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Introduction to Robust Statistics

1.1 Introduction

Consider the following basic statistical task: Given n independent samples
from a Gaussian, N(µ, I), in Rd with identity covariance and unknown mean,
estimate its mean vector µ to within small error in the `2-norm. It is not hard
to see that the empirical mean has `2-error at most O(

√
d/n) with high prob-

ability. Moreover, this error upper bound is best possible among all n-sample
estimators.

The Achilles heel of the empirical estimator is that it crucially relies on
the assumption that the observations were generated by an identity covariance
Gaussian. The existence of even a single outlier can arbitrarily compromise
this estimator’s performance. However, the Gaussian assumption is only ever
approximately valid, as real datasets are typically exposed to some source of
contamination. Hence, any estimator that is to be used in practice must be
robust in the presence of outliers or model misspecification.

Learning in the presence of outliers is an important goal in statistics and
has been studied within the robust statistics community since the 1960s. In
recent years, the problem of designing robust and computationally efficient
estimators for high-dimensional statistical tasks has become a rather pressing
challenge in a number of data analysis applications. These include the analysis
of biological datasets, where natural outliers are common and can contami-
nate the downstream statistical analysis, and data poisoning attacks in machine
learning, where even a small fraction of fake data (outliers) can substantially
degrade the quality of the learned model.

While classical work in robust statistics managed to determine most of the
information-theoretic limits of robust estimation, the computational aspects
were left wide open in high dimensions. In particular, a number of known
robust estimators for basic high-dimensional statistical problems have been
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2 Introduction to Robust Statistics

shown to be computationally intractable to compute. In fact, the conventional
wisdom within the statistics community was that some of these problems were
not solvable in a computationally efficient manner. In the Conclusions chapter
of his book Robust Statistical Procedures, Peter J. Huber writes:

The bad news is that with all currently known algorithms the effort of computing those
estimates increases exponentially in d. We might say they break down by failing to give
a timely answer! . . .

The current trend toward ever-larger computer-collected and computer-managed data
bases poses interesting challenges to statistics and data-analysis in general. [. . .] Only
simple algorithms (i.e., with a low degree of computational complexity) will survive the
onslaught of huge data sets. This runs counter to recent developments in computational
robust statistics.

It appears to me that none of the above problems will be amenable to a treatment
through theorems and proofs. They will have to be attacked by heuristics and judge-
ment, and by alternative “what if” analyses.

In the subsequent decades, there was a striking tension between robustness
and computational efficiency in high dimensions. Specifically, even for the
most basic task of high-dimensional mean estimation, all known estimators
were either hard to compute or were very sensitive to outliers. This state of
affairs changed fairly recently with the development of the first computation-
ally efficient estimators for high-dimensional robust statistics problems. This
book is dedicated to describing these developments and the techniques that
have built upon them in the intervening years.

Before getting into the core of these recent developments, it is prudent to
first describe the state of affairs before these algorithms were discovered. In
this chapter, we will cover this basic background by describing the underlying
models that we will be considering, analyzing basic robust estimators in one
dimension, and discussing some of the difficulties involved with generalizing
these estimators to higher dimensions.

1.2 Contamination Model

In order to specify a robust statistics problem, one needs to know three things:

1. What does the clean (uncorrupted) data look like?
2. What statistics of this data is the algorithm trying to estimate?
3. What kinds of contamination is the algorithm expected to deal with?

As we will see, most robust estimation tasks are provably impossible without
imposing some sort of niceness assumptions on the clean data (inliers). At a
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1.2 Contamination Model 3

high level, this is because without assuming anything about the inlier data, one
would have no way of determining whether an extreme outlier is a corruption
or simply an uncorrupted datapoint that happens to be far from most of the
rest of the data. Thus, for most problems, we will need to make some assump-
tions on the distribution that the uncorrupted data is drawn from. One of the
strongest niceness assumptions is that the inliers are distributed according to
a Gaussian distribution. More generally, one might also consider what can be
accomplished with weaker assumptions, such as log-concavity or simply some
bounds on the higher moments of the inlier distribution. In fact, a lot of the
progress in algorithmic robust statistics has involved investigating what kinds
of assumptions about the inlier data can be relaxed without sacrificing compu-
tational efficiency.

In terms of what our algorithm is trying to estimate, we will usually focus
on fairly simple statistics like the mean or covariance of the uncorrupted data.
However, sometimes we will have more sophisticated goals, such as trying
to learn the entire distribution up to small error, or learn some other more
complicated underlying parameter.

Finally, the choice of contamination model bears a deeper discussion. We
will elaborate on various natural assumptions over the course of the next few
sections.

1.2.1 Contamination Model Basics

There are many ways that datasets might be corrupted, and many models to de-
scribe such corruptions. If one is optimistic, one might assume that the corrup-
tions are random; that is, some datapoints are randomly replaced by samples
from a known error distribution or are otherwise corrupted by some known
random process. Given such an understanding of the underlying errors, robust
estimation tasks typically become much easier, as one can try to find efficient
ways to cancel out the effects of these predictable errors.

One might also assume that one is merely dealing with small measurement
errors. That is, perhaps every datapoint is corrupted in some unpredictable
way, but no datapoint is corrupted by very much. In this case, one might
hope that these small corruptions will not be enough to substantially change
the outcome of the estimator being used. In other words, robustness against
these kinds of errors amounts to a question about the numerical stability of the
estimators.

Unfortunately, these kinds of assumptions are too optimistic in a number of
applications. Random corruption models assume that the source of errors is
understood sufficiently well that they can essentially be incorporated as just
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4 Introduction to Robust Statistics

another parameter in the model. Meanwhile, algorithms robust to small errors
may be unable to cope with the presence of a small number of outliers.

The error models that we focus on in this book generally allow for worst-
case corruptions that affect only a small constant fraction (usually denoted by
ε) of our data. This means that, for example, 1% of our data is not coming from
the inlier distribution, but instead from some source of errors that we have no
control over. These errors might produce very extreme outliers, and they will
not necessarily come from any model that we could predict ahead of time. In
the worst case, one might even consider an adversary designing these errors
in such a way to best thwart our algorithm. The latter kind of error model
might be slightly more pessimistic than necessary about how bad our errors
are; but if we can design algorithms that work under these pessimistic models,
the results will apply very broadly. Such algorithms will work against any kind
of corruptions, as long as these corruptions do not affect too large a fraction of
our inputs.

That said, there are still a few things that we need to specify about these
corruption models, having to do with whether they add or remove points and
whether they are adaptive or not.

1.2.2 Additive and Subtractive Nonadaptive Corruptions

Among the types of contamination models that we will consider in this book,
one important defining feature is what the errors are allowed to do to the clean
(inlier) data. At a high level, this will leave us with three basic types of error
models:

• Additive Contamination: In additive contamination models, the errors con-
sist of new, incorrect, datapoints being inserted into our dataset.

• Subtractive Contamination: In subtractive contamination models, the er-
rors consist of clean datapoints being selectively removed from our dataset.

• General Contamination: In general contamination models, both kinds of
errors can occur. Erroneous datapoints can be inserted and clean ones can be
removed. Equivalently, we can think of these corruptions as replacing our
clean datapoints with outliers.

We formally define the corresponding contamination models below.

Definition 1.1 (Additive, Nonadaptive Contamination (Huber Model)) Given
a parameter 0 < ε < 1 and a distribution D on inliers, we say that one can
sample from D with ε-additive contamination if one can obtain independent
samples from a distribution X of the following form: A sample from X returns
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1.2 Contamination Model 5

Figure 1.1 Example of a Gaussian with additive contamination. The error distri-
bution corresponds to the gray bump on the right.

a sample from D with probability (1− ε), and otherwise returns a sample from
some (unconstrained and unknown) error distribution E.

See Figure 1.1 for an example of additive contamination.
The parameter ε is the proportion of contamination and quantifies the power

of the adversary. Among the samples, an unknown (1−ε)-fraction are generated
from a distribution of interest; we will call these samples inliers. The remaining
samples are drawn from an arbitrary distribution; we will call these samples
outliers.

Note that the distribution X being sampled in Definition 1.1 is a mixture of
the distribution D over inliers (clean/good samples) and the distribution E over
outliers (errors or corruptions). As we will often want to talk about these kinds
of mixtures, we introduce the relevant notation.

Notation We will use linear combinations of probability distributions to de-
note the mixtures defined by the corresponding linear combination of the as-
sociated density functions. For example, if Xi are probability distributions and
pi ≥ 0 are real numbers summing to 1, we will use p1X1 + p2X2 + · · · + pkXk

or
∑k

i=1 piXi to denote the mixture X, where one can obtain a sample from X
by first picking a number 1 ≤ i ≤ k so that a given i is picked with probability
pi, and then returning a sample from the corresponding Xi.

For example, the distribution X sampled from in the additive contamination
model can be written as X = (1 − ε)D + εE.

We note that if the distributions Xi are random variables, this is also the
standard notation for taking a linear combination of the random variables Xi.
In this text, we will typically use this notation to denote mixtures, and will
make it clear from the context in the rare cases where we want it to denote a
linear combination instead.
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6 Introduction to Robust Statistics

Figure 1.2 Example of a Gaussian with subtractive contamination. In particular,
the right tail of the distribution has been removed.

For subtractive contamination, instead of inserting new samples (outliers),
there is a probability of at most ε that samples are censored from the data that
the algorithm observes. One way to define this is as follows.

Definition 1.2 (Subtractive, Nonadaptive Contamination) Given a parameter
0 < ε < 1 and a distribution D on inliers, we say that one can sample from D
with ε-subtractive contamination if the following holds: For some event R with
probability 1 − ε, one can obtain independent samples from the distribution of
D conditioned on R.

See Figure 1.2 for an example of subtractive contamination.
In other words, with probability ε, the event Rc occurs and these samples

are removed from the data stream. This allows an adversary to remove an ε-
fraction of inlier samples. It is tempting to write that the observed distribution
is proportional to D − εE, where E is the distribution over samples of D con-
ditioned on Rc (i.e., the distribution over samples that are removed). We can
make this rigorous with a slight extension of our above notation.

Notation We define a pseudo-distribution to be a real-valued measure. This
means that a probability distribution is simply a nonnegative pseudo-distribution
normalized to have total mass equal to 1. More generally, for any pseudo-
distributions X1, . . . , Xk and real numbers p1, . . . , pk, we use p1X1+ p2X2+· · ·+

pkXk or
∑k

i=1 piXi to denote the pseudo-distribution X whose density is given by
the corresponding linear combination of densities of the pseudo-distributions
Xi. In particular, for any set S , X(S ) =

∑k
i=1 piXi(S ).

We will often want to think of pseudo-distributions as some kind of non-
normalized or nonpositive probability distributions, and think of these linear
combinations as “mixtures” of these “distributions” even when neither term
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1.2 Contamination Model 7

really applies. For example, one can write the distribution X on the observed
samples from subtractive contamination as

X =

(
1

1 − ε

)
D −

(
ε

1 − ε

)
E.

While this is not technically a mixture, it is useful to think of X as being ob-
tained from D by first “subtracting” an ε-fraction of the distribution E and then
renormalizing. Of course, this only makes sense if this εE was already con-
tained in the distribution D. To convey this type of information, we introduce
one further piece of notation.

Notation Given two pseudo-distributions X and Y , we use X ≤ Y to denote
that the density of X is pointwise at most the density of Y . Equivalently, for
every set S we have X(S ) ≤ Y(S ).

This means, for example, that the distribution E in the subtractive contam-
ination model of Definition 1.2 must satisfy εE ≤ D. Equivalently, the final
distribution X must satisfy (1− ε)X ≤ D. Similarly, the additive contamination
model of Definition 1.1 is defined by X ≥ (1 − ε)D.

Finally, for the general contamination model, there are a few essentially
equivalent reasonable definitions depending on the relative amounts of addi-
tive and subtractive contamination allowed. Perhaps the easiest way to deal
with things is to allow the adversary to remove an ε-fraction of the probability
mass of the inlier distribution and replace it with equal mass from some other
distribution.

Definition 1.3 (General, Nonadaptive Contamination) Given a parameter 0 <
ε < 1 and an inlier distribution D, we say that one can sample from D with
ε-general contamination if one can obtain independent samples from a distri-
bution of the form X = D − εL + εE, for distributions L and E with εL ≤ D.

See Figure 1.3 for an example of general contamination.
This leads to a natural question as to which distributions X one can obtain

in the general contamination model. It turns out that it is those that are close to
D in total variation distance.

Definition 1.4 (Total Variation Distance) Given distributions X and Y , the
total variation distance between them, denoted dTV(X,Y), is defined to be
half the L1-norm of their difference, namely: dTV(X,Y) := 1

2‖X − Y‖1. If X
and Y have probability density functions p(x) and q(x), we have dTV(X,Y) =
1
2

∫
|p(x) − q(x)|dx. We also have the following equivalent definitions:
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8 Introduction to Robust Statistics

Figure 1.3 Example of a Gaussian with general contamination. The right tail of
the distribution has been removed and replaced by the outlying bump on the right.

• The total variation distance is the biggest discrepancy between the probabil-
ities of X and Y on any set, that is, dTV(X,Y) = supS (|X(S ) − Y(S )|).

• If Y is thought of as being a copy of the distribution X with some small
probability of error, the total variation distance characterizes how small that
error can be. In particular, we can write dTV(X,Y) = infA∼X,B∼Y Pr[A , B].

It is not hard to see that the general contamination model is equivalent to
saying that one can sample from a distribution X with dTV(X,D) ≤ ε. This
is particularly informative given the last of the above formulations of total
variation distance, as it essentially says that the algorithm is receiving samples
from D with probability 1 − ε and with probability ε is getting some kind of
error.

Remark 1.5 In many settings, the subtractive contamination model is much
easier to deal with than the additive contamination model. For example, if the
goal is to estimate the mean of the inlier distribution D, even a single additive
error can corrupt the sample mean by an arbitrary amount. Subtractive errors
on the other hand are limited in how much damage they can do, since they
are only allowed to remove existing samples. For a single removed sample to
have a large effect on the sample mean, it would need to be the case that the
initial sample set already had some extreme outliers which could be removed.
Because of this, most of this book will focus on the more challenging models
of additive or general contamination.

1.2.3 Adaptive Corruptions

There is one aspect in which even the general contamination model is not as
strong as it could be. All of the contamination models from the last section
are what might be called nonadaptive. That is, they replace the distribution D
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1.3 Information-Theoretic Limits 9

over inlier samples by a distribution X by introducing some errors. But after
doing this, the algorithm is then given honest, independent samples from the
distribution X. A more insidious adversary might be able to choose what errors
to introduce and which samples to corrupt, based on a knowledge of what the
uncorrupted samples are. This idea leads us to our strongest contamination
model.

Definition 1.6 (Strong Contamination Model) Given a parameter 0 < ε < 1
and an inlier distribution D, an algorithm receives samples from D with ε-
contamination as follows: The algorithm specifies an integer number of sam-
ples n, and n samples are drawn independently from the distribution D. An
adversary is then allowed to inspect these samples, remove up to dεne of them,
and replace them with arbitrary points. The modified set of n points are then
given to the algorithm.

In analogy with this adaptive version of the general noise model, we can
devise an adaptive version of the additive noise model (that inserts dεn/(1− ε)e
new samples into the dataset) and the adaptive subtractive noise model (that
selects and removes dεne clean samples).

Although there are a few cases where it is useful to know that the errors
that an algorithm is observing are i.i.d. samples from some distribution, most
of the algorithms developed in this book can be shown to work in the strong
contamination model. As this is the most powerful of the corruption models,
we will state most of our results in this model.

1.3 Information-Theoretic Limits

Before we get into describing basic algorithms for robust estimation, we pro-
vide a succinct outline of the information-theoretic limits of such algorithms.
The most basic of these limits is the following: If the samples are ε-contaminated
(even by a nonadaptive adversary), then one cannot hope to learn the underly-
ing distribution to total variation distance better than (approximately) ε. To
state this formally, we present the following proposition.

Proposition 1.7 Let X and Y be distributions with dTV(X,Y) ≤ 2ε for some
0 < ε < 1. A distribution D is taken to be either X or Y. Then an algorithm,
given any number of samples from D with ε-general contamination, cannot re-
liably distinguish between the cases D = X and D = Y. Furthermore, the same
holds if (i) dTV(X,Y) ≤ ε/(1 − ε) and the samples have ε-additive contamina-
tion or if (ii) dTV(X,Y) ≤ ε and the samples have ε-subtractive contamination.
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10 Introduction to Robust Statistics

(a) (b)

(c)

Figure 1.4 Illustration of construction of Z from X and Y: general contamination
(a), additive contamination (b), subtractive contamination (c).

Proof In all three cases, the basic idea is that the adversary can find a single
distribution Z such that Z is both an ε-contaminated version of X and an ε-
contaminated version of Y . If the algorithm is then presented with independent
samples from Z, there is no way to distinguish when these are contaminated
samples from D = X or contaminated samples from D = Y .

The constructions needed for our three types of contamination will be slightly
different. See Figure 1.4 for an example of the construction of Z in each of the
three cases.

In the case of general contamination, one can simply take Z = (X + Y)/2. In
this case, we have

dTV(X,Z) =
1
2
‖X − Z‖1 =

1
2
‖X − (X + Y)/2‖1 =

1
2
‖(X − Y)/2‖1 =

1
4
‖X − Y‖1

= dTV(X,Y)/2 ≤ ε.

A similar bound on dTV(Y,Z) completes the argument.
For additive and subtractive contamination, the argument is slightly more

complicated. If X and Y have total variation distance δ, then writing X − Y
as a positive part and a negative part, we obtain X = Y − δL + δA, for some
distributions L and A with δL ≤ Y . Writing this slightly more symmetrically,
we can take W = (Y − δL)/(1 − δ), and we have X = (1 − δ)W + δA and Y =

(1 − δ)W + δL.
For the case of subtractive contamination, we can take Z = W as above.
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1.3 Information-Theoretic Limits 11

Then Z can be obtained from either X or Y by subtracting a δ-fraction of the
mass and renormalizing.

For additive contamination, we can take Z = ((1 − δ)W + δA + δL)/(1 + δ).
We note that this can be obtained by adding δ/(1 + δ) additive contamination
to either X and Y (adding L to X or A to Y). As long as δ ≤ ε/(1 − ε), we have
δ/(1 + δ) ≤ ε, which completes our proof. �

Remark 1.8 The distances at which X and Y are indistinguishable given
corruptions, presented in Proposition 1.7, are essentially tight. See Exercise
1.3 for more details.

One interesting takeaway from Proposition 1.7 is that if ε ≥ 1/2, then one
cannot reliably distinguish between any pair of distributions X and Y in the
presence of ε additive or general contamination. This is because the total var-
iation distance of any two distributions is at most 1. This means that for es-
sentially every problem that we consider in this book (with the exception of
topics covered in Chapter 5), we will need to assume that the proportion of
contamination ε is less than 1/2 in order for any guarantees to be possible.

Another implication of Proposition 1.7 is that it puts limits on our ability
to robustly estimate basic statistics of the underlying distribution. For exam-
ple, if one makes no assumptions on the underlying distribution D, it will be
impossible (even with an unlimited number of samples) to learn the mean of
D to within any bounded error. This is simply because one can find pairs of
distributions X,Y with dTV(X,Y) < ε but with ‖E[X] − E[Y]‖ unbounded.

Consequently, in order for meaningful results to be possible, we will need
to consider settings where the inlier distribution is restricted to some well-
behaved family. Broadly speaking, the best we can hope to achieve is to learn
the underlying distribution within error O(ε) in total variation distance. If our
distribution family is one where no ε-fraction of the probability mass can con-
tribute too much to the mean (which is a measure of the concentration of the
distribution), then this may suffice to obtain relatively good estimates of the
mean. On the other hand, for families without this kind of concentration, we
will be limited in how well we can expect to do.

The information-theoretic limitations for some basic distribution families
are summarized below.

Lemma 1.9 Let D be the family of one-dimensional Gaussian distributions
with standard deviation 1. An algorithm with access to ε-corrupted samples
(additive, subtractive, or general contamination) from an unknown distribution
D ∈ D cannot reliably estimate E[D] to additive error o(ε).
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12 Introduction to Robust Statistics

Proof Let δ be a sufficiently small constant multiple of ε. It is not hard to see
that dTV(N(0, 1),N(δ, 1)) < ε. Therefore, by Proposition 1.7, no algorithm can
reliably distinguish between G = N(0, 1) and G = N(δ, 1). However, these
distributions have means that differ by δ. If an algorithm could estimate the
mean to error better than δ/2, it could use this estimate to distinguish between
these distributions, yielding a contradiction. �

Using similar logic, we can obtain analogous results for some other natural
distribution families.

Lemma 1.10 Let D be the family of one-dimensional log-concave distri-
butions with standard deviation 1. An algorithm with access to ε-corrupted
samples from an unknown distribution D ∈ D cannot reliably estimate E[D]
to additive error o(ε log(1/ε)).

Lemma 1.11 Let D be the family of all one-dimensional distributions with
standard deviation at most 1. An algorithm with access to ε-corrupted samples
from an unknown distribution D ∈ D cannot reliably estimate E[D] to within
additive error o(

√
ε).

Lemma 1.12 LetD be the family of one-dimensional distributions D satisfy-
ing E[|D−µD|

k] < 1, for some k ≥ 2, and µD = E[D] (i.e., distributions with kth
central moment bounded above by 1). An algorithm with access to ε-corrupted
samples from an unknown distribution D ∈ D cannot reliably estimate E[D]
to additive error o(ε1−1/k).

1.4 One-Dimensional Robust Estimation

We begin our analysis of computationally efficient robust statistics by solving
some of the most fundamental estimation tasks for natural families of one-
dimensional distributions. This will allow us to gain a basic understanding of
some useful techniques and principles without having to deal with many of
the difficulties introduced by high-dimensional versions of these problems. In
particular, we focus on robust estimators of the mean and standard deviation.
For these problems, we will assume that the distribution D over inlier samples
comes from some known family D, and we will give algorithms that robustly
estimate the mean and variance of D, given access to ε-corrupted samples from
D.

1.4.1 Estimators Based on Order Statistics

One of the difficulties of robust mean estimation is that the empirical mean
itself is very far from being robust. In particular, a single extreme outlier can
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1.4 One-Dimensional Robust Estimation 13

corrupt the mean of a finite sample set by an arbitrarily large error. This is not
an issue for the median and other order statistics, thus making them good can-
didates for designing robust estimators. To set things up, we define the quan-
tiles of a distribution or a set.

Definition 1.13 (Quantiles) Let X be a distribution on R and q ∈ [0, 1].
We define the q-quantile of X to be the infimum over all t ∈ R such that
Pr[X ≤ t] ≥ q. If S is a multiset of real numbers, then the q-quantile of S is
the q-quantile of the uniform distribution over S .

The basic result about quantiles is that the empirical q-quantile of a distri-
bution is a fairly good empirical estimator of the true q-quantile.

Proposition 1.14 Let X be a distribution on R and let 0 < ε, δ < 1/2. Let S be
a set of n samples from X that are ε-corrupted under the strong contamination
model. Then with probability at least 1 − δ, the q-quantile of S is between the
(q − ε + O(

√
log(1/δ)/n))-quantile of X and the (q + ε + O(

√
log(1/δ)/n))-

quantile of X.

Proof We will show that with probability at least 1 − δ/2, the q-quantile of
S is at least the (q − ε + O(

√
log(1/δ)/n))-quantile of X. The upper bound will

follow similarly. By definition, the q-quantile of S is the minimum value that
is bigger than at least qn elements of S . In other words, we need to show that
if we take t to be the (q − ε − C(

√
log(1/δ)/n))-quantile of X for C > 0 some

sufficiently large constant, then with probability at least 1 − δ/2, there are at
most qn elements of S less than t.

The proof is quite simple. The set S was generated by first sampling n in-
dependent elements from X. Each of these elements independently and with
probability at most (q − ε −C(

√
log(1/δ)/n)) are less than t. Therefore, by the

Chernoff bound, with probability at least 1 − δ/2, the number of original sam-
ples with value less than t was no more than (q − ε)n. Upon corrupting εn of
these samples, we still have at most qn samples less than t. This completes the
proof of the lower bound. The upper bound follows analogously. �

Proposition 1.14 is useful for estimating the mean of distributions for which
the mean can be related to an order statistic. Perhaps the most common such
case is that of distributions symmetric about their mean, as for such distri-
butions the mean and median will be the same. This result can be applied in
particular for the case of Gaussian distributions.

Corollary 1.15 Let D = N(µ, σ2) be a one-dimensional Gaussian distribu-
tion. Let S be an ε-corrupted set of n samples from D, for some ε < 1/3, and
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14 Introduction to Robust Statistics

let m be its median. Then, if δ is at least e−an for some sufficiently small a, with
probability 1 − δ we have

|m − µ| = O(ε +
√

log(1/δ)/n)σ.

Proof By Proposition 1.14, with probability 1 − δ we have that m is between
the (1/2 − ε + O(

√
log(1/δ)/n))-quantile and the (1/2 + ε + O(

√
log(1/δ)/n))-

quantile of D. Since the (1/2 + η)-quantile of D is µ + O(ησ) for η < 2/5, the
result follows. �

In order to robustly estimate the standard deviation for certain distribution
families, one can express the standard deviation in terms of a difference be-
tween order statistics. For example, the Inter-Quartile-Range (IQR) is the dif-
ference between the 1/4-quantile and the 3/4-quantile. Specifically, it is not
hard to see that for Gaussian distributions, D = N(µ, σ2), the IQR of D is
equal to ciqr σ, for some universal constant ciqr. Using this fact, we can obtain
a robust estimator for the standard deviation of a Gaussian distribution.

Corollary 1.16 Let D = N(µ, σ2) be a one-dimensional Gaussian distribu-
tion. Let S be an ε-corrupted set of n samples from D, for some ε < 1/8, and
let r be the IQR of S . Let ciqr be the aforementioned universal constant. Then,
if δ is at least e−an for some sufficiently small a, with probability 1 − δ we have

σ = ciqr r (1 + O(ε +
√

log(1/δ)/n)).

Proof By Proposition 1.14, with probability at least 1 − δ, each of the em-
pirical quartiles correspond to the (1/4 ± ε + O(

√
log(1/δ)/n))-quantile and

the (3/4 ± ε + O(
√

log(1/δ)/n))-quantile of D. This means that they are each
within O(ε+O(

√
log(1/δ)/n))σ of the 1/4- and 3/4-quantiles. Thus, r is within

O(ε + O(
√

log(1/δ)/n))σ of the IQR of D (and also at least a constant multiple
of) σ, and the result follows. �

One point worth making about Corollaries 1.15 and 1.16 is that both have
error proportional to σ. This means that while the mean can be estimated to
an additive error of O(εσ), the standard deviation can only be estimated up to
multiplicative error. This is a fairly common phenomenon.

Unfortunately, while the above-described estimators work quite well for
Gaussian distributions, they are fairly specific and not generalizable. The me-
dian estimator essentially requires that the mean and median be the same; this
works for symmetric distributions, but for skewed ones it does not work in
general. The IQR, as an estimator of the standard deviation, is even more frag-
ile. While it is not hard to show, using Chebyshev’s inequality, that the IQR is
never more than a constant factor larger than the standard deviation (and not
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1.4 One-Dimensional Robust Estimation 15

much smaller for “nice” distributions), getting a precise relationship between
the two essentially only worked here because the family of Gaussians has only
one distribution up to affine transformation.

In order to obtain estimators for more complicated families, we will need
to do something more similar to computing an actual mean. However, we will
need to do this in such a way that an ε-fraction of samples being very extreme
errors will not significantly affect the estimate. One fairly straightforward way
to achieve this is by simply throwing away the few most extreme datapoints on
each side and computing a truncated mean.

1.4.2 Estimators Based on Truncation

In general, we need an estimator that is not too much affected by an ε-fraction
of the points being either very large or very small. A natural way to correct
this is to take any points in the top or bottom ε-fraction and either throw them
away or reduce them to something more manageable. There are a few ways
to define the relevant truncation operation; the following is perhaps the most
efficient version.

Definition 1.17 (Truncation) Given a distribution X on R and 0 < ε < 1/2,
we define the ε-truncation of X to be the distribution obtained by taking X
conditioned on the values lying between the ε-quantile and the (1−ε)-quantile.

See Figure 1.5 for an illustration of this definition.
The following proposition shows that, under reasonable assumptions, the

mean of the truncated empirical distribution can provide a good robust estimate
of the true mean.

Figure 1.5 A Gaussian (dotted line) and its ε-truncation (solid line) for ε = 0.1.
The ε-tails of the distribution on both sides are removed and the remaining distri-
bution rescaled.
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16 Introduction to Robust Statistics

Proposition 1.18 Let 0 < ε < ε′ < 1/2. Let D be a distribution on R with
mean µ such that removing any 2ε′-fraction of the mass of D changes the mean
by at most η > 0 in absolute value. Let n be an integer at least a sufficiently
large constant multiple of log(1/δ)/(ε′ − ε)2, for some 0 < δ < 1/2. Let S 0

be a set of n independent samples from D and let S be obtained from S 0 by
adversarially corrupting an ε-fraction of its elements. Then, with probability
at least 1−δ, the mean µ̂ of the ε′-truncated empirical distribution of S satisfies
|̂µ − µ| ≤ η.

Remark 1.19 Some version of the assumption made in Proposition 1.18 –
that removing a 2ε′-fraction of the mass of D does not change the mean by
much – is essentially necessary for robust mean estimation to be possible. For
example, suppose that D′ can be obtained from D by removing a 2ε-fraction
of its mass and that |E[D]−E[D′]| > η. Then, dTV(D,D′) ≤ 2ε, so by Proposi-
tion 1.7 one cannot distinguish between D and D′ with any number of samples.
Therefore, one cannot hope to estimate the mean to error better than η/2.

Proof First, we note that for any distribution X and any m ∈ R, we have

E[X] − m =

∫ ∞

m
Pr[X > t]dt −

∫ m

−∞

Pr[X < t]dt.

If Xε is the ε-truncation of X, then we can write Pr[Xε > t] as

fε (Pr[X > t]) def
=


0 if Pr[X > t] < ε,

(Pr[X > t] − ε)/(1 − 2ε) if 1 − ε > Pr[X > t] > ε,

1 if Pr[X > t] > 1 − ε.

In particular, letting m be the median of D, we have

E[D] − m =

∫ ∞

m
Pr[D > t]dt −

∫ m

−∞

Pr[D < t]dt.

For the truncated version of S , we can write

E[S ε′ ] − m =

∫ ∞

m
fε′ (Prx∼uS [x > t])dt −

∫ m

−∞

fε′ (Prx∼uS [x < t])dt.

By definition, the empirical probability Prx∼uS [x > t] is the fraction of ele-
ments of S that are bigger than t. This quantity is within ε of Prx∼uS 0 [x > t].
For any given value of t, by our choice of n, with probability 1 − δ/2, it will
hold that ∣∣∣Prx∼uS 0 [x > t] − Pr[D > t]

∣∣∣ < (ε′ − ε).

In fact, by the VC inequality (Theorem A.12), with probability 1−δ, this holds
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1.5 Higher-Dimensional Robust Mean Estimation 17

simultaneously for all t. If this is the case, we have

E[S ε′ ] − m =

∫ ∞

m
fε′ (Pr[D > t] ± ε′)dt −

∫ m

−∞

fε′ (Pr[D < t] ± ε′)dt.

This is at most

E[S ε′ ] − m ≤
∫ ∞

m
fε′ (Pr[D > t] + ε′)dt −

∫ m

−∞

fε′ (Pr[D < t] − ε′)dt

≤

∫ ∞

m
Pr[D > t]/(1 − 2ε′)dt −

∫ m

−∞

max(0,Pr[D < t] − 2ε′)/(1 − 2ε′)dt.

Letting D+
2ε′ be the distribution obtained by conditioning D on x being larger

than the 2ε′-quantile, then the above can be seen to equal E[D+
2ε′ ] − m. Since

D+
2ε′ is obtained from D by removing a 2ε′-fraction of the mass, we have

µ̂ − µ = (E[S ε′ ] − m) − (E[D] − m)

≤ (E[D+
2ε′ ] − m) − (E[D] − m)

≤ η.

The lower bound follows similarly. �

Proposition 1.18 applies to a much broader family of distributions than just
Gaussians. Specifically, it is not hard to see that if D = N(µ, σ2) is a Gaussian
and ε′ is O(ε) and at most 1/3, the error η can be taken to be O(ε

√
log(1/ε)σ).

The exact same guarantee holds if D is any sub-Gaussian distribution with
standard deviation σ, that is, a distribution whose tails decay at least as fast as
the tails of the Gaussian with the same standard deviation.

On the other hand, if D is a general log-concave distribution with standard
deviation σ, η is at most O(ε log(1/ε)σ). More generally, if D has kth central
moment at most 1, we have that η = O(ε1−1/k).

Finally, we note that if one wants to robustly compute the variance of D for
these more general families, the simplest technique is to first use a truncated
mean to obtain an estimate µ̂ for the mean of D, and then use another truncated
mean to estimate the average value of (D − µ̂)2.

1.5 Higher-Dimensional Robust Mean Estimation

While the techniques in the previous section do a fairly good job of estimating
the mean of a one-dimensional random variable, generalizing these techniques
to higher dimensional problems is somewhat tricky. For concreteness, we will
work with perhaps the simplest problem in this family. Let D = N(µ, Id) be a
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18 Introduction to Robust Statistics

d-dimensional Gaussian with identity covariance matrix and unknown mean µ.
Given access to ε-corrupted samples from D, the goal is to estimate its mean µ
up to a small error in `2-norm.

We start by discussing the difficulties involved with robustly estimating
µ in higher dimensions. First, we would like to understand the information-
theoretic limits for this problem. By Proposition 1.7, we know that we cannot
hope to distinguish between a pair of Gaussians with total variation distance
at most ε. For the family of spherical Gaussians, it is not hard to show that
dTV(N(µ, Id),N(µ′, Id)) = Θ(min(1, ‖µ − µ′‖2)). Therefore, we cannot hope to
learn the mean to `2-error o(ε) in the presence of ε-corruptions.

Switching our attention to algorithms, perhaps the most natural approach
is to try to generalize the one-dimensional median-based estimator; alas, it is
unclear how to achieve this, as there are various ways to define a notion of
“median” in high dimensions. One natural idea is to use the coordinate-wise
median: That is, take a number of samples xi and for each coordinate j take the
median of the jth coordinates of the xi. Since the jth-coordinates are distrib-
uted as N(µ j, 1), this gives an O(ε)-approximation for each coordinate of µ by
Corollary 1.15. Unfortunately, an estimator that guarantees error O(ε) in each
coordinate might still have `2 error as large as Ω(ε

√
d), which is significantly

worse than our desired error.
Interestingly, it turns out that a generalization of this idea does work – lead-

ing to a sample-efficient (but computationally inefficient) multivariate robust
mean estimator. Note that if v is a unit vector in Rd, then v · D is distributed
as N(v · µ, 1). Using a one-dimensional robust mean estimator for this Gauss-
ian random variable (such as the empirical median), we can obtain an estimate
mv such that with high probability |mv − v · µ| = O(ε). The idea of our high-
dimensional robust mean estimator is the following: If we can compute these
approximations for every unit vector v, this will suffice to estimate µ. In partic-
ular, if we can find any µ̂ ∈ Rd such that |mv− v · µ̂| = O(ε) for all unit vectors v
(note that such vectors µ̂ exist, since µ satisfies this requirement), then we have

‖µ − µ̂‖2 = sup
‖v‖2=1

|v · (µ − µ̂)| ≤ sup
‖v‖2=1

(
|v · µ − mv| + |v · µ̂ − mv|

)
= O(ε). (1.1)

In order to be able to actually find such a µ̂, we will need that the median be a
good estimator of the mean in every linear projection. Looking at the proof of
Proposition 1.14, it can be seen that this will hold if for our set S of uncorrupted
samples and every unit vector v and t ∈ R, we have∣∣∣Prx∼uS [v · x > t] − Pr[v ·G > t]

∣∣∣ < ε.
By the VC inequality (Theorem A.12), this holds with high probability, as
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1.5 Higher-Dimensional Robust Mean Estimation 19

long as the number of samples is at least a sufficiently large constant multiple
of d/ε2.

This argument shows that multivariate robust mean estimation of a spherical
Gaussian with `2-error of O(ε) – independent of the dimension! – is in fact pos-
sible information-theoretically; alas, the implied estimator is highly nontrivial
to compute. Taken literally, one would first need to compute mv for every unit
vector v (i.e., for infinitely many directions), and then find some appropriate
µ̂. Via a slight relaxation of the aforementioned argument, the situation is not
this bad. If we modify Equation (1.1), we note that it is actually sufficient to
have |v · µ̂ − mv| = O(ε) for all unit vectors v in some finite cover C of the unit
sphere. In particular, we will need to know that

‖µ − µ̂‖2 = O(sup
v∈C
|v · (µ − µ̂)|).

Fortunately, there exist finite covers C of the unit sphere such that for any
x ∈ Rd,

‖x‖2 = O(sup
v∈C
|v · x|). (1.2)

See Theorem A.10. On the other hand, it is not hard to see that for Equation
(1.2) to hold for even a random x, we need to have |C| scale exponentially in d.

In summary, this relaxation does give us the following exponential-time al-
gorithm for robust mean estimation: Given such a set C of size 2O(d), we first
compute mv for each v ∈ C, and then solve a linear program (of exponential
size) to find a µ̂ satisfying |v · µ̂ − mv| = O(ε) for all v ∈ C. This yields an
algorithm with runtime poly(2d/ε).

This discussion is summarized in the following proposition.

Proposition 1.20 There exists an algorithm that, on input of an ε-corrupted
set of samples from D = N(µ, Id) of size n = Ω((d + log(1/τ))/ε2), runs in
poly(n, 2d) time, and outputs µ̂ ∈ Rd such that with probability at least 1− τ, it
holds that ‖̂µ − µ‖2 = O(ε).

For distributions other than Gaussians, one can provide a similar analysis.
As long as there exists a one-dimensional robust mean estimator that can ap-
proximate v · µ to error δ for every unit vector v (and assuming that we can
make this hold in all directions simultaneously with a limited number of sam-
ples), then one can use this to construct an estimator of µ with `2 error O(δ) in
exponential time (see Exercise 1.12).

Connection with Tukey Median There is a classical method to robustly esti-
mate the mean of symmetric distributions known as the Tukey median, which

https://doi.org/10.1017/9781108943161.001 Published online by Cambridge University Press

https://doi.org/10.1017/9781108943161.001


20 Introduction to Robust Statistics

can be thought of as a variation on the estimator from Proposition 1.20 by us-
ing median-based estimators. In particular, given a distribution D, we define
the Tukey depth of a point y with respect to D as the minimum over unit vec-
tors v of Prx∼D[v · x > v · y]. The Tukey median of a distribution D is then any
point with maximum Tukey depth.

If D = N(µ, Id) is a Gaussian distribution, then the Tukey depth of the mean
µ will be 1/2. Similarly, for the sample case, the Tukey depth of µ with respect
to the uniform distribution over a sufficiently large number of samples from
D will be arbitrarily close to 1/2 with high probability. If D is replaced by an
ε-corruption of D (or if an ε-fraction of the samples are corrupted), then the
Tukey depth of µD will still be 1/2−O(ε). Moreover, it is not hard to show that
any point y with Tukey depth 1/2 − O(ε) with respect to the ε-corruption of D
(or its samples) will satisfy ‖x − y‖2 = O(ε) with high probability.

In summary, for Gaussians and other symmetric distributions, the Tukey me-
dian provides another method of robustly estimating the mean to near-optimal
error. Unfortunately, computing the Tukey median also leads to computational
issues. In particular, it has been shown that computing a Tukey median of an
arbitrary point set is NP-Hard.

The kind of results described in this section were the state of the art for
several decades. High-dimensional robust mean estimation, even for the simple
case of spherical Gaussians, had three kinds of algorithms: Those that were of
an entirely heuristic nature (i.e., without provable error guarantees); those that
had error guarantees which scaled polynomially in the dimension; and those
that had runtimes which scaled exponentially in the dimension. This held until
a new class of algorithms arose to circumvent both of these problems; we will
discuss these developments in the next chapter.

1.6 Connection with Breakdown Point

The focus of this book is on developing robust estimators to approximate a
desired parameter of a distribution given an ε-corrupted dataset. Specifically,
we want robust estimators that approximate a target parameter as accurately as
possible, and in particular with no dependence on the underlying dimension-
ality of the data. Until recently, such dimension-independent error guarantees
could not be achieved in high dimensions with computationally efficient algo-
rithms.

Classical work in robust statistics largely focused on designing robust es-
timators with large breakdown point. The breakdown point of an estimator is
a natural notion that quantifies the effect (or influence) of the outliers on its
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1.6 Connection with Breakdown Point 21

performance. Here we define a population variant of the breakdown point, spe-
cifically for the problem of robust mean estimation. Similar definitions exist
for various other parameter estimation tasks.

While estimators typically act on finite sample sets, for simplicity we think
about estimators as acting on distributions (by treating samples as the uniform
distribution over the samples and considering the infinite sample regime). That
is, we view an estimator T as a function mapping a distribution to the desired
parameter (mean vector). For a distribution p and an estimator T , we will de-
note by T (p) the mean vector estimate that T outputs given p.

Given this notation, we start by defining the notion of maximum bias.

Definition 1.21 (Maximum Bias) For a fixed distribution p and a contamina-
tion parameter 0 < ε < 1/2, the maximum ε-bias bT (p, ε) of the estimator T is
defined to be the supremum `2-distance between T (p) and T ( p̃), where p̃ is an
ε-corruption of p (under additive, subtractive, or general contamination). For
general contamination, we can write

bT (p, ε) = sup {‖T (p) − T ( p̃ )‖2 | dTV( p̃, p) ≤ ε} .

The breakdown point ε∗(p) is defined as the minimum fraction of corrup-
tions that can drive the maximum bias to infinity.

Definition 1.22 (Breakdown Point) For a fixed distribution p, the breakdown
point ε∗(T, p) of the estimator T on p is defined to be the infimum value of ε
such that the maximum ε-bias of T on p is unbounded. For general contamina-
tion, we can write ε∗(T, p) = inf{ε | bT (p, ε) = ∞}. For a family of distributions
D, the breakdown point of an estimator T on D is the worst breakdown point
for any distribution p ∈ D, that is, ε∗(T,D) = inf{ε∗(T, p), p ∈ D}.

While the notion of breakdown point can be quite informative in certain set-
tings, it is generally not sufficiently precise to quantify the robustness of an
estimator in high dimensions. We provide a few illustrative examples for the
problem of robust mean estimation when the inlier distribution is an identity
covariance Gaussian, that is, when the familyD is {N(µ, I), µ ∈ Rd}. A first ob-
servation is that the empirical mean has a breakdown point of 0. In particular,
arbitrarily small corruptions (in total variation distance) to the underlying dis-
tribution can produce arbitrarily large errors in the mean. This agrees with the
intuition that the empirical mean is highly nonrobust in the presence of outliers.
A second example is that of the coordinate-wise median. It turns out that the
coordinate-wise median has breakdown point of 1/2 (which is the maximum
possible) in any dimension d. This may suggest that the coordinate-wise me-
dian is the most robust mean estimator in high dimensions. On the other hand,
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22 Introduction to Robust Statistics

it is not difficult to construct examples where the coordinate-wise median will
have `2-distance of Ω(ε

√
d) from the true mean. A third example is that of the

Tukey median. Recall that the Tukey median is known to have `2-error of O(ε)
from the true mean (which is information-theoretically best possible). On the
other hand, for Gaussians in d ≥ 2 dimensions and additive contamination, its
breakdown point can be shown to be equal to 1/3 (see Exercise 1.8). In particu-
lar, it would be considered inferior to the coordinate-wise median with respect
to this criterion. In essence, the breakdown point is a measure of how many
corruptions an estimator can deal with before it becomes totally useless. How-
ever, if one cares about the size of the errors that one incurs (more precisely
than simply knowing whether or not they are finite), the breakdown point will
be an insufficient measure of robustness.

1.7 Exercises

1.1 (Definitions of Total Variation Distance) Prove that the different formu-
lations of total variation distance given in Definition 1.4 are equivalent.

1.2 (Contamination Models) In this exercise, we will compare three con-
tamination models – the strong contamination model, the total variation
distance model, and the Huber contamination model – in terms of the
difficulty they impose on a learner. In particular, we say that error model
A can simulate error model B for sample size N if for every strategy the
adversary for error model B can employ to corrupt a set of N samples,
an adversary for error model A can employ a corresponding strategy, so
that the distributions over sets of samples received by the algorithm are
close in total variation distance.

(a) Show that if error model A can simulate error model B for sample
size N, then any learning algorithm that works against corruptions
of type A will also work against corruptions of type B. In particular,
this shows that corruptions of type B are weaker than corruptions of
type A.

(b) Show that for any ε′ > ε > 0, the strong contamination model with
the ability to corrupt an ε′-fraction of samples can simulate the ε-
total variation distance error model over N samples, for any N a
sufficiently large function of ε, ε′.

(c) Show that the ε-error total variation distance contamination model
can simulate the ε-error Huber contamination model for any number
of samples.
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1.3 (Precise Limits of Robust Learning) Here we will show that Proposi-
tion 1.7 is tight in the following sense: Let X and Y be two given prob-
ability distributions with dTV(X,Y) = δ, for some δ > 0. Let D be a
distribution known to be either X or Y . An algorithm is given corrupted
samples from D and is asked to determine whether D = X or D = Y .
Show that it can reliably make this determination with a bounded num-
ber of samples if:

(a) The algorithm is given samples with ε-additive contamination and
δ > ε/(1 − ε).

(b) The algorithm is given samples with ε-subtractive contamination and
δ > ε.

(c) The algorithm is given samples with ε-general contamination and
δ > 2ε.

(Hint: Note that there is a set S so that |X(S )−Y(S )| = δ. Consider the
fraction of samples that lie in S .)

1.4 (Robustness of the Median)

(a) We showed in this chapter that the median is a robust mean estimator
forN(µ, 1) with error O(ε). What is the optimal constant factor in the
O(·) for small ε?

(b) A distribution D on R with mean µ ∈ R is called (s, ε)-smooth,
where ε > 0 and s = s(ε), if it satisfies PrX∼D[X ≥ µ + s] ≤ 1/2 − ε
and PrX∼D[X ≤ µ − s] ≤ 1/2 − ε. Show that given a sufficiently large
ε′-corrupted set T of samples from D (for some ε > ε′ > 0), the
median of T is a robust estimator of the mean µ with error at most s.

(c) Construct a one-dimensional distribution D with sub-Gaussian tails
such that the median of D does not perform well as a robust mean
estimator. What about a symmetric distribution D?

1.5 (Robust Mean Estimation Under Bounded kth Moment) Let D be a dis-
tribution on R with bounded kth moment, for some k ≥ 2. That is, D
satisfies EX∼D[|X − µ|k] ≤ σk, for some known parameter σ > 0 and
positive integer k, where µ is the mean of D.

(a) Show that the truncated mean of D is a robust mean estimator of the
mean µ with error O(σε1−1/k).

(b) Show that the bound from part (a) is minimax optimal by proving
Lemma 1.12. In particular, show that if an algorithm is given an ε-
corrupted set of samples (in the Huber model) from a distribution D
guaranteed to have bounded kth moments in the above sense (and
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for which nothing else is known), it is information-theoretically im-
possible to learn the mean of D within error better than Ω(σε1−1/k)
with more than 2/3 probability of success.

1.6 (Robust Mean Estimation for Log-Concave Distributions) Let D be a
log-concave distribution on R with standard deviation at most 1. A stand-
ard result about such distributions tells us that D has sub-exponential
tails, in the sense that the probability that a sample from D is at distance
more than t from its mean is O(exp(−Ω(t))).

(a) Show that the truncated mean of D is a robust mean estimator of the
mean µ with error O(ε log(1/ε)).

(b) Show that the bound from part (a) is minimax optimal by proving
Lemma 1.10. In particular, show that if an algorithm is given an ε-
corrupted set of samples (even in the Huber model) from a distribu-
tion D guaranteed to be log-concave with variance at most 1 (and for
which nothing else is known), it is information-theoretically impos-
sible to learn the mean of D within error better than Ω(ε log(1/ε))
with more than 2/3 success probability.

1.7 (Obliviousness to Contamination Parameter) Note that, in contrast to the
median, the truncated mean requires a priori knowledge of the contami-
nation parameter ε > 0. In this problem, we will explore to what extent
this can be avoided.

(a) Let D be a distribution on R with variance at most σ > 0, where σ is
a known parameter. Consider the following estimator for the mean µ
of D: Draw n ε-corrupted points from D, where n � 1/ε2. Let X1 ≤

X2 ≤ · · · ≤ Xn be an ordering of these points. Find the minimum
1 ≤ a ≤ n/2 such that the subsequence Xa ≤ Xa+1 ≤ · · · ≤ Xn+1−a

has empirical variance at most 3σ. Output the empirical mean of
{Xa, Xa+1, . . . , Xn+1−a}. Show that this gives a robust estimator of µ
with error O(σ

√
ε).

(b) Let D be a distribution on R with variance at most σ > 0, where
σ is unknown. Show that it is information-theoretically impossible
to robustly estimate the mean of D without a priori knowledge of
the contamination parameter ε > 0. In particular, show that even
given an unlimited number of samples, no algorithm that does not
know either ε or σ can learn the mean of D to error O(σ

√
ε) with

probability 2/3.
(c) Let D be a distribution on R with bounded kth moment, for some

k ≥ 2 in the sense of Problem 1.5. Design an algorithm that learns
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the mean of D to error O(σε1−1/k) in the presence of an ε-fraction of
outliers without knowing ε.

1.8 (Breakdown Point Computations)

(a) Show that the breakdown point of the median of a continuous, one-
dimensional distribution is 1/2.

(b) Show that the breakdown point of the Tukey median of a two-
dimensional Gaussian with additive contamination is at most 1/3.

(c) Show that the breakdown point of the Tukey median of any symmet-
ric, continuous distribution with respect to additive contamination is
at least 1/3.

(d) Show that the breakdown point of the Tukey median of any symmet-
ric, continuous distribution with respect to total variation contami-
nation is at most 1/4.

1.9 (Estimation Accuracy with Corruption Rate Close to 1/2) In this exer-
cise, we examine what happens to the error rates for robust mean esti-
mation problems when the fraction of outliers ε is close to 1/2 (note that
when equals 1/2, mean estimation is usually impossible, by Proposition
1.7).

(a) Let X = N(µ, 1) ∈ R be a Gaussian with unknown mean µ. Show
that if one is given sufficiently many samples from X with ε-general
contamination for some ε < 1/2, the empirical median estimates µ
to error O(

√
log(1/(1/2 − ε))) with high probability.

(b) Show that the bound in part (a) is best possible in the sense that
no algorithm given such ε-corrupted samples can reliably learn µ to
error o(

√
log(1/(1/2 − ε))) as ε approaches 1/2.

(c) Let X ∈ R be a distribution with variance at most 1 and unknown
mean µ. Show that if one is given sufficiently many samples from
X with ε-general contamination for some ε < 1/2, an appropriate
truncated mean can approximate µ to error O(1/

√
1/2 − ε) with high

probability.
(d) Show that the bound in part (c) is best possible in the sense that

no algorithm given such ε-corrupted samples can reliably learn µ to
error o(1/

√
1/2 − ε), as ε approaches 1/2.

1.10 (High Probability Mean Estimation) Estimation problems for heavy-tailed
distributions exhibit many of the same difficulties that problems of esti-
mating with adversarial noise do. These issues become particularly clear
when we want to construct estimators with very small probability of er-
ror. In this exercise, we explore some of these connections.
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(a) Consider the sample mean as an estimator of the mean of a one-
dimensional Gaussian N(µ, σ2). Show that for any δ ∈ (0, 1), given
n i.i.d. samples from N(µ, σ2), with probability 1 − δ, the sample
mean has distance O(σ

√
log(1/δ)/n) from the true mean.

(b) Show that the sample mean does not work well for general distri-
butions with bounded variance. In particular, for n ∈ Z+, δ ∈ (0, 1),
show that there is a one-dimensional distribution X with standard de-
viation at most σ such that with probability at least δ the empirical
mean of X computed from n i.i.d. samples differs from the true mean
by at least Ω(σ

√
1/(nδ)).

(c) Show that the rate from part (b) can be improved by taking an ap-
propriate truncated mean. In particular, given n a positive integer and
δ ∈ (0, 1), design an estimator that given n i.i.d. samples from a dis-
tribution X with standard deviation at most σ produces an estimator
that is within distance O(σ

√
log(1/δ)/n) of the true mean of X with

probability at least 1 − δ.

Hint: You may need to make use of Bernstein’s Inequality (Theorem
A.7) in order to prove this.

(d) Show that the estimator from part (c) can be made robust to con-
tamination. In particular, in the presence of an ε-fraction of adver-
sarial errors, this estimator can be modified to achieve error O(σ√

log(1/δ)/n + σ
√
ε) with probability at least 1 − δ.

1.11 (Robustness of Geometric Median) For a finite set S ⊂ Rd, define its
geometric median to be the point x ∈ Rd minimizing

∑
y∈S ‖x − y‖2. Let

S be an ε-corrupted set of samples from N(µ, I) ∈ Rd of sufficiently
large size.

(a) Show that the geometric median of S has `2-distance O(ε
√

d) from
µ with high probability.

(b) Show that this upper bound is tight for a worst-case adversary.

1.12 (Sample-Efficient Robust Estimation) Use the methodology we intro-
duced to establish Proposition 1.20 to obtain robust (and computationally
inefficient) estimators for the following tasks:

(a) Estimating the mean of a distribution X ∈ Rd with bounded kth mo-
ments. In particular, show that if the kth moment of X is at mostσk in
any direction, there is an estimator that approximates the mean of X
to error O(ε1−1/kσ) from ε-corrupted samples with high probability.

(b) Sparse mean estimation of N(µ, I). Here the goal is to estimate the
mean µ under the assumption that it is k-sparse, that is, if µ is
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supported on an unknown subset of k coordinates. The sample com-
plexity should depend polynomially on k, but only logarithmically
on the underlying dimension.

(c) Estimating the covariance of N(0,Σ) under the assumption that Σ �

I. Specifically, find a Σ̂ that is close to Σ in spectral norm. What about
Frobenius norm?

1.8 Discussion and Related Work

The traditional approach in statistics is to design estimators that perform well
under the assumption that the underlying observations are i.i.d. samples from
a model of interest. Robust statistics aims to design estimators that are insensi-
tive or stable against small deviations from this classical assumption. That is, a
small change in the underlying distribution should result in a small change in
the performance of the estimator. Two closely related approaches of quantify-
ing the deviation from the standard i.i.d. assumption involve outlying observa-
tions or model misspecification.

As a subfield of Statistics, Robust Statistics was initiated in the pioneering
works of [140], [3], and [95]. The latter work introduced the contamination
model of Definition 1.1. More general contamination models, with respect to
other metrics, were studied in [83]. The reader is referred to some early intro-
ductory textbooks from the statistics community [85, 97]. The quote by Peter
Huber given in the introduction of this chapter is from Chapter 8 of [96].

Early work in the robust statistics community focused on the sample com-
plexity of robust estimation and on the notion of the breakdown point [72, 73,
84]. Interestingly, recent work in robust statistics [26] advocates that achieving
robustness under Huber contamination is more general than achieving large
breakdown point, and provides a unified way of studying robustness.

The Tukey median was defined by [141]. It is known that in the presence
of ε-contamination, when the inlier data is drawn from an unknown mean and
identity covariance Gaussian, the Tukey median achieves the optimal robust-
ness of O(ε). The same guarantee holds for other symmetric distributions as
well; see, for example, [26]. Several other depth functions have been studied
in the relevant statistics literature [26, 133, 135]. Unfortunately, the Tukey me-
dian is NP-hard to compute in general [103] and the many heuristics proposed
to approximate it degrade in the quality of their approximation as the dimen-
sion scales. Similar hardness results have been shown [15, 86] for essentially
all known classical estimators in robust statistics.

In recent years, learning in the presence of outliers has become a pressing
challenge in a number of high-dimensional data analysis applications. These
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include the analysis of biological datasets, where natural outliers are com-
mon [116, 124, 132] and can contaminate the downstream statistical analysis,
and data poisoning attacks in machine learning [14], where even a small frac-
tion of fake data (outliers) can substantially degrade the quality of the learned
model [19, 137]. In the following chapters of this book, we develop a gen-
eral algorithmic theory that leads to computationally efficient estimators for
a wide range of high-dimensional estimation tasks, including the mean esti-
mation task considered in this chapter. These efficient estimators have led to
practical improvements in the analysis of genetic data [46] and in adversarial
machine learning [44, 88, 139].
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