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POTENTIAL OPERATORS AND MULTIPLIERS ON
LOCALLY COMPACT VILENKIN GROUPS

TOSHIYUKI KlTADA

Dedicated to Professor Satoru Igari on his 60th birthday

We study, under the setting of a locally compact Vilenkin group G, a weighted
norm inequality for the potential operators of Riesz type and its applications to
multipliers on G. We also consider the maximal operators of fractional type.

1. INTRODUCTION

In [3] we have given a characterisation of a two weights norm inequality for Riesz
potential (fractional integral) operators defined on a locally compact Vilenkin group G,
and, as a consequence, deduced a multiplier theorem of Hormander type between power-
weighted Hardy spaces on G. In this paper we shall continue to study the same subjects
for weighted Lebesgue spaces on G. We shall consider a class of potential operators
which includes the Riesz potential operator, Bessel potential operators and so on. Our
main result for potential operators is Theorem 1. By combining this result with a
multiplier theorem of the present author ([1, Theorem 1] or [4, Theorem 3.6]), we shall
prove a multiplier theorem of Hormander type between weighted Lebesgue spaces (see
Theorem 2.) This result is considered to be an extension to G of multiplier theorems
on weighted Lebesgue spaces on Rn due to Kurtz [5, Theorem 4.4] or Vinogradova [10,
Theorem].

Throughout this paper G will denote a locally compact Vilenkin group, that is to
say, G is a locally compact Abelian topological group containing a strictly decreasing
sequence of compact open subgroups (Gn)!^, such that

(i) U Gr. = Gand f\ Gn={0},
— oo —oo

(ii) sup{ order (Gn/Gn+1) : n 6 Z} := B < oo.

Examples of such groups are described in [1, Section 4.1.2]. Additional examples are
given by the additive group of a local field (see [9]).
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460 T. Kitada [2]

Let F be the dual group of G and let F n be the annihilator of Gn for each n G Z.
Then ( F , , ) ^ , is a strictly increasing sequence of compact open subgroups of F such
that

(i)' U rn = r a*d 0 r n = {l},and
—oo —oo

(ii)' order ( r n + 1 / r n ) = order {Gn/Gn+1).

We choose Haar measures dx on G and d-y on F so that \Go\ = |Fo| = 1, where
\A\ denotes the Haar measure of a measurable subset A of G or F. Then IGnl"1 =
| r n | := m n for each n G Z. For i 6 G, we set |z| = (m,,)"1 if x G Gn \ Gn+1

and \x\ = 0 if x = 0. Similarly, we set |-y| = m n + i if 7 G Fn+i \ F n and |—y| = 0 if
00

7 = 1. Since 2mn ^ rren+i for each n G Z, it follows that £3 ( m n)~ Q ^ C(mk)~a

and 5]) ( m n ) " ^ CC"̂ *:)™ for any a > 0,k G Z.
n = —00

The symbols A and v will denote the Fourier transform and inverse Fourier
transform, respectively. We have (^Gn)

A = I F n l ^ r n := Fn and, hence, (^rn)V =
| G n p ^Gn '•= A n for each n G Z, where £A denote the indicator function of a set A.
A function / on G is said to be radial if / is constant on each set Gn \ G n +i , n G Z,
and said to be quasi-radial if / is constant on cosets of Gn+* in Gn \ Gn+i for some
integer k, k ^ 1, and all n G Z. Radial or quasi-radial functions on F are defined
similarly.

We define <S to be the set of all functions <p on G such that <p has compact support
and is constant on the cosets of some Gn, n G Z. <S is the space of testing functions
for distributions on G (for details, see [9].) We set 5o = {/ G S : JG f(x)dx = 0}.
Cosets in G will be called intervals. Throughout this paper, / will be used to denote
intervals in G.

Let w(x) be a nonnegative locally integrable function on G. The Lebesgue space

on G with respect to the weight measure w(x)dx will be denoted by Lp(u>), 0 < p < 00.

Weighted spaces Lp(w) will be equipped with the norm | | / | | p „, = (/G \f(x)\p u(x)dx) .

We denote w(A) = JA w(x)dx.

We say that w satisfies the doubling condition if w(J') ^ Cw(I) for all / =

x + Gn, V = x + G n _i , x G G, n G Z.

We say that w belongs to the class Ap (u G Ap), 1 ^ p < 00, if

for all I. When p = 1, this should be interpreted as

ix ^ C ess inf {w(z) : x G / } .— / w(x)dx
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We define A^ = (J Ap. If 1 < p < oo then u G Ap if and only if u~1^p~1'> G
p<oo

4p», l / p + 1/p' = 1. We denote by va the power weights |x|Q , a 6 R . Note that
va G -Ap, 1 < p < oo if and only if —1 < a < p — 1, also that va G Ai if and only if
-Ka ^ 0.

Let Af(a,) be the weighted Hardy-Littlewood maximal operator defined by

M(u)f{x) = sup -^j- I \f(y)\ u>(y)dy.

When u> = 1, this is the usual Hardy-Littlewood maximal operator M.

If w is doubling and 1 < p < oo, then M(w) is type (p,p) on Lp(w). If w G
J4P, 1 < p < oo, then M is type (p,p) on Lp(u).

We start with some simple lemmas.

LEMMA 1 . If w G Ap, 1 ^ p < oo, then there is a constant C such that

(IILY
\\E\J '

for all interval I and eaci measurable set E C I •

PROOF: Let E be any subset of / . When 1 < p < oo, the conclusion follows from
an application of Holder's inequality to the expression JEw(x) 'pu(x)~ 'pdx. When
p = 1, we have

\E\ = / u{x)w(x)~ldx ^ / ^ ( x ^ s u p ^ x ) " 1 : x G E}
JE JE

i{w{x):xe I})'1

That is,

From Lemma 1, we see that if w G A^ then u> is doubh'ng, and there exist e,6 > 0

so that w(7) ̂  5w(E) whenever | / | < e | £ | .

LEMMA 2 . [3, Lemma 4] Let a > 0, 0 < p,g < oo and /?,/3' > - 1 . Then there
is a constant C such that

\I\avp,[I)1/9^Cvf,{I)1/p for ail I,

if and oniy if
0 I3' 1 !
— - — = — + - + a^0.
P 9 P 9
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462 T. Kitada [4]

2. POTENTIAL OPERATORS AND MULTIPLIERS

Let $ be a nonnegative locally integrable function on G. We define the potential
operator T = T$ by

Tf(x) = T*f(x) = f $(x - y)f(y)dy.
JG

Basic examples are provided by Riesz potential operators Ia with kernels $(aj) =
I Q - 1

|z| , 0 < a < 1, and Bessel potential operators with kernels defined by means of
its Fourier transform, $(7) = (max(l, I7I)) , fi > 0. Both of these kernels are radial
and decreasing. However, we here only assume the following growth condition on $:

There is a constant C so that

(D) sup{$(x) : x £ Gn \ Gn+i} ^ T^-J / ${x)dx for all n £ Z

(see [7]). Condition (D) is very general since radial functions are included.
For simplicity of notation, we set

= I $(x)dx, t > 0.

THEOREM 1 . Let 1 < p ^ q < 00, wE A,*, and v £ Ap. Then the following
statements axe equivalent.

(1) T : Lp(v) —> L"{w), bounded
(2) there is a constant C so that

(2.1) $(|/ |) l /p 1 w{I)1/qcr(I)1/p' ^C for all I,

where a = v~1'(p~1'.

REMARK. The assumption v £ Ap is required for proving that condition (1) implies
condition (2). For the proof of the converse implication, it is enough to assume that
ff C j\

PROOF: (1) => (2) : By testing condition (1) with / = £j, we have

$(|/|)io(J)1/9 < Cv{I)1/p.

Since veAp, we have \I\~P tu(/)<r(/)p"1 ^ C. Hence
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(2) =>• (1) : Since T is a positive operator and the space of bounded functions with

compact support, Lf, is dense in Lp(v), it is enough to prove that there is a constant

C so that

Tf(x)g(x)w{x)dx ^c(jG (/(x))p v(x)dx^ " ( jf

for any nonnegative / £ L£°. By duality, this inequality is equivalent to

" ( jf (g(x))<'w(x)dx^j

for any nonnegative f,g£ JD£°.

Associated to any interval I (I = Xo + Gn) we denote by $/ the value sup{$(j/) :
oo

y £ Gn\ G n + i} . Since G = \J x + Gn\x + Gn+i for any x £ G, we have

€ZJx+Gn\x+an+l

Vsup{$(3/):yeGn\Gn+1} / f{y)dy

where the sum £) is taken over all intervals / in G. Then

Tf(x)g(x)w(x)dx ^ f J2*i [ f(y)dy(j(x)g(x)w(x)dx
JG J JI

= 5 Z $ / / f(y)dv / g{x)w(x)dx.
J Ji Ji

We shall replace the sum over all intervals by some "maximal" intervals. To do
this, we let fix a constant a> B, and define

{x)w{x)dx>akY k£Z.

Since g £ ££°, |/ | 1 Jt gw —» 0 as / f G. This implies that if / is any element of
fijt, then / is contained in an interval in ilk which is maximal with respect to inclusion.
For each k £ Z, let {Ik,j}j De a family of the maximal intervals in fit. Then, the I\.j
are disjoint in j for fixed k. Furthermore,

g(x)iv(x)dx ^ Bak,
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where the second inequality can be seen as follows. If I^j = XQ + Gn, we set I'k • =

xo + Gn-i. Then by the maximali ty of Ikj ,

We adapt now some ideas from [8] and [7]. We set Ck := (7jt \ Qjfc+i, k G Z . It is

easily seen that

(i) If gw ^ 0 on / , there is a unique k £ Z such that I £ Ck,

(ii) / t i i eC f c foraUj,

(iii) If / £ C* , there exists j such that / C h,j ,

(iv) If / £ C* then

— / g{x)w{x)dx ^ — — / 5(x)w(a;)tij; for any j.

Using these propert ies, we have

(2.3) JGTf(x)g(x)w(x)dx ^

= E E (*'IJI / / ( ' H (iTi J9{x)w{x)dx\
k€Zieck \\ \ Ji /

E *i\I\[f(*)dx)(r±- [ g(x)w(x)dx).

We now claim that

*I\I\ff(x)dx^Ci(\IhJ\)f f(x)dx.
Jl JikJ

In fact, if J is any interval then

_, Jl

= V |G4|sup{$(y) : y 6 G

C J£ I *{x)dx ( f{x)d
J Jj

= C f ${x)dx f f(x)dx = C*(|J|) / f(x)dx,
JGn JJ JJ
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where the first inequality follows from condition (D) for $ .
Hence, the right side of (2.3) is dominated by

1/p

k,j

H 1/9'

where the first inequality follows from (2.1) and the last inequality follows from p ^ q.

We next set Dk = \JIk,j

Then, {Ek,j}k,j is a disjoint family and

(2.4)

(2.5)

We shall show (2.4), from which (2.5) is readily reduced

\h,j n Djb+1| = Y I7*,;n 7*+i.'l =
i

1

Now, since <r 6 AQQ , applying Lemma 1 to (2.5) yields

a{htj) < C*(EkJ).
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Hence, we have

Similarly, we have, from w £

ft j J

Consequently, the right side of (2.3) is dominated by

This completes the proof of (2.2). D

As a corollary of Theorem 1, we get a characterisation for Ia.

COROLLARY 1. Let 0 < a < 1, 1 < p ^ q < oo and w,a € A^. Then the
following statements are equivalent.

(1) Ia : L?(v) —> L*{w), bounded
(2) tiere is a constant C so that

III"'1 w{I)1/9<r{I)1/p' ^C for all I.

PROOF: (1) => (2) : If / = ad,

i \x - j/l
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Hence,

III""1 cr{I)W{lfl" ^ || Ja/||,iM ^ C \\f\\ptV = Ca(I)1^,

which yields condition (2).

(2) => (1) : Since the kernel of Ia satisfies condition (D) and *( | / | ) ~ | / |Q ,

condition (1) follows immediately from Theorem 1 (see Remark). D

In the last part of this section, we give a multiplier theorem of Hormander type
between two power-weighted Lebesgue spaces on G. In [3] we have given the same type
of multiplier theorem for power-weighted Hardy spaces on G.

The generalised Hormander classes of multipliers, M(s, A, a) are defined as follows
(see [3]). Let A > 0 , l ^ s ^ o o and a £ R . For a function tp on F, we set
fj — fir + i \ r • > 3 £ Z. A function tp on F belongs to M{s, A, a) if there is a constant
C such that

|V(7)I ^ C\-ffa and

where Dx is the fractional differential operator defined by Dx<pj = (\x\ ('Pj)V) •

M(s,A,0) coincides with the M(s, A) that was introduced in [2] and [4]. We note

that if (p £ L°°(T) is radial, or more generally quasi-radial, then <p £ M(s,\) for

1 ^ s ^ oo, A > 0.

It is easily seen that tp € M(s, A, a) if and only if ip(y) \-y\a £ M(s,\). Further-

more, tp 6 M(s, A, a) if and only if <p{^)/ka(^) £ M(s, A), where ka is the kernel of Ia.

This follows from the fact that the Fourier transform ka of ka is, in the distributional

sense, a radial function on F and ka(j) ~ |7| a (see [3, Lemma 5]).

THEOREM 2 . Let 0 < a < 1 and 1 < p ^ q < oo. Suppose that tp £ M(a,A,a)
for 1 < s ^ oo, A > max(1/5,1/2). Tien

if - 1 < /3', max(-l , -pA) < /3 < min(p- l,pA) and

13 + 1 P' + l , . , 1 1
= ha, 0 ^

p q p q

PROOF: Let ^0(7) = P(7)/M7)- T n e n ^o £ M(s,A) and
By [2, Theorem 1] or [4, Theorem 3.6], we see <p0 £ M{Lp{vp)). Since v$ £ Ap, we
have, by Lemma 2,

1 / 1 / p ' ^ C for aU I.
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Hence, by Corollary 1,

where g = (<pof) • Since So is dense in Lp(v), (2.6) has a continuous extension to all

of Lp(v). This completes the proof of Theorem 2. D

3. MAXIMAL OPERATORS

It is well known that the fractional integral operators Ia are closely related to the
fractional maximal operators Ma defined by

= Snp-^ f\f(y)\dy.
xei III Ji

In this section we consider the corresponding maximal operators to the potential oper-
ators T# discussed in the previous section. We define

[\f(y)\dy,
Ji

where tp is a positive function denned on (0,oo). If <p(t) = ta, a > 0 then Mv is the

fractional maximal operator Ma .

Here we assume that (p is essentially nondecreasing; that is, there is a constant p

for which

(3.1) ¥>(*)<

and

(3.2) hm ^ = 0.

Notice that <p(t) = ta, 0 < a < 1, satisfies both of the above conditions.

The following theorem is our main result for Mv.

THEOREM 3 . Let 1 < p ^ q < oo and <r £ Aao. Then the following statements

are equivalent.

(1) Mv : V(v) —> Li(w), bounded,

(2) t iere is a constant C so that

<p{\I\) l / f 1 w(I)1/q<r(I)1/p' < C for all I.
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PROOF: (1) => (2) : As in the proof of Corollary 1, condition (2) follows from

testing condition (1) with / = u""1/(p~1^/.

(2) =$• (1) : It is enough to show that there is a constant C such that

(3.3) ( J ^ \ ( f ^
for all nonnegative / £ Lf.

Fix a constant a > Bp and define

Dk = {x £ G : Mvf{x) > a*}, fc £ Z.

Due to growth condition (3.2) for <p,

—i / f[y)dy —> 0 as 11 G.
I1] Ji

Then, as in the proof of Theorem 1, we see that there is a family of maximal disjoint
intervals {Ik,j}j such that Dk = U Ik,j and furthermore,

(3.4) a ^ m ^ f f{y)dy^BPa><,

where the second inequality follows from (3.1) and the maximality of Ik,j- Hence,

Mvf{x)f w(x)dx = J2 f (Mvf(x)Y w(x)dx
j \

Since q/p ̂  1, the right side of the above inequality is dominated by

ilv
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Estimation of the above expression proceeds as in the proof of Theorem 1. We give an

outline.

We set Ek,j = Ik,j \ {Ik,j n % i ) . Then, {Eklj}k,j is a disjoint family and by

virtue of (3.4),

(3-5) \h,i\<Va — tip

holds. Since a E Aao, we have (r(Ik,j) ^ C<r(Ek,j) by Lemma 1 and

<r{x)dx

which concludes the proof of (3.3). D

Corollary 1 and Theorem 3 yield the following.

COROLLARY 2 . Let 0 < a < 1, 1 < p ^ q < oo and w,a e A,*,. Then the

following statements are equivalent.

(1) Ia : L*(v) * L">{w), bounded,

(2) Ma : L?(v) —> Li(w), bounded,

(3) there is a constant C so that

I/I""1 w(I)1/q<r[I)1/p> ^C tor all I.

We conclude this paper with a remark. As in the classical case, using good-A

inequality arguments and a point wise estimate Maf(x) ^ CIaf(x), we can prove that

i f O < p < o o , 0 < a < l and w G AX then ||/a/||P|11) ~ \\Maf\\PiW. This equivalence

together with Theorem 3 also implies Corollary 2 (see [6].)
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