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POTENTIAL OPERATORS AND MULTIPLIERS ON
LOCALLY COMPACT VILENKIN GROUPS

TosHIYUKI KITADA

Dedicated to Professor Satoru Igart on his 60th birthday

We study, under the setting of a locally compact Vilenkin group G, a weighted
norm inequality for the potential operators of Riesz type and its applications to
multipliers on G. We also consider the maximal operators of fractional type.

1. INTRODUCTION

In [3] we have given a characterisation of a two weights norm inequality for Riesz
potential (fractional integral) operators defined on a locally compact Vilenkin group G,
and, as a consequence, deduced a multiplier theorem of Hormander type between power-
weighted Hardy spaces on G. In this paper we shall continue to study the same subjects
for weighted Lebesgue spaces on G. We shall consider a class of potential operators
which includes the Riesz potential operator, Bessel potential operators and so on. Our
main result for potential operators is Theorem 1. By combining this result with a
multiplier theorem of the present author ([1, Theorem 1] or [4, Theorem 3.6]), we shall
prove a multiplier theorem of Hormander type between weighted Lebesgue spaces (see
Theorem 2.) This result is considered to be an extension to G of multiplier theorems
on weighted Lebesgue spaces on R™ due to Kurtz [5, Theorem 4.4] or Vinogradova [10,
Theorem)].

Throughout this paper G will denote a locally compact Vilenkin group, that is to
say, G is a locally compact Abelian topological group containing a strictly decreasing
sequence of compact open subgroups (G»)>_ such that

Q) _‘[l G, = G and _Fi G = {0},
(i) sup{ order (Gn/Gny1) :n€ Z}:= B <.

Examples of such groups are described in [1, Section 4.1.2]. Additional examples are
given by the additive group of a local field (see [9]).
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Let T be the dual group of G and let T',, be the annihilator of G,, for each n € Z.

Then (T'n)>_ is a strictly increasing sequence of compact open subgroups of I' such

that
@)’ G I'n =T and ﬁ I'n ={1}, and
(i)' order (Tnp1/T) = order (Gn/Gnsr).
We choose Haar measures dz on G and dy on T so that |Gy| = |Ty] = 1, where

|A| denotes the Haar measure of a measurable subset A of G or I'. Then |G,|™' =
ITsn| := my for each n € Z. For ¢ € G, we set |z]| = (m,,)_l if 2 € Gp\ Gota
and |z| = 0 if z = 0. Similarly, we set |[y| = mpyy if ¥ € Tpny1 \ 'y and |y| = 0 if

v = 1. Since 2mn < Mny for each n € Z, it follows that Y (m,)™" < C(mg)™*
n=k

k
and Y (mg)® < C(mi)” forany a > 0,kc Z.

The symbols
transform, respectively. We have (¢ég,)" = || ér, := F. and, hence, (¢r,)" =
|Gn|_1 ¢G, = Ap for each n € Z, where £4 denote the indicator function of a set A.
A function f on G is said to be radial if f is constant on each set G, \ Gny1, n € Z,
and said to be quasi-radial if f is constant on cosets of G4k in Gy, \ Gny1 for some
integer k, kK > 1, and all n € Z. Radial or quasi-radial functions on I' are defined

A and vV will denote the Fourier transform and inverse Fourier

similarly.

We define S to be the set of all functions ¢ on G such that ¢ has compact support
and is constant on the cosets of some G,, n € Z. S is the space of testing functions
for distributions on G (for details, see [9].) We set So = {f € S : [ f(z)dz = 0}.
Cosets in G will be called intervals. Throughout this paper, I will be used to denote
intervals in G.

Let w(z) be a nonnegative locally integrable function on G. The Lebesgue space
on G with respect to the weight measure w(z)dz will be denoted by LP(w), 0 < p < co.
Weighted spaces LP(w) will be equipped with the norm |||, , = (Jg |f(=)I w(:c)d:z:)l/p.
We denote w(4) = [, w(z)dz.

We say that w satisfies the doubling condition if w(I') € Cw(I) for all I =
z2+Gn, I'=24+Gpn_1,z2€G,neEZ.

We say that w belongs to the class A, (w € 4,), 1 <p<oo,if

1 1 -1\
] Iw(z;)dz ] Iw(z) dz <C,

for all I. When p = 1, this should be interpreted as

r}T ﬁw(z)dz < C essinf {w(z): z € I}.
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We define Ao = |J Ap. If 1 < p < oo then w € 4, if and only if w™1/(P~1) ¢
p<oo

A, 1/p+1/p' = 1. We denote by v, the power weights |z|*, a € R. Note that
Vg € Ay, 1 < p< oo ifand only if —1 < a < p—1, also that v € A; if and only if
-1<a<0.

Let M(.,) be the weighted Hardy-Littlewood maximal operator defined by

M f(s) = sup = / 1F @)y

When w =1, this is the usual Hardy-Littlewood maximal operator M.
If w is doubling and 1 < p < oo, then M,y is type (p,p) on LP(w). If w €
Ay, 1 < p < oo, then M is type (p,p) on LP(w).

We start with some simple lemmas.

LEMMA 1. Ifw € A,, 1 < p< o, then there is a constant C such that

eo(d)

for all interval I and each measurable set E C I.

PRrOOF: Let E be any subset of I. When 1 < p < 00, the conclusion follows from
an application of Holder’s inequality to the expression wa(:c)l/pw(z)—l/pd:c. When
p =1, we have

|E| = /Ew(:c)w(:c)_ld:c < /Ew(:c)d:c sup{w(z) ™' : z € E}

< w(E) (inf{w(z) : = € I})™
< Cw(B) Iw(D)™.

w(I) 7]
——=<Cl=]).
S5 < (i L
From Lemma 1, we see that if w € Ay, then w is doubling, and there exist £,6 >0
so that w(I) < éw(F) whenever |I| < ¢|E|.
LEMMA 2. [3, Lemma 4] Let @ >0, 0 < p,g < o0 and ,8' > —1. Then there
is a constant C such that

That is,

[I|* v (I)*? < Cwp(I)''? for all I,

if and only if
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2. POTENTIAL OPERATORS AND MULTIPLIERS

Let & be a nonnegative locally integrable function on G. We define the potential
operator T' = T3 by

Tﬂﬂ=hﬂﬂ=4ﬂvwﬁmw-

Basic examples are provided by Riesz potential operators I, with kernels ®(z) =
|:r:|°‘_l , 0 < a < 1, and Bessel potential operators with kernels defined by means of
its Fourier transform, ®(y) = (max(1, |7|))_ﬂ, f > 0. Both of these kernels are radial
and decreasing. However, we here only assume the following growth condition on ¥:

There is a constant C so that

(D) sup{®(z): 2 € Gn\ Gnt1} < < ®(z)dz forall ne€Z
IG‘"-I Gn\Gn+1

(see [7]). Condition (D) is very general since radial functions are included.

For simplicity of notation, we set
&(t) = / B(z)dz, t>0.
Iz|<t

THEOREM 1. Let 1 < p < ¢g< 0, w € A andv € A,. Then the following

statements are equivalent.
(1) T:LP(v) — L% w), bounded
(2) thereis a constant C so that

(2.1) (I 117 w(I)o(I)" < C forall I,
where o = p~1/(P-1)

REMARK. The assumption v € A, is required for proving that condition (1) implies
condition (2). For the proof of the converse implication, it is enough to assume that
o€ A,.

ProorF: (1) = (2): By testing condition (1) with f = £r, we have
B(|I))w(1)'/? < Co(I)'/?.
Since v € Ay, we have |I|™? w(I)o(I)? ™' < C. Hence

B 17 w(I) o1 < C.
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(2) = (1) : Since T is a positive operator and the space of bounded functions with
compact support, L2, is dense in LP(v), it is enough to prove that there is a constant

C so that v .
(/G (Tf(=))? w(:c)d:c) <C </G (f(z'))"v(z)dz)

for any nonnegative f € L. By duality, this inequality is equivalent to

1/q'

[ @t <o [ (f(w))"v(w)dz)l/P ([ et weree)

for any nonnegative f,g € L2°.
Associated to any interval I (I = z¢ + G,) we denote by @1 the value sup{®(y):

Y€ Gn\ Gnt1}. Since G = [.j z+ Gp\z+ Gpy1 for any = € G, we have

7f(2)= 3 [ 3(z — 4)f(y)dy

nez +Gn\z+cn+l

< z sup{®(y) : ¥y € Gn \ Gnt1} /+G f(y)dy

ne€Z
= Yo [ fwinte),
Fi I

where the sum Y is taken over all intervals I in G. Then
I
[ ri@a@mwers < [ Yo [ sdses)a o)
I

= z;@z/]f(y)dy/Iy(z)W(z)dz-

We shall replace the sum over all intervals by some “maximal” intervals. To do
this, we let fix a constant a > B, and define

0 = {1; ﬁ /Ig(z)w(z)dz > ak} , keZ.

Since g € L, I Jygw — 0 as I'1 G. This implies that if I is any element of
1, then I is contained in an interval in §2; which is maximal with respect to inclusion.
For each k € Z, let {I,;}; be a family of the maximal intervals in Q. Then, the I; ;
are disjoint in j for fixed k. Furthermore,

1
et < — g(z)w(z)dz < BaF,
Ukl J1, ;
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where the second inequality can be seen as follows. If It ; = z¢ + G, we set I;w' =
zg + Gn—1. Then by the maximality of I ;,
1 sl 1
— g(z)w(z)dz < g ( (z)w(:c)d:c) < Ba*.
Heil Jr, ; el \| 15| Jry
We adapt now some ideas from [8] and [7]. We set CF := Q3 \ Qpy1, k€ Z. Tt is
easily seen that
(i) I gw # 0 on I, there is a unique k € Z such that I € C*,
(ii) Ig,; €CF forall j,
(iii) If I € C*, there exists j such that I C I} ;,
(iv) I I €CF then

Tl /g(:c)w (z)dz < II p g(z)w(z)dz for any j.

I

Using these properties, we have

@3 [ 1restetei < 3 (w00 [ ste)ee) ([ oteputees)

=3 3 (et [ 1) (1 [ steruteie)

k€Z [eck

3P (e:11 [ s@)ee ) (1 [ stotaras)
S @it  ftehte) (17 [ sterutyie).

sagz(
> @i [ f(e)ie < OF(R ) / #(2)da.

j NCIL;

We now claim that

ICIk

In fact, if J is any interval then

ot [e=3( X erin [ sa)ee)

IcJ k=n ICJ|I|=m

= Z |Gr|sup {®(y) : y € G \ Gk+1}/ f(z)dz

k=n
0o

< ck; /G o, ¥(z)dz /J f(z)dz

= C/c,, Q(z)dz/]f(z)dz = 05(|J|)/Jf(z)dz,
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where the first inequality follows from condition (D) for ®.
Hence, the right side of (2.3) is dominated by

CZZ g(llk'jl)/ f(z)dz %/ g(z)w(z)d=z
5 Ix,; |’=-J| I,;

> [”(""")W (a(zi,,-) L, “'“’) J [‘"("‘"')w (wd,,-) L, ”"’"’"’“)J

i/p [

| ki

| kg

where the first inequality follows from (2.1) and the last inequality follows from p <

We next set Dy = |JI,; and
By =Ir;\ (Ik; N Devs1), k€EZ
Then, {Ek j}k,; is a disjoint family and

B
(24) [k, N Dk+1| <~ Uiyl

(2.5) 1,51 < |Ek,J|

We shall show (2.4), from which (2.5) is readily reduced.

i N Degal = Y i NIaprgl = Y Tesal
i Tiy1,iCly,;
1
< Y gm) s
Te41,iCl 5 Tegryi

1
< — d
< g [ stewterie

¥

k
k+1 Ba IIkv]I - IIk,Jl °

Now, since o € Ao, applying Lemma 1 to (2.5) yields

a'(I;,,j) S CG’(Ek'J‘).
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Hence, we have

1 ? 1 . P
> ollks) (m - f("’)d"’> = %‘T(Ik,j) (m ‘/Ik,j (fo )(:n)tr(z)da:)

k,J
1 » ?
< Cg o(Ek,;) <;(‘ij ‘/Ik,,j (fo )(:c)a(:c)d:c)

< C;/Ek | (Mo (fo™*) ()" o(z)dz

< Ol|My(Fo )P,
<C|fe M, = ClslE.. -

Similarly, we have, from w € Ay

’ !

Zwuk,,)( 0 / 9(=) w(z)dw) <CY uw(Eu,s) (wg 5/ g(z)w(z)dz)

k,j k,j

)
< C | Meyg% , < Clall, -

Consequently, the right side of (2.3) is dominated by

)

C il ol = € ([ (f(z))”v(w)dw)l/P (f (g(z))“'w(z)dz)”q .

This completes the proof of (2.2). 1
As a corollary of Theorem 1, we get a characterisation for I,.

COROLLARY 1. Let 0 < a< 1,1 <p<qg< oo and w,0 € Ay,. Then the
following statements are equivalent.

(1) I.:L?(v) — L% w), bounded
(2) thereis a constant C so that

1% w(D)9e(D)/" < ¢ forall I.
ProoF: (1) = (2): If f=oty,

Lf(z) = / - "(y) > I* o) forzel.
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Hence,
1% o(Dw(DY? < Taflly 0 < CUfIl,, = Ca(I)'?,

which yields condition (2).

(2) = (1) : Since the kernel of I, satisfies condition (D) and &(|I]) ~ |I|*,
condition (1) follows immediately from Theorem 1 (see Remark). 0

In the last part of this section, we give a multiplier theorem of Hérmander type
between two power-weighted Lebesgue spaces on G. In [3] we have given the same type
of multiplier theorem for power-weighted Hardy spaces on G.

The generalised Hormander classes of multipliers, M(s, A, a) are defined as follows
(see [3]). Let A > 0, 1 € s € oo and @ € R. For a function ¢ on T, we set
P = <p§pj+l\p1., Jj € Z. A function ¢ on I' belongs to M(s, A, @) if there is a constant
C such that

A-1/s+a ”D)‘

(1) < C 1y and sup {(m;) eill,} < oo,
€Z

i
A
where D? is the fractional differential operator defined by D*p; = (]:c|)‘ ((,a,-)v)

M(s,),0) coincides with the M(s, A) that was introduced in {2] and [4]. We note
that if ¢ € L°°(T') is radial, or more generally quasi-radial, then ¢ € M(s,A) for
1<s< 00, A>0.

It is easily seen that ¢ € M(s, ), e) if and only if ¢(v)|y|* € M(s,A). Further-
more, ¢ € M(s,),a) if and only if ¢(7)/ka(7) € M(s,A), where kq is the kernel of I,.
This follows from the fact that the Fourier transform l;: of kg is, in the distributional
sense, a radial function on T and kq(7) ~ |v|™ (see [3, Lemma 5]).

THEOREM 2. Let 0<a <1 and1l<p<g<oo. Suppose that ¢ € M(s,], )
for 1 < s < o0, A > max(1/s,1/2). Then

o)

if -1 < #', max(—1,—pA) < B < min(p — 1,pA) and

< C'||f||p,vﬁ for all f € S,

qrvﬁl

'
1
w:,u_*_a,og
p q

W=

PROOF: Let wo(7) = 9(7)/ka(7). Then @o € M(s,}) and (7) = ka(7)po(7).
By (2, Theorem 1] or [4, Theorem 3.6], we see o € M(LP(vg)). Since vg € Ap, we
have, by Lemma 2,

17 wp (1) *0_p ooy (D)M/P <€ forall I.
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Hence, by Corollary 1,

(1)

= ”Iag”q,vﬂ, S C ”g”p,vﬁ < C ”f”p'uﬁ ?

qvvﬂl
Y
where g = (cpo f) . Since Sy is dense in L?(v), (2.6) has a continuous extension to all
of L?(v). This completes the proof of Theorem 2. a

3. MAXIMAL OPERATORS

It is well known that the fractional integral operators I, are closely related to the
fractional maximal operators M, defined by

1
Mof(e) = g /, ()] dy.

In this section we consider the corresponding maximal operators to the potential oper-

ators Ts discussed in the previous section. We define

I
M, 5(2) = sup PLL [ 15631 dy,
zel II | I
where ¢ is a positive function defined on (0,00). If ¢(t) =%, a > 0 then M, is the
fractional maximal operator M.

Here we assume that ¢ is essentially nondecreasing; that is, there is a constant p

for which

(31) o(t) <pp(s), t<s
and

(3.2) im £ _ o,

t—oo 1
Notice that ¢(2) =t*, 0 < a < 1, satisfies both of the above conditions.
The following theorem is our main result for M,,.

THEOREM 3. Let 1 < p< q< oo and o € Ay . Then the following statements
are equivalent.

(1) M, :L*(v) — L%(w), bounded,
(2) thereis a constant C so that

(I w(I)Yia(I)/" < C  for all I.
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PrOOF: (1) = (2) : As in the proof of Corollary 1, condition (2) follows from
testing condition (1) with f = »~1/(P=1)¢,
(2) = (1) : It is enough to show that there is a constant C such that

(3.3) ([ (M¢f<=))*w(z)dz)l/q<c( [ (f(z))"v(z)dz)w

for all nonnegative f € L.
Fix a constant @ > Bp and define

Dy={z €G: M,f(z)>d"}, keZ.
Due to growth condition (3.2) for ¢,

|'II||)/f Yy -0 asITG.

Then, as in the proof of Theorem 1, we see that there is a family of maximal disjoint
intervals {Ij ;}; such that Dy = |JI},; and furthermore,
j

(3.4) ot < PWel) [ g < Bpat,
|Ik1j| Ih

where the second inequality follows from (3.1) and the maximality of Ix ;. Hence,

[ sy uEae =Y [ (s (e

1€z De\Drs1
< Z (k+l)q’w(Dk \ Dk+1)

@(Hx,5) g .
,z( Tl / R (””z) w(lh;)
1/ 1 q
aqz[o'(lk,z) ”( i) f(z)d:c)] .
Since ¢/p > 1, the right side of the above inequality is dominated by
Cal [ (L )1/P( 1 f2)d )]p)q/?
’ (Z e o(Iy,;) Jr, ; i

- ot (C ot (i (o) oterae) )"

k.j

It ;
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Estimation of the above expression proceeds as in the proof of Theorem 1. We give an
outline.

We set Eij = Ix; \ (Ir,; N Dit1). Then, {Ex ;},; is a disjoint family and by
virtue of (3.4),

a
(3.5) ksl < —5- | Bkl

Bp

holds. Since ¢ € Aw, we have o(I ;) < Co(E4,;) by Lemma 1 and
S otied) (5o [ o @eta)is)
o(Ix,5) Jr

k,j
< C%: o(Ek,;) (ﬁl,j /,k

SC/G(M(‘,)(fa'_l)(:c))p o(z)dz

<Cllfe 5, =C il

(F ) (@o(e)iz)

2]

which concludes the proof of (3.3). a0
Corollary 1 and Theorem 3 yield the following.
COROLLARY 2. Let 0 < a<1,1<p<gq< o and w,o0 € Ay,. Then the

following statements are equivalent.
(1) Io:LP(v) — L9(w), bounded,
(2) My :L?P(v) — LY w), bounded,
(3) thereis a constant C so that

e w(I)l/qa(I)l/pl £C foralll

We conclude this paper with a remark. As in the classical case, using good- A
inequality arguments and a pointwise estimate M, f(z) £ CI.f(z), we can prove that
f0<p<oo,0<a<land wé€ A then ||Iufll, ., ~ |Mafll,,  This equivalence
together with Theorem 3 also implies Corollary 2 (see [6].)
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