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ABSTRACT. A geocentric relativistic reference frame is established 
which is close to the conventional non-relativistic equatorial frame of 
reference. Within post-Newtonian approximation the worldline of the 
geocentre is used to connect points by spacelike geodesies on the equal 
proper time hypersurface and to establish a properly chosen tetrad 
reference frame. Points on the earth surface and near the earth-space 
are coordinated making use of the Frobenius matrix of integrating 
factors which connects the geocentric orthonormal tetrad with the 
tangent spacetime of relativistic pseudo-Riemann geometry. The gravity 
field of the earth and its relative velocity with respect to the solar 
system barycentre cause coordinate effects of the order of 10 cm for 
topocentric point positioning. 

1. GEODETIC SPACETIME POSITIONING IN NEWTON APPROXIMATION 

The observer's proper reference frame with respect to Newton gravitation, 
also referred to as the topocentric frame of reference, is defined by 
the orthonormal triad 

y 
c Q := - ("vertical") ~3 : = " M 

y -y /v co 
c o : = - £ f̂ T ("east") 

c1 : = c 2 ~ c 3 ' ("south") 

1(1) 
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270 M. FUJIMOTO AND E. GRAFAREND 

where y denotes the topocentric gravity vector, od the terrestrial 
rotation vector and ||»]|, " A " , respectively, indicates the norm of a 
vector, the vector product of the two vectors, respectively. To the 
triplet { c ^ c ^ j C ^ } we also refer to as the moving triad or "repere 
mobil" accor3mg to E. Cartan. Figure 1.1 illustrates the movement of 
the topocentric triad with respect to the geocentric proper reference 
frame, the equatorial orthonormal triad {^^^e^^^} defined by 

S3 

:i 

w 
Ilwl 
ijj /s W 

1(2) 

where denotes the instantaneous ecliptic normal vector. For more 
details we refer to E. Grafarend (1979). 

Figure 1 .1 : Movement of the topocentric triad relative to the geocentric 
triad 

Two points in infinitesimal neighbourhood are connected by the 
infinitesimal displacement vector dx on the earth surface, a twodimen-
sional Riemann space V^. The displacement vector dx has to be represen­
ted in the two orthonormal triads {c^yC^t^, {e^'e^je^}, respectively, 
namely by 

1st representation (non-holonomic basis) 

/\ /V ^ /N 

dx = 3y 1 c~ + fly2 c£ + 3y 3 c^ = O ) 1 cC = Wc 1 (3) 
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2nd representation (holonomic basis) 

dx = dx e + dx e 0 + dx e~ = d x 1 e. = dx e . 1(4) 

{ay , dy , ay } ={(a) , U) , 0) } indicates the imperfect differentials or 
differential 1-form. (3 ^lanck notation). Note that the exterior 
differential dw =(= 0. {dx , dx 2, dx^} denotes the perfect differentials 
in the coordinate base {e , e 9 , e~} . 

dual . 
dx = u) F e = F c 1 (5) 
- - |F|+0 " 

The vector 0)_ of differential forms and the vector dx of coordinate 
differentials is related by the 3x3 Frobenius matrix of integrating 
factors. (C.F. GauB uses for a 2x2 matrix of integrating factors the 
elements {a,b,c,d}; C.W. Misner et al (1973 p. 1087) call the corres­
ponding 4x4 matrix of integrating factors A; A. Einstein conventionally 
writes n

a a « ) It is wellknown that (e_, £ or dx, are related by the 
Frobenius matrix of rotational type 

F = R(A,$,0) = R 3(0) R 2(J - $)R 3(A) , 1(6) 

where A,$ denote astronomical longitude, astronomical latitude, R^(A) 
the 3x3 rotation matrix around the 3-axis etc. 

2. GEODETIC SPACETIME POSITIONING IN POST-NEWTON APPROXIMATION 

In general relativity the spacetime geometry is the fourdimensional 
pseudo-Riemann space which can be embedded into a tendimensional 
Euclid space E10. For more details we refer to D. Kramer et al (1980 
p. 354). Terrestrial mass points form a worldline tube. Along the 
worldline of the geocentre - for the notion of the mass centre we refer 
to C M . Will (1981) - we introduce the 4-velocity vector 

dx 
3 - d T • 2 ( 1 ) 

where T denotes proper time. Orthogonal to the tangent vector of the 
geocentre 1s worldline the space is filled by spacelike geodesies. Again 
the fourdimensional displacement vector dx has to be represented in two 
tetrads { C Q , C J , c 2 , c 3 K ^§o»§1 ,§2 ,§3^ 9 respectively, namely by 

1st representation (non-holonomic basis) 
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dx = 3y eg + ... + ay 3 c- = a y
a c- = w £ 2(2) 

2nd representation (holonomic basis) 

dx = dx° g Q + ... + d x 3 g 3 = dx*1 = dx g 2(3) 

/\ /V /\ /\ /N /S. /\ 

0 1 2 3 0 1 2 3 {Hy , 3y , 3y , 3y } = {oo , oo , oo , oo } indicates the imperfect 
differentials or differential 1-forms with respect to the orthonormal 
geocentre 's proper reference frame. (3 Planck notation). Note that the 
exterior differential cko ̂  0. {dx , dx^, dx , dx-*} denotes the perfect 
differentials in the Gauss coordinate base 

Figure 2.1; T V 4 c | E 1 0 

While we can materialize an orthonormal geocentre fs proper refe­
rence frame easily, we are left with the problem to construct the 
coordinate bases g 

dual 
dx = oo F ^ g = F c 2(5) 
- ~ |F| + 0 -

The vector oj of differential forms and the vector dx of coordinate 
differentials is related by the 4x4 Frobenius matrix of integrating 
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factors. (C.W. Misner et al (1973 p. 1087) call the 4x4 matrix of 
integrating factors A - A a g ) . In general, the matrix F accounts for 
the Lorentz boost (pure Lorentz) and the gauge adjustment (post-Galilei 
transformation). A standard procedure of group theory suggests to de­
compose the Frobenius matrix into stretch (symmetric matrix) and 
rotation (orthogonal matrix) , a result known as the -polar decomposition 
theorem: 

F = S^R 2(6) 

Sp denotes the 4x4 left stretch matrix (symmetric matrix) and the 4x4 
rotation matrix (orthogonal matrix). Obviously here we have to find 
the 4x4 Frobenius matrix F ~ F^g! The various connections will be a 
first-hand aid: 

Y 8 dg = r g versus dc~ = c£ 2(7) 

or 

dg = T g versus dc = ti £ 2(8) 
4x4 4x4 

The orthonormal frame £ allows a connection of rotational type, namely 

ti = dR R* = - ti* , (antisymmetry) 2(9) 

where R* announces the transpose of R. 

c = Fg = > dc = dFg + Fdg ^ 
2(5),2(8) 

= > tic = tiFg = dFg = Ffg 

dF + Ff = ti¥ 2(10) 

is a first order system for the unknown matrix F and given the connection 
matrices T, ti. In terms of differential geometry the identity 2(10) 
represents the connection ti pulled back from the connection Y . 

Let us have a closer look to the ti connection: For the geocentre 1s 
proper reference frame 2(7) is structured according to 

dc^ ~o 

d o 

ti. cc -J 

+ ti^ 
2(11) 

Note that for Fermi-Walker transport holds 
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- u 8 a 1 , 2(12) 

where u is the velocity, a the acceleration. The connection matrix T 
is computed from the metric tensor for events near the geocentre in 
post-Newton approximation. 

*oo " - 1 + £ A" + £ u e + o(c- 4) 

g o j = o(c' 3) = 0 , 

2(13) 

where denotes the Newton gravitational potential of the earth of 
type gm^r^ . In contrast are the coordinates of the tensor of 
second derivatives of the gravitational potential U of the external 
masses (sun, moon etc.) with respect to the frame c . c characterizes 
the vacuum velocity of light. 2(13) originates from A. Einstein, 
L. Infeld and B. Hoffmann (1938) and A. Eddington and G. Clark (193B). 
For more details we refer to C.W. Misner et al (1973). Here the metric 
tensor g for events near the geocentre is the superposition of the 
second order Taylor expansion of the gravitational potentials of the 
celestial bodies except for the earth and the gravitational potential 
of the earth. The computation of Y ^ x ( g q) is standard. In contrast, 
for the selection of the connection* a ^gf^ we have a certain free­
dom. Traditionally c is chosen in such a wa$ that the spatial rotation 
ffcj = 0. Instead M." Fujimoto and T. Fukushima have proposed at this 
Leningrad conference to select a so-called natural reference frame 
such that fl^J ̂  0 , but leading to a Frobenius matrix which is symmetric 
or of stretch type. Then no rotations within the polar decomposition 
F = S^R are permitted. For simplicity we have chosen^here the traditional 
way by allowing no spatial rotations fteJ, that is £2*J = 0. In solving 
the system of first order differential equations 2(1"0) we arrive at the 
Frobenius matrix (lengthy computation) 

•o •k 

A 
•o 

•k 
2(14) 
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-e.g. see C.W. Misner et al (1973 p 1087) -

where for F"?£ accounts for (<L) geodetic precession, (aa.) the Lense-
Thirring term and {aJJS) the term for Thomas precession. For more details 
we refer to M. Fujimoto et al (1982). 

t 

bundle of 
spacelike 
geodesies 

Figure 2.2: Worldline of the geocentre 

Earlier we had introduced the worldline of the geocentre and its 
orthogonal trajectories, the bundle of spacelike geodesies. See Figure 
2.2 . The spacelike geodesies form an equal time surface. Let us denote 
the vector n as being normal to the tangent vector t 2(1), the vector 
of 4-velocity. Then the differential equation of the geodesic 

^ + r ^ ^ ^ ! = 0 2(15) dA 2 p*a dA dX 

parameterized by the conformal factor X, will be solved by Taylor series 
expansion - Legendre series - up to second order, namely by 

x^(X) = x P(0) + (0)X + jjp-- (0)A 2 + o(X3) = 2(16) 

= x"(0) + I A - -j r p ^ 0 ( O ) n P n a A 2 + o 3 ( X 3 ) 

or 

x^(X) - x"(0) = y j- 1 o r p ? 0 F £ y j y k
 + c ^ A ' ) 2(17) 

The first term of the right-hand side which accounts for the non-
holonomity of the frame of reference is of the order of 10 or 10 cm! 
In contrast, the second term on the right-hand side which reflects the 
curvature of spacetime near the earth is of the order of 10" 1^.^Finally 
for the geodesists 1 use we transform the spatial coordinates {y ,y ,y } 
of the geocentre's proper reference frame which is nonvotating into the 
earth-fixed rotating triad by 
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R 3(-GMST)R 1(y)R 2(x) 

earth-fixed 
rotating triad 

2(18) 

non-rotating 
equatorial 
triad 

where GMST denotes Greenwich mean siderial time angle, (x,y) the 
coordinates of polar motion. 
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