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TThis talk is concerned with one of the most important
class of theories of large tcale Structure (hereafter
LiS) based on two principal assumptions. It is supposed
that (i) the main process is gravitational instability in
expandinz Universe and (ii) the primordial perturbations
are small Gaussian density fluctuations. Both assumptions
are natural in inflationary model of the very early uni-
verse as well as in cosmoloyical models dominated by

Dark Matter (bii) in the form of Weakly Interacting liassive
rarticles (wIilk’s). Other possible models of Lo formation
are discussed by i.Turok, J.Ustriker and A.Dekel.

The advantage of theories of this kind is very
well specified initial conditions uniquely determined by
the spectrum of primordial density fluctuations. In prin-
civle all statistical characteristics of the observed LisS
can be derived from the primordial svectrum. towever this
problem is extremely difficult mathematically.

It is worth to remind that the simplest inflati-
onary model wnredicts fractal spectrum (so called Harrison
-i-eebles-Zeldovich spectrum) for primordial perturbations
independently on the kind of WIilFs making up DII. liowever
the following evolution of the density perturbations de-
pends on the kind of WItis that results in different
kinds of spectrum say after decoupling epoch. This in turm
results in different scenarios of Lo& formation. The well
known extremes are a top-bottom scenario in the Lot Dark
latter (L) model and a bottom-ton scenario in the Cold
pvark liatter (CDi) model. Terms Huli and CDi. (proposed by
bick Bond) specify the largest scale of perturbations
erased by free streaming at relativistic stage. In the
Hi: model this scale is about the size of superclusters
and therefore the first objects formed at the non-linear
stage are pancakes of similar sizes. In this scenario
galaxies form later by fragmentation of the pancakes.
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In the CDIf model the free streaming scale is much less
than globular star clusters therefore the formation of
1,33 goes in process similar to hierarchical clustering.

By the present the most reliable estimates of
statistical characteristics of L83 (e.g. two and three
point correlation functions, percolation properties etc)
prdicted in different scenarios have been made by means
of numerical simulation. ''he main problem the numerical
simulations encounter is large dynamical range (ratio L/1
where I, and 1 are the largest and smallest linear scales
in numerical simulations) needed for adequate simulation
of LS formation. As I was told at salatonfured by iM.Davis
the record dynamical range 1,/1l~6C0O had been achieved by
M.Davis, G.Zfstathiou, C.lrenk and o.White in their recent
simulations in the frame of CLM model. In typical simu-
lations L/1 is about ten times less. Additional problems
arise due to the5restricted namber of mass points (typi-
cally about 2°1¢~” particles) one can use in the simula-
tions.

Keeping this in mind it is worth to try to develop
an approximate analitical approach even paying the price
of reasonable simplification of the problem. Cne of the
most successful approach of this kind is well known
7eldovich's approximate solution for non-linear gravita-
tional instability in zero-tempersture dust (1970). This
solution proves very useful for analysis of I3 formation
in IDH (massive neutrino) model (Shandarin, 1983%; .handa-
rin, Doroshkevich, Zeldovich, 1983%). Unfortunately its
application to formation of 1S in CDI model i1is much more
restricted. The reason is that as has been said the .35
formation in CDI model has many essential features of
hierarchical clustering that cannot be described adeguate-
ly in the frame of 7eldovich's approximation. The main
disadvantage of 7eldovich's solution is that it fails to
follow the motion of collisionless mat.er after pancake
formation., If one formally extrapolates 7Zeldovich's
solution he comes to conclusion that thickness of pancakes
grows unlimitedly. Ilowever 1D numerical simulations
(Doroshkevich et al, 1980) showed that the motion of
collisionless matter inside pancakes becomes oscillatary
rather than progressive one. 'his slows down the growth
of the pancake thickness substantially. ItY¥easonable
to think that in realistic 3D geometry the matuver oscil-
lating across the pancake keeps progressively moving along
it. This results in the formation of filaments and clumps.
3D numerical simulations ¢ive support to this assumption.

One possibility to describe this process 1is to
consider the motion of dust with small viscosity. At every

place where the velocity field is srnooth the viscosity
practically does not influence the motion of the matter
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but viscosity prevents overturning of streams snd for-
mation of multistream repions. As a result very thin
films of very dense matter form instead of pancakes. liow-
ever what is important they have about the same masses

as pancakes do.

After very short description of general physical
idea let us discuss the mathematical aspect of the problem.

First let us introduce coordinates commoving to
veneral expantion of the Universe

X, = ri/a(t)
and peculiar velocity

Vi =uy - a/a r; = a afl,

here a(t) is a scale factor, a = da/dt.

In this variables the equation%%overning the evo-
lution of density perturbations are as follows (e.g.
reebles, “1980)

av. : 1
af% + g Vi =-3 V’xY ,
v;‘f’ R RN OO I PPN C)

283 8p v 3V PV -0,

here Y is perturbation of gravitational potential,
(’(xi,t) is the density of mass, and f;(t) is the mean

density.

'ihe next step is a very important assumption that
zeldovich's solution approximately describes the motion
of matter outside pancakes as well as of the pancakes as
a whole even after the formation of them. In comoving
coordinates 7eldovich's anproximation takes the following

form
Xi = qi + b(t)’si(QJ)a (2)

where xiand Q; are Bulerian and Lagrangian coordinates,

b(t) is a function of time describing the evolution of
growing mode of den51ty perturbations in linear reglme,
and si(qj) 'qu (o ) is a potential vector field smpeci-

fying the spatial dlstrlbutlon of density at the linear
stage.

One can reduce the system of three equations to
the system of two equations calculating approximately the
gravitational acceleration from Zeldovich's solution
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av, .
= (2+3) Vs

Introducing new variables n(xi,t) - a’ f)(xi,t), Vi(xj’t)=

—17 Vi(xj’t) and excluding the equatior for gravitational
ara

potential one easily obtains the system of two equations
approximately describing the evolution of density pertur-

bations
zl’}.+v’>vi-_é._2)v
2 a k 9 x [ i?
£ & b (%)
2 20 Vi)
+ = 0,
2 a ) X5

here—after we will use a(t) istead of t.

In £L = 1 cosmology the right hand side term of
the first equation equals zero exactly bec use of in this
case a = b. However if L &1 this term is negative
that can be interpreted as friction due to too fast expan-
tion of the open Universe. For simplicity we shall discuss
only the flat Universe QL= 1.

An evident solution of (%) is (2) with b = a and

si(qj) being interpreted as initial velocity field v ; =

si(qj). This is neither surprising nor new and reflects
only the seliconsistency of the using Zeldovich's solution.

The second very important step is the inserting eof
a viscosity term in the first equation of system (3) that
results in

V.
—aal-pvk?_‘ﬁ._ =9Avi. ()
2 ¥

The particular form of the viscosity term has been chosen
to obtain well known Burgers' equation that has the anali-
tical solution in the case of potential motion (Burgers,

1940, 1974)

X 744 1 3
X;——g——— exp(- »y G(%5,95,2))d7q

(5)

v;(%5,8)

Jexp(- é%y G(xj,qj,a))daq

] (x; - a)° ) ,
where G(Xj,qj,a) = bo(qj) + ——QZTE;JL-— and So(qj) is the
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potential of the initial velocity field Vi(Xj,()) =VSo(qj)
(at a = 0 X. = q.). By the way 54 is proportional to gra-
vitational potential at the linear stage.

To obtain soluticn (5) one needs to make Hopf -
Cole substitution: Vi(xj’a) = Y7X§(xj,a) and 3(x.,a) =

- 2V 1n U(x.,a) that transfers equation (4) into linear
one U/7a = VY AU.

‘'he first ideas of using Burgers' equation for
the problem of 1.5 formation were published by Gurbatov,
saichev and Shandarin (1984, 1985).

It is interesting that in limiting case of V=>0
one can reduce solution (5) to very simple form

X. - q.
Vi(xj’a) = "'%"'a—‘}" ’ (6)
which is ecquivalent to 7eldovich's solution (2) with b = a
at ‘SL = ,]o

llowever we know that 7Zeldovich's solution predicts
the formation of pancake%@here three stream flows of
matter arise. It must be "stressed that the system with
arbitrary small viscisity described by equation (4) behaves
in a drastically different manner than pure collisionless
matter. Viscosity makes impossible the formation of multi-
stream flows independently on ¥ . Its value determines
the thickness of dense layers: the less Vv  the thiner
the layers. it ¥V => 0 layers,filaments and clumps turn
into infinitely thin films, threads and points respective-
ly. we shall not discuss the inner structure of layers at
finite viscosity V . Instead of let us consider the
general evolution of matter distribution predicted by
Bdurgers' model.

To analyse solution (5) at 0'—9 0 it is helpful to
use the following geometrical interpretation. Directly
from equation (5) one can see that the greatest input into
integrals in (5) (at given x; and a) is given by point

q where G(xi,qi,a) cdbidered as a function of qihas the

deepest minimum. On the other hand §t the same points
parabaloid P(xi,qi,a) = - (% - qi) /2a + II touches
hypersurface So(qi) for the first time when H grows
from - oo ., At the linear stage of the density pertur-
bation growth a is small and paraboloid ¥ is very
narrow (asymptotically a needle at a —> 0) therefore it

can touch hypersurface ©_at every point. This is inter-
preted as follows. At small a a point with Lagrangian

https://doi.org/10.1017/5S00741809001367149 Published online by Cambridge University Press


https://doi.org/10.1017/S0074180900136149

278

coordinates of the point of touching arrives at the point
in Zulerian space having the coordinates of the parabolo-
id apex. Thus at small a one can find sulerian position
of every point from Iagrangian space by moving parabolo-

id ¥ keeping its touching hypersurface BO.

Later when a is larcer paraboloid i becomes
wider and it cannot touch some points of hypersurface
3 (q.) without intersection the hypersurface at other
p8int§ but according to this interpretation this is not
permted. it this time there are places where paraboloid
P touches 3 at two points simultaneousely. In these
positions th& apex of the paraboloid indicates the ILule-
rian coordinates of dense films (or infinitely thin pan-
cakes). “here are also positions where the paraboloid
touches S at three or four points simultaneously. in
these case® the apex 1ndicuates filaments or clucsters res-—
pectively.

wWwith growth of a +the paraboloid becomes even
wider that results in approaching the touching points
closer to minima of & _. asymptotically at larpe a tou-
ching points practicafly coinside with deepest minima of
o that control the positions of the clumps of mass. .t
this stage most of the matter is contained in clumps
which are moving and merging that makes them more massive.

It is interesting that the anprosch based on
surgers' equation predicts that the evolution of the
mass clumps is governed by negative peaks (deepest peaks
are negcative) of potential S . 1t is worth to remind
that at present the hypothesig accordiny; to which the
highest peaks of filtered linear density fluctuations
determine the evolution of galaxies andflusters of galax-
ies is very popular (reacock, and Ilieavens, 1985; Zardeen
et al, 1986). Formally the difference between two appro-
aches can be described as difference in kind of filtering.
In the former case th@épectrum of potential P is

Ag(k) ol x4 gg(k), where Sg(k) is the spectrum of
density perturbations. In the latter case filtered

spectrum is gg(k) c<§2(k) exp(—kZ/kg) with parameter k

or similar. Both kinds of filtering cive more weight to
the longwave part of the initial svectrum of the density
perturbations and reduce the influence of the shortwave
part of the spectrum. Another difference is the role of
the peaks.

To illustrate the new model we give the asymptotic
law for the evolution of the scale of clustering in a
simple case of power law spectrum of linear density per-
turbations > n

§°(x) == k%, at k= 0.
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Burgers' model predicts that the well known from linear

.6
theory law M o< a(E:B) is valid only in the cases of
rather shallow spectra -1<4£n<1 (Gurbatov, Saichev,
Shandarin, 1984, 1985). For spectral indexes n >1 the
scale of clustering grows with a limit law

M04a3/2

independently on n, which is in cd¥lict with the general-
ly accepted result. The discussed model predicts stronger
non-linear effects for initial spectra with indexes

1<n <

Summerizing this. short discussion of a new appro-
ach to the problem of evolution of density perturbations
at the non-linear stage and formation of LSS I would like
to stress its advantages and disadvantages.

The proposed model gives a total qualitative pic-
ture of gravitational instability from linear stage up to
infinite future (assuming that St = 1). If the spectrum
of linear density fluctuations has a cutoff at some scale
the formation of LSS begins from the formation of pancakes
of this scale. Later filaments and clusters form. In the
course of time the mass moves from pancakes to filaments
and from filaments to clumps the typical mass of which
grows with time. Finally practically all the mass concen-
trates in clusters that continue to move and merge. In
the frame of the proposed model one can in prinsiple to
calculate positions, peculiar velocities and masses of
clusters.

The main disadvantage of the model is that at
present form it cannot describe the inner structure
neither pancakes nor filaments and clusters.

In fact the dynamics of the model does not depend
on the assumption that initial perturbations are Gaussian
thus it can be applied to any type of initial conditions
provided that the main process is gravitational insta-
bility.
An f%brtant advantage of the model is its possibi-
1lity to analyse the statistics ofjclumps of matter at
arbitrary time without calculatidn of intermediate steps.
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