi, (y) n Wi (x) and ye U(x, h/2)n A, ;.
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Let us denote by v the u-conditional measure on U(x, h/2) n A® and let
B(y, ¢, n)={we M|d(g'(w),g'(y))=¢'(g(y)) for0=<i<n),
where y: M - (0, 1) is a function. Then since f is ergodic it follows that for almost
every ye U(x, h/2)n A°,

1
lim sup ——log »(B(y, ¢, n)) =< h,(g),

n-oc n

provided that log ¢ is u-integrable. Now we are going to define the ¢ to be used
in this proof. For this we need some lemmas from [5].

If E=E®E, is a normed space, we say that Gc E is an (E,, E,)-graph
if there exists an open subset U< E, and a C' map ¢:U-E, satisfying
G ={(¢(v), v): ve U}. The number

SuP{H¢(Ul)_d’(vz)”/“’)l_vzmvl, ve U}

is called the dispersion of G.

LEMMA 3.1 [8). For all ¢>0 there exists £€>0 such that if ye A' and for m>0,
g™ (y)e A, then if Wis a C' submanifold of M such that exp,'Wis an (E;, E})-
graph with dispersion <c and W< B(x, &), then expgr,,8"W is a
(D,g"EY, D g"E})-graph with dispersion <c.

Remark 3.2. For each ye A, ,, Wi.(y) can be lifted through the exponential map
.as an (E;}, E})-graph. Furthermore, as in remark 2.3.1 of [9], for any small ¢>0
we can find 8 > 0 such that if ze B(y, 8)n A, ;, then Wi, (z) N B(y, 8) can be lifted
through the exponential map as an (E}, E})-graph with dispersion =c.

LeEMMA 3.3 [5], [8]. For @ >0 there exist a>0 and ¢>0 such that if ye A', ze M
and d(z, y) < a, then for any C' submanifold of M such that ze W and exp,'W is
an (E;, E})-graph with dispersion <c we have

log | D.g|T,W| —log| D,g|Ey||| < c.

Choose ¢, a, £ and § by the above lemmas and remark 3.2. Let

( {0 ifyg Al
r =
Y the smallest integer k > 0 such that g*(y) € A, if ye Ay,
define ¢: M > (0, 1) by

¥(y)=min {a, 8 £, exp (N (x5 +2a))”""/V2}.

Since | r(y) du <1, then log ¢ is p-integrable. For small p>0 define n(p) to be
the smallest positive integer satisfying

pexp{n(p)[N(xi—a)-a-4NCVal}=1,

where C = max {sup, . log | D,f]l, sup,cm log | D,f"||}. It is obvious that for small
P, 2"(P)‘/a > NO'
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The proof of the following lemma is essentially borrowed from [5] and [12].

LEMMA 3.4. For sufficiently small p>0 and any y, we A>n U(x, h) such that
we B(y, ¢, n(p)), then

Wik(w) n B(y, ¥, n(p)) = B(z(w), p) N Wio(z(w)),
where z(w) e WiL(w)n Wi (y).
Proof. For any ye A~ U(x, h) let {ng, n,,...}={n=0:g"(y)e A'}, assume that
Ne<n <+ -<m<n(p)<ney <:--.Let us write W*(w, ¢, n(p)) for Wi, (w)n
B(y, ¢, n(p)), for any we B(y, ¥, n(p)) NA A U(x, h/2). So for small p>0 then
n. = N,, since 2n(p)\/a > N, and y € A%. Denote {0=< n; < n} by S,. Thus if n,€ S,,,
by lemma 3.1, g™(W*(w, ¢, n(p)) can be lifted as an (Egn,), Egm(,))-graph with
dispersion =c¢ (since from the definition of ¢, g"-W" (w, ¢, n(p))c
B(g"-i(y), &" ") for all 0=j<i). And by lemma 3.3 if n;€ S,,,

llog|| Dgnicy8| Tyricn8™ W (w, i, n(p))|| —1og|| Dgriy 8l E il | < e,
forany z'€ W"(w, ¢, n(p)), also by the definition of 4. Therefore, since W*(w, n(p))

is one-dimensional
log|| D.g™| T, W*(w, ¢, n(p))||

n, —1

;0 logl]Dg-(,:)glTgn(,)g‘W“(w, ¥, n(p))|

Il

= ) z loglngi(z’)g|Tgi(z')giwu(w: ‘l’: "(P))” _(nk_ # Sn;()NC
= ZS 10g|| Dg'(1)&|E gicy |l —an — (m — # S, )NC

n —lk
=

k
;1 log ||Dg'(y)g|E;i(y)|| —an—~2(m — # S"k)NC

=log || D,g™|E}| — an —4n NCVa
=mN(x,—a)—an, —4nkNC«/a

=m(N{(x:—a)—a—4NCa).
Thus

| D.g™ | T W (w, #, n(p))]| = exp m(N(x;:— a) —a —4NCYa) ()
for any z'e W*(w, ¢, n(p)).

Now let dj(-,-) denote the restriction of the Riemannian metric to
g'W*(w, ¢, n(p)). Since g™W*(w, ¢, n(p)) can be lifted as an (Ejn,), Egm)-
graph with dispersion <¢, and c¢ is small, it follows that 4, (-, -)S\/E (-, ).
Obviously d(-,-)=dy(-,-).

By the Mean Value Theorem if w'e W*(w, ¢, n(p)), then

d, (g"(w'), g™ (z(w))) = || D, g"| T, W*(w, ¢, n(p))|do(w', z2(w)),

for some z'¢ W*(w, i, n{p)). Therefore, by (*) and the definition of n(p),
dl, (g™ (w), g™(z(w)) = exp m(N(x} — @) — a —4NCVa)di(w', 2(w))

=exp (—n(p)+ m)(N(x}:—a)—a—-4NCVa)

x(do(w', z(w))/ p).
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Now since r(g™(y))= nx_, — n, and
d(g"(w'), g™ (z(w))) = ¢(g"™(y))
=exp (—me + m)(N(x\ —a)—a —4NCYa)/V2,

it follows that d(w’, z(w)) < p and the lemma is proved. O

Continuing with the main argument, let us note that the last lemma implies that

v(B(y, ¢, n(p)) = V( U W*(w, ¥, n(p))

we B(y,d,n(p))A’

= V( U B(z(w), p) » Wluoc(w)>-

we B(y,4,n(p))nA°

z(y) B(y, ¢, n(p))

Wite(x)

The ¢-Holder property of S, ,(x) implies that the projection along S,,(x) of
UneBonionant B(z(W), p) n Wit (w) is contained in B(z(y), Kp®)n Wi (x),
when z(y)e Wi .(x)n Wi,.(y). Thus, by the definition of 7,
v(B(y, ¥, n(p)) = 5,.(B(z(y), Kp°).
Therefore
1

n(p)

and by propositions 1.3 and 1.4 it follows that
h(f)=6(5)(x:—a—a)N—-4CVa)e.

Now observe that A’=A*(a) and 7, =7 (a), and as a >0 we have u{A*a))~>
w(A, ;) and 8(7 (a)) - 8(am,), whence it follows, since 0< 6 <1 is arbitrary, that

h ()= 8(fx)x- a

log #.(B(z(y)), Kp°))
log p

log »(B(y, ¢, n(p) = (N(x: - a)—a —4CNa)
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