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A surrogate model of the runaway electron avalanche growth rate in a magnetic fusion
plasma is developed. This is accomplished by employing a physics-informed neural
network (PINN) to learn the parametric solution of the adjoint to the relativistic
Fokker–Planck equation. The resulting PINN is able to evaluate the runaway probability
function across a broad range of parameters in the absence of any synthetic or
experimental data. This surrogate of the adjoint relativistic Fokker–Planck equation is
then used to infer the avalanche growth rate as a function of the electric field, synchrotron
radiation and effective charge. Predictions of the avalanche PINN are compared against
first principle calculations of the avalanche growth rate with excellent agreement observed
across a broad range of parameters.

Keywords: runaway electrons, fusion plasma

1. Introduction

The unintentional generation of a large relativistic electron population continues to
pose a substantial obstacle to the success of the tokamak reactor concept. Such runaway
electrons (REs) may be inadvertently generated by the strong electric fields coinciding
with a tokamak disruption and obtain energies of several MeV (Hender et al. 2007).
Due to their high energy and often localized impact, REs have the potential to induce
substantial damage to plasma facing components (Matthews et al. 2016). Obtaining a
robust description of their formation processes has thus emerged as a topic of immediate
importance to tokamak devices in addition to its intrinsic interest to plasma physics.

One of the primary challenges in describing REs is the multi-physics nature of a fusion
plasma. In particular, alongside a description of RE kinetics, an accurate treatment of RE
formation requires the self-consistent evolution of the background magnetohydrodynamic
(MHD) equilibrium, impurity transport and radiative losses. As a result, a promising
approach toward developing an integrated description of RE formation and evolution
involves the identification of reduced models of RE kinetics that can be coupled to
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a broader plasma physics framework (Bandaru et al. 2021; Hoppe, Embreus & Fülöp
2021; Liu et al. 2021; Sainterme & Sovinec 2024). Developing such a reduced RE
module has, however, posed a challenge to the plasma physics community. While several
reduced models of runaway generation processes such as Dreicer generation (Dreicer
1959; Kruskal & Bernstein 1962; Connor & Hastie 1975; Hesslow et al. 2019b), hot tail
generation (Helander et al. 2004; Smith & Verwichte 2008; Yang et al. 2024) or avalanche
generation (Rosenbluth & Putvinski 1997; Aleynikov & Breizman 2015; Martín-Solís,
Loarte & Lehnen 2015; Hesslow et al. 2019a) have been developed, these reduced models
often struggle to quantitatively describe the inherently kinetic physics that characterize
RE generation. Furthermore, many of these models were derived under highly simplified
assumptions, where their generalization to more realistic plasma conditions is non-trivial.

The rapidly evolving field of deep learning suggests a new pathway to developing
reduced RE models. While often computationally intensive to train, the online deployment
of deep learning based models is typically orders of magnitude faster than traditional
plasma physics codes, thus providing an efficient surrogate that may be called by a
broader plasma physics framework. In the present paper, our aim will be to develop a
physics-informed neural network (PINN) to provide an accurate reduced model of the
RE avalanche. In contrast to purely data-driven paradigms, this deep learning approach
embeds the physics model into the training of a deep neural network, enabling the PINN to
make predictions in the absence of synthetic or experimental data. In so doing, the trained
PINN encodes the underlying kinetic solution, allowing for greater interpretability, along
with predicting quantities of interest (QoI) such as the rate of RE generation.

This approach was recently used to predict the number of hot tail seed electrons in
an axisymmetric model of the thermal quench (McDevitt 2023). Our aim in the current
paper is to develop a PINN to describe the avalanche amplification of REs (Sokolov 1979;
Jayakumar, Fleischmann & Zweben 1993) as a function of local plasma parameters such as
the electric field strength, effective charge Zeff and the strength of synchrotron radiation.
In contrast to the hot tail seed mechanism, the avalanche mechanism of RE formation
requires a pre-existing ‘seed’ RE population to be present. Once established, large-angle
collisions of this RE seed with the cold background plasma will result in the initially cold
electrons being scattered to energies up to half of the initial energy of the seed electron.
For a sufficiently large electric field, these ‘secondary’ electrons will be accelerated to
relativistic energies, resulting in the exponential growth of the original seed. Such a
process is of particular importance to reactor scale tokamak plasmas due to the ability
of this mechanism to convert the ohmic plasma current into RE current, even in the limit
where only a minuscule seed population of REs is present (Martín-Solís, Loarte & Lehnen
2017; Vallhagen et al. 2020).

The remainder of this paper is organized as follows: § 2 provides a brief overview of
the physics-informed deep learning framework employed. The adjoint of the relativistic
Fokker–Planck equation, together with its solution, is described in § 3. Section 4 evaluates
the avalanche growth rate and threshold across a broad range of parameters and verifies
the predictions against those from a traditional RE solver. Conclusions along with a brief
discussion are given in § 5.

2. Physics-constrained deep learning

Physics-constrained deep learning methods have emerged as a powerful means to
efficiently describe complex physical processes. In addition to exploiting available data,
such methods seek to embed physical constraints into the training of a neural network
(Lagaris, Likas & Fotiadis 1998; Karpatne et al. 2017; Lusch, Kutz & Brunton 2018;
Wang et al. 2020; Karniadakis et al. 2021), thus providing a natural means of avoiding
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overfitting, along with allowing for greater generalizability to unseen parameter regimes.
Physics-informed neural networks (Karniadakis et al. 2021) have emerged as a particularly
prominent example. A PINN, in its simplest form, incorporates the partial differential
equation (PDE), boundary, and initial conditions into the loss function, yielding

Loss = 1
NPDE

NPDE∑
i

R2 (
pi, ti; λi

) + 1
Nbdy

Nbdy∑
i

[
Pi − P

(
pi, ti; λi

)]2

+ 1
Ninit

Ninit∑
i

[
Pi − P

(
pi, t = 0; λi

)]2
, (2.1)

where P( p, t; λ) is the dependent variable (the runaway probability function for the
present work), R( p, t; λ) is the residual of the PDE, p and t are the independent variables
(momentum and time) and λ represents parameters of the physical system. Here, the first
term represents the loss against the PDE, the second term represents the loss against the
boundary conditions and the third term represents the loss against the initial conditions
for time-dependent problems. Noting that derivatives of the neural network output P
with respect to its inputs ( p, t; λ) can be evaluated by automatic differentiation, a feature
provided by standard machine learning libraries (Abadi et al. 2016; Paszke et al. 2017), no
discretization of the PDE is required. As a result, PINNs are inherently mesh free and only
require specification of a distribution of training points. After minimization of the loss
function, the dependent variable P will satisfy the PDE, boundary and initial conditions
up to the loss defined by (2.1). Hence, a PINN provides a means of solving PDEs, where
the value of the loss achieved after training provides an estimate of the accuracy of the
solution.

A powerful property of PINNs is that they may be used to learn the parametric solution
to a PDE (McDevitt, Fowler & Roy 2024; Sun et al. 2020). In particular, since the
parameters of the physical problem λ are inputs into the neural network, after minimization
of the loss, the PINN can predict P( p, t; λ) across a broad range of parameters λ. While
obtaining a parametric solution of a PDE often requires extensive offline training, the
online execution of a PINN is rapid, where an individual prediction typically requires a few
microseconds. Physics-informed neural networks thus provide a framework for developing
efficient surrogate models of a PDE. A significant limitation of the above approach,
however, is that PINNs often fail to train when treating the challenging PDEs that
characterize many scientific and engineering applications (Wang, Yu & Perdikaris 2022).
A primary aim of this paper will therefore be to develop custom output layers to the PINN
that enable it to robustly evaluate the adjoint to the relativistic Fokker–Planck equation
across a broad range of plasma conditions in the absence of synthetic or experimental
data.

When carrying out the training of the PINN, a single Nvidia A100 GPU will be
used. A fully connected feedforward neural network is employed, containing six hidden
layers, each having a width of 64 neurons. Roughly a million training points are used
and distributed across the input space ( p, t, λ) according to a Hammersley distribution.
The first 15,000 steps of training are done with the adaptive moment estimation
(ADAM) optimizer (Kingma & Ba 2014), whereas the rest of the training is done with
the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimizer (Nocedal
1980). During training a small number of training points are added to regions where the
residual is maximal. An independent set of test points are also applied to verify accuracy
of predictions away from training points. The python script used for training the PINN is
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written using the DeepXDE library (Lu et al. 2021) with TensorFlow (Abadi et al. 2016)
as the backend and can be found in the RunAwayPINNs github repository.

3. Steady-state runaway probability function
3.1. Adjoint relativistic Fokker–Planck equation

This section describes the implementation of the adjoint to the relativistic Fokker–Planck
equation. While a direct evaluation of the particle distribution via a PINN is possible (see
McDevitt & Tang (2024) for example), obtaining an accurate description of the runaway
electron population is particularly challenging due to the very small number of electrons
expected to run away. This electron population, typically orders of magnitude less than
the bulk electron population, will provide a negligible contribution to the loss function
defined by (2.1) unless special care is taken. An alternative means of describing REs is via
the solution of the adjoint to the relativistic Fokker–Planck equation. This approach has
been pursued in a variety of contexts, including wave-driven currents in magnetized fusion
plasmas (Antonsen & Chu 1982; Taguchi 1983; Fisch 1986; Karney & Fisch 1986) and RE
formation (Karney & Fisch 1986; Liu et al. 2016, 2017; Zhang & del Castillo-Negrete 2017;
McDevitt 2023). As will be discussed below, the adjoint problem treated in this analysis
describes the probability P of an electron at an initial momentum space location running
away at a later time. Thus, its range will be P ∈ (0, 1) and provides a quantity well suited
for the optimization problem posed in (2.1). In the absence of synchrotron radiation, the
adjoint to the steady-state relativistic Fokker–Planck equation can be written as

[−E‖ξ − CF
] ∂P
∂p

− (
1 − ξ 2) E‖

p
∂P
∂ξ

= −νD

2
∂

∂ξ

[(
1 − ξ 2) ∂P

∂ξ

]
, (3.1a)

where the collisional coefficients are taken to be

νD = (1 + Zeff)
γ

p3
, CF = 1 + p2

p2
. (3.1b, c)

Here, the relativistic momentum p is normalized to the electron mass me and speed of light
c p → p/(mec), the electron’s pitch is defined by ξ ≡ p‖/p, time is normalized as t → t/τc,
where τc ≡ 4πε2

0m2
ec3/(e4ne lnΛ) is the collision time of a relativistic electron for a

given free electron density ne and Coulomb logarithm lnΛ with the physical constants
of the permittivity of free space ε0 and elementary charge e, the collisional coefficients
νD and CF are normalized to τc and the parallel electric field is normalized to the
Connor–Hastie electric field E‖ → E‖/Ec, where Ec ≡ mec/(eτc) (Connor & Hastie 1975).
Energy diffusion has been neglected due to this term being exceptionally small for
conditions typical of a tokamak disruption. In particular, noting that the energy diffusivity
scales with the electron temperature Te/(mec2) for the high energies characteristic of REs,
we expect this approximation to be well satisfied for a low temperature post-thermal
quench plasma. Furthermore, the collision frequencies used in (3.1) assume the limit
v > vTe, where vTe is the electron thermal velocity. For the parameters of interest, the
critical speed for an electron to run away will be much larger than vTe, hence we anticipate
that this approximation will not substantially impact our results.

Concerning the boundary conditions, we will enforce P = 0 at p = pmin and P = 1 along
the upper boundary, where the energy flux Up ≡ −E‖ξ − CF is positive. Specifically,
the high energy boundary condition enforces that P is unity for values of the pitch ξ
where electric field acceleration exceeds collisional drag such that the electron will be
accelerated out of the simulation domain. Further noting that for values of the pitch near
|ξ | ≈ 1, (3.1a) is nearly hyperbolic, we anticipate that electrons accelerated through the
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high energy boundary will be accelerated to arbitrarily high energies, and thus have a zero
probability of returning to the simulation domain. Hence, any electron located at the high
energy boundary pmax with Up > 0, is treated as a RE. With these boundary conditions,
the quantity P(p, ξ) indicates the probability that an electron initially located at (p, ξ) will
run away at a later time, and is often referred to as the runaway probability function (RPF)
(Karney & Fisch 1986).

When near the threshold electric field for avalanche generation, synchrotron radiation
substantially impacts the RPF. While adding synchrotron radiation leads to a modest
modification of (3.1), it does complicate the physical interpretation of the RPF. In
particular, with the inclusion of synchrotron radiation, the adjoint equation takes the form

[−E‖ξ − CF − αγ p
(
1 − ξ 2)] ∂P

∂p
+ (

1 − ξ 2) [
−E‖

p
+ α

ξ

γ

]
∂P
∂ξ

= −νD

2
∂

∂ξ

[(
1 − ξ 2) ∂P

∂ξ

]
, (3.2)

where the strength of synchrotron radiation is set by the parameter α ≡ τc/τs, where τs ≡
6πε0m3

ec3/(e4B2). Here, (3.2) is solved similarly as before with a boundary condition of
P = 0 at p = pmin along with the condition that P = 1 on the high energy boundary p =
pmax when the energy flux, now defined by U(α)

p ≡ −E‖ξ − CF − αγ p(1 − ξ 2), is positive.
While this problem formulation is directly analogous to the case that neglects synchrotron
radiation, the physical interpretation of the RPF is slightly modified. Specifically, as shown
in Andersson, Helander & Eriksson (2001), Decker et al. (2016), Guo, McDevitt & Tang
(2017) and McDevitt, Guo & Tang (2018), synchrotron radiation damping and pitch-angle
scattering results in electrons obtaining a saturated energy, achieved via the formation
of a circulation pattern in momentum space centred about an O-point. Thus, an electron
accelerated through the high energy boundary will have a non-zero probability of returning
to the simulation domain after a finite time, rather than being accelerated to arbitrarily
high energy, as was the case when synchrotron radiation was neglected. For the case with
synchrotron radiation, the RPF should thus be given the narrower interpretation as the
probability that an electron reaches the high energy boundary of the simulation domain
before slowing down to the low energy bulk, rather than the probability of an electron
being accelerated to arbitrarily high energy. For this analysis the high energy boundary
was chosen to be 5 MeV, which is a sufficiently high energy to capture the critical energy
for an electron to run away in all cases except when asymptotically close to threshold.

3.2. Embedding physical constraints into the PINN
Our aim in this section will be to develop a PINN framework capable of robustly
representing solutions to (3.2) across the three-dimensional parameter space (E‖,Zeff, α).
Here, the inputs of the PINN will be ( p, ξ,E‖,Zeff, α) and the output will be the RPF
P. A key component of our description is enforcing a subset of physical properties of
the RPF as hard constraints. In particular, we will (i) enforce the low energy boundary
condition P = 0 at p = pmin, (ii) constrain the RPF to have a range between zero and one
and (iii) ensure the RPF vanishes when |E‖| < 1. These three constraints are enforced by
introducing a customized output layer to the neural network of the form

P′ (p, ξ) ≡ 1
2

[
1 + tanh

(
E‖ − 1

E

)] (
p − pmin

pmax − pmin

)
PNN (p, ξ) , (3.3a)

P (p, ξ) ≡ tanh
(

P′2 (p, ξ)
)
. (3.3b)
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Here, PNN is the output of the hidden layers of the neural network, and 
E is a
hyperparameter whose value should satisfy 
E < 1, where for all cases in this paper it
is taken to be 
E = 0.1. From (3.3) it can be verified that, regardless of the value of PNN,
the predicted RPF P(p, ξ): (i) vanishes at the low energy boundary, (ii) has a range of
zero to one and (iii) tends to zero for E‖ < 1 and 
E � 1 (only positive electric fields are
considered when training the RPF PINN). We note in passing that the output layer defined
by (3.3) results in both the value and the first derivative of P vanishing at p = pmin. While
this latter condition is not required when defining the RPF, it will nevertheless be satisfied
as long as the value of pmin chosen is well below the momentum pRE ≡ 1/

√
E‖ − 1 where

collisional drag exceeds electric field acceleration. Specifically, since energy diffusion is
neglected in the present analysis, electrons located below pRE will have zero probability
of running away. Thus, for p < pRE the solution of the RPF will be a constant with a
magnitude of zero, and thus is consistent with pure Dirichlet and Neumann boundary
conditions at p = pmin.

The loss function employed is taken to have the form

Loss = 1
NPDE

NPDE∑
i

[(
p2

i

1 + p2
i

)
R (pi, ξi; λi)

]2

+ 1
Nbdy

Nbdy∑
i

[
1 − P (pi, ξi; λi)

]2
, (3.4)

where R(pi, ξi; λi) is the residual of (3.2) and λ represents the physics parameters
(E‖,Zeff, α). Here, the first term in (3.4) penalizes deviations from the governing PDE
given by (3.2), where the prefactor p2

i /(1 + p2
i ) removes the low energy divergence of

the pitch-angle scattering operator. The second term in the loss function defined by
(3.4) enforces the high energy boundary condition, i.e. P = 1 at pmax when U(α)

p > 0. In
particular, the boundary points Nbdy, will only be applied at locations that satisfy both
U(α)

p > 0 and p = pmax.

3.3. Parametric dependence of the runaway probability function
In this section, we will seek to obtain solutions to the PINN in the five-dimensional
space defined by the two independent coordinates (p, ξ) and the three physics parameters
(E‖,Zeff, α). The loss history of the PINN is shown in figure 1. Here, after roughly 100 000
epochs, the loss associated with the PDE drops below 10−7, along with the boundary
loss dropping to ≈10−9, with the loss dropping more slowly for the remaining ∼400 000
epochs. The test loss of the PDE reaches ≈10−9 by the end of the training, indicating
that an accurate solution was found. The periodic spikes in the training data are due
to additional training points sampled after every 100 000 epochs at locations where the
residual is maximal. The test loss is only updated after every 100 000 epochs when using
the L-BFGS optimizer, leading to the sharp variations evident in the dashed curves.

Four example predictions of the RPF are shown in figure 2. Here, the RPF vanishes
at low energies, where drag exceeds electric field acceleration, but increases at higher
energy due to the (1 + p2)/p2 drop in the collisional drag. In particular, for the parameters
indicated in figure 2(a), the P = 0.5 contour is located at an approximate energy of
200 keV for ξ = −1. Considering a case with a large Zeff (see figure 2(b) with Zeff = 10),
the P = 0.5 contour shifts to higher energy, with a more gradual transition between the
P ≈ 0 and P ≈ 1 regions. The impact of synchrotron radiation on the RPF is shown
in figure 2(c), where the magnitude of synchrotron radiation was taken to be α = 0.2.
Compared with an otherwise identical case, but without synchrotron radiation (figure 2a),
it is evident that the location of the P = 0.5 contour at ξ = −1 has only shifted slightly.
This is due to synchrotron radiation vanishing for ξ = −1 and having a modest magnitude
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FIGURE 1. Loss history (blue lines for the PDE and red lines for the boundary condition (BC))
for a feedforward neural network with six hidden layers each with a width of 64 neurons, along
with roughly 1 000 000 training points. Here, 15 000 epochs were performed with the ADAM
optimizer, with the remaining steps performed using L-BFGS. The model was trained across
E‖ ∈ (1, 10), Zeff ∈ (1, 10) and α ∈ (0, 0.2). The range of p was chosen such that the low energy
boundary was 10 keV and the high energy boundary was 5 MeV.

at low energies. In contrast, the RPF at high energies is more substantially impacted, where
the region with P ≈ 1 is now largely localized to negative values of pitch for the energy
range considered. Finally, increasing the electric field to E‖ = 10, with Zeff = 1 and α = 0,
results in a drop in the location of the P = 0.5 contour (compare figure 2a,d), due to the
electric field being able to overcome collisional drag for a larger range of energies. The
residual of (3.2), multiplied by the prefactor p2/(1 + p2) contained in the loss defined in
(3.4), is shown in figure 3 for the four cases described above. Here, it is evident that the
residuals have been reduced to a small value with a maximum of ≈0.03 for the largest
electric field case (see figure 3d). A direct assessment of the accuracy of the PINN’s
prediction of the avalanche growth rate will be made in § 4.3, where the predictions of the
PINN are compared with first principle Monte Carlo simulations.

3.4. Critical energy to run away
The location of the P = 0.5 contour (pcrit, ξcrit) provides a useful reference point for
identifying the critical energy and pitch above which electrons are likely to run away.
The parametric solution of the PDE given by the PINN thus provides (pcrit, ξcrit) across
the entire domain by simply extracting the P = 0.5 surface. To show the dependence of
(E‖,Zeff, α) on the critical energy to run away, we evaluate the energy at which P = 0.5
and ξ = −1 across the entire training region, which is shown in figure 4. Here, the log10 of
the critical energy in units of eV is plotted, where the empty regions represent scenarios
where E‖ is below the avalanche threshold Eav (see § 4.1 below). The dependence of E‖
and Zeff on the critical energy can be seen in figure 4(a) for α = 0, where increasing
the electric field from E‖ = 2 to E‖ = 10 decreases the critical energy from ∼1 MeV to
∼36 keV. At a given electric field (e.g. E‖ = 4), the critical energy increases by almost an
order of magnitude as Zeff is increased from one to ten, indicating that higher Z elements
in the plasma increase the critical energy for REs. Moreover, the addition of synchrotron
radiation (compare figure 4b,c), shows that the region where E‖ < Eav is increased (larger
white region). As α is increased further (compare figure 4a,c), however, we also see that
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(b)(a)

(c) (d )

FIGURE 2. Runaway probability functions for different values of the physics parameters
(E‖,Zeff, α). Panel (a) is for (E‖ = 3,Zeff = 1, α = 0), panel (b) is for (E‖ = 3,Zeff = 10,
α = 0), panel (c) is for (E‖ = 3,Zeff = 1, α = 0.2) and panel (d) is for (E‖ = 10,Zeff = 1,
α = 0).

the shape and range of the critical energy varies modestly, indicating the critical energy is
modestly impacted by α when E‖ 
 1.

4. Surrogate model of the avalanche growth rate
4.1. Secondary source of runaway electrons

Our aim in this section will be to utilize the RPF PINN described in § 3.3 to estimate the
avalanche growth rate. Denoting the source of secondary electrons as S(p, ξ), the rate that
REs form due to the avalanche mechanism can be expressed as (Liu et al. 2017)

dnRE

dt

∣∣∣∣
av

=
∫

d3 pS (p, ξ)P (p, ξ) , (4.1)

where nRE is the density of REs. Here, S(p, ξ) indicates the rate and momentum space
distribution of REs, whereas P(p, ξ) indicates the probability that an electron at a
given momentum space location (p, ξ) runs away. By integrating over momentum space,
S(p, ξ)P(p, ξ) will thus indicate the expected rate that REs form due to the avalanche
mechanism. The primary challenge with evaluating (4.1) is due to S(p, ξ) depending on
the electron distribution fe, i.e.

S (p, ξ) =
∫

d3 p′S0
(

p′, ξ ′, p, ξ
)

fe
(
p′, ξ ′) , (4.2)

https://doi.org/10.1017/S0022377824000679 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000679


A deep learning surrogate of the runaway electron avalanche 9

(b)(a)

(c) (d )

FIGURE 3. Residual of (3.2) (multiplied by the prefactor p2/(1 + p2)) for different values of
the physics parameters (E‖,Zeff, α). Panel (a) is for (E‖ = 3,Zeff = 1, α = 0), panel (b) is
for (E‖ = 3,Zeff = 10, α = 0), panel (c) is for (E‖ = 3,Zeff = 1, α = 0.2) and panel (d) is for
(E‖ = 10,Zeff = 1, α = 0).

(b)(a) (c)

FIGURE 4. Value of log10 Ecrit, where Ecrit is the critical energy to run away in eV. Panel (a) is
for α = 0, panel (b) is for α = 0.1 and panel (c) is for α = 0.2.

where S0( p′, ξ ′, p, ξ) is defined by

S0
(

p′, ξ ′, p, ξ
) = necr2

e
v′

2πp2

dσM (p′, p)
dp

Π
(
p′, ξ ′, p; ξ) , (4.3)

where re = e2/(4πε0mec2) is the classical electron radius, dσM/dp is the Møller
cross-section (Møller 1932; Ashkin, Page & Woodward 1954), Π(p′, ξ ′, p; ξ) describes
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the pitch-angle dependence of secondary electron generation (see Boozer (2015) for an
explicit expression), d3p = 2πp2 dp dξ and all variables have been non-dimensionalized
p → p/mec, v′ → v′/c, σM → σM/r2

e . Noting that the solution of the adjoint relativistic
Fokker–Planck equation does not directly yield the RE distribution fe(p′, ξ ′), a closure
relation will need to be introduced to evaluate the rate of RE generation via avalanching.
The simplest closure, introduced in Rosenbluth & Putvinski (1997), involves taking the
limit where REs are assumed to have asymptotically high energies and a pitch of ξ = −1.
While idealized, this closure has been shown to provide a good approximation to the full
Møller source evaluated using a self-consistently computed RE distribution (McDevitt
et al. 2018). In the limit of p′ → ∞ and ξ ′ = −1, (4.2) asymptotes to

S (p, ξ) = nenREcr2
e

v

γ 2 − 1
1

(γ − 1)2
δ (ξ − ξ1) , (4.4)

where we have introduced the Lorentz factor γ ≡ √
1 + p2 and ξ1 is defined by

ξ1 = −
√
γ − 1
γ + 1

. (4.5)

Using (4.4), (4.1) reduces to

dnRE

dt

∣∣∣∣
av

= 2πnenREcr2
e

∫
dp p2 v(

γ 2 − 1
)
(γ − 1)2

P (p, ξ1) . (4.6)

Noting that the right-hand side of (4.6) is directly proportional to the RE density nRE, this
implies an exponentially growing solution with a growth rate given by

τcγav = 1
2 lnΛ

∫
dp

v

(γ − 1)2
P (p, ξ1) , (4.7)

where ξ1 is defined by (4.5). Thus, once P(p, ξ) has been evaluated, the avalanche growth
rate can be directly inferred from (4.7).

A caveat when evaluating (4.7) is that, while this integral formally extends to p → ∞,
the RPF is evaluated assuming a finite pmax. The error induced by this approximation
can be estimated by considering the magnitude of the integrand in (4.7) across the range
of momenta used in this paper (see figure 5, where pmin ≈ 0.2 and pmax ≈ 10.74). Here,
we have taken P = 1 inside the integrand of (4.7), such that figure 5 provides an upper
bound on the value of the integrand. Noting that the integrand has decayed to a value
of ≈3.5 × 10−4 at the upper boundary, this implies a small contribution to the avalanche
growth rate for secondary electrons born with p > pmax, particularly for parameters where
the system is well above marginality.

4.2. Parametric dependence of RE avalanche
Using the RPF evaluated in § 3, (4.7) can be used to infer the avalanche growth rate
across the parameter space (E‖,Zeff, α) (see figure 6). Here, the avalanche growth rate
increases approximately linearly with the electric field when E‖ 
 1, with the slope and
threshold sensitive to Zeff and α. Specifically, the value of α significantly impacts the
avalanche threshold (i.e. where γav ≈ 0), but has a negligible impact at large electric
fields. In contrast, Zeff strongly impacts the avalanche growth rate for all values of the
electric field. A feature of (4.7) is that since it indicates the number of REs generated
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FIGURE 5. The integrand v/(γ − 1)2/(2 lnΛ) of (4.7) when P = 1. The low and high energy
bounds are pmin ≈ 0.2 and pmax ≈ 10.74, respectively. The Coulomb logarithm was taken to be
lnΛ = 15.

(b)(a) (c)

FIGURE 6. Avalanche growth rate vs electric field for different values of Zeff and α. Panel (a)
is for α = 0, panel (b) is for α = 0.1 and panel (c) is for α = 0.2. The blue points in panel (b)
represent Monte Carlo simulations with ne = 5 × 1021 m−3, and (4.8) is shown as the dashed
green curve. The Coulomb logarithm was taken to be lnΛ = 15.

via large-angle collisions, it is thus positive definite. As a result, avalanche growth rates
predicted by (4.7) will not account for the decay of the RE population when E‖ < Eav
and will instead asymptote to zero. While such behaviour is strictly correct when focusing
solely on the avalanche growth mechanism, when developing a RE model appropriate for
coupling with a self-consistent MHD solver it will be necessary to account for the decay
of the RE distribution when E‖ < Eav. The inclusion of this additional physics will be the
subject of future work.

It will be of interest to compare the predictions of the PINN with available analytic
theories. Considering the avalanche growth rate given by (Rosenbluth & Putvinski 1997)

τcγRP = 1
lnΛ

√
π

3 (Zeff + 5)

(
E‖ − 1

)
, (4.8)

a comparison between the PINN predictions and (4.8) is shown in figure 6(b). For
reference, a small number of avalanche growth rates computed by a Monte Carlo code
(McDevitt, Guo & Tang 2019) using the complete Møller source are also shown (the blue
points on figure 6b). Details on how this Monte Carlo data set was generated are given
in § 4.3 below. It is apparent that both the PINN and (4.8) yield results in reasonable
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agreement with the Monte Carlo points, where the PINN yields more accurate results
near threshold. In particular, while (4.8) implies an avalanche threshold field of E‖ = 1
regardless of the values of (Zeff, α), the PINN is able to account for the variation of
the avalanche threshold for non-zero values of α and different Zeff. In addition, at larger
electric fields a modest difference in the slope of the avalanche growth rate predicted by
(4.8) compared with the Monte Carlo data is evident. The predictions of the PINN, in
contrast, are able to recover the correct slope of the avalanche growth rate, albeit with a
modest offset in the magnitude as will be discussed further in § 4.3 below.

When well above marginality the avalanche growth rate is most conveniently described
by evaluating the amount of poloidal flux needed to increase the amplitude of a RE seed
by one order of magnitude (Rosenbluth & Putvinski 1997; Boozer 2018). This quantity
can be evaluated by noting that, for E‖ 
 1, the avalanche growth rate scales linearly with
E‖, i.e.

γav = γ0

(
E‖
Ec

− 1
)

≈ γ0
E‖
Ec

≈ γ0

Ec

1
R0

∂ψ

∂t
, (4.9)

where γ0 is a constant that depends on (Zeff, α, lnΛ), R0 is the major radius and ψ is the
poloidal flux function. After integrating (4.9) over the time interval tf − ti, the number of
exponentials of the RE population can be written in terms of the change of poloidal flux,
and a constant ψexp that defines the efficiency of the avalanche. In particular, integrating
(4.9) over the time interval tf − ti, yields

Nexp =
∫ tf

ti

dt γav ≈ γ0

Ec

1
R0

∫ tf

ti

dt
∂ψ

∂t
= 
ψ

ψexp
, (4.10)

where 
ψ ≡ ψ(tf )− ψ(ti) and we have defined ψexp ≡ R0Ec/γ0, which is related to
the amount of poloidal flux required to effect one exponential amplification of the RE
population. Thus, once γ0 is inferred, the efficiency through which the decay of the
poloidal flux leads to an amplification of the seed RE population can be evaluated.
Further defining the quantity ψ10 ≡ ln 10ψexp (which delineates base ten amplifications),
the efficiency of the avalanche growth rate for a broad range of parameters is shown in
figure 7(a). Here, the avalanche growth rate is most efficient for low values of Zeff and
increases by nearly a factor of two for Zeff = 10, agreeing with previous results (McDevitt
et al. 2019). We have not indicated the dependence of ψ10 on α since, for large electric
fields, the avalanche growth rate will be independent of α.

In addition, the avalanche threshold is strongly impacted by the parameters (Zeff, α). In
particular, as Zeff or α are increased, the threshold electric field Eav, where the avalanche
growth rate is zero, is increased. The dependence of the avalanche threshold on (Zeff, α)

is shown in figure 7(b), where the PINN predictions are the solid lines. The Monte Carlo
results are the ‘o’ markers, and the dashed lines represent empirical fit formula given
by (B 15) of McDevitt et al. (2019). Here, since the avalanche growth rates predicted
by the PINN are positive definite, we define the avalanche threshold as the value of
the electric field where τcγav = 2 × 10−3. From figure 7(b) it is apparent that the PINN
predicts Eav particularly well across α for Zeff = 1, with somewhat larger deviations
evident for Zeff = 5. The systematic under-prediction of the avalanche threshold is due
to the assumption in (4.7) that primary electrons have infinite energy. Such an assumption
overestimates the number of secondary electrons generated and, perhaps more importantly,
neglects that the primary electron population itself will slowly decay to the thermal bulk
when E ≈ Eav.
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(b)(a)

FIGURE 7. (a) The value of 2πψ10/μ0R0 as a function of Zeff, with a Coulomb logarithm of
lnΛ = 15. (b) Avalanche threshold Eav as a function of the synchrotron radiation strength α. The
solid lines represent the PINN predictions, the dashed lines and ‘o’ markers represent (B 15) and
Monte Carlo results from McDevitt et al. (2019), respectively, and WebPlotDigitizer was used to
extract the Monte Carlo values. The blue values represent Zeff = 1 and the red values represent
Zeff = 5. The Coulomb logarithm was taken to be lnΛ = 20.

4.3. Verification of the surrogate model
In this section we will verify the PINN’s predictions of the avalanche growth rate
against first principle Monte Carlo simulations across the training region (E‖,Zeff, α).
The RunAway Monte Carlo (RAMc) code is employed (see McDevitt et al. (2019) for
a detailed description), which evolves the guiding centre motion of relativistic electrons
and includes effects from small-angle collisions, large-angle collisions and synchrotron
radiation. Large-angle collisions are evaluated using the full Møller source (Møller 1932).
In order to avoid toroidal corrections to the avalanche growth rate (McDevitt & Tang 2019;
Arnaud & McDevitt 2024), all REs are initialized near r = 0, and a large tokamak device
was chosen with a minor radius of a = 2 m and major radius R0 = 6 m, in order to render
spatial transport negligible. A geometry with circular flux surfaces was selected, with a
safety factor profile taken to be q(r) = 2.1 + 2(r/a)2.

The Monte Carlo avalanche simulations are set up by initializing a small population
of electrons (8 for this analysis) at high momentum (p ∈ (10, 20)) and strongly aligned
with the magnetic field (ξ ∈ (−0.9,−1.0)). They are then allowed to exponentially grow
in time until a saturated growth rate can be identified, generally resulting in the initial
seed RE population growing by several orders of magnitude. The plasma parameters
chosen were a density of ne = 1021 m−3, a temperature of Te = 10 eV and a toroidal
magnetic field strength that was varied to give the appropriate value of α. One caveat
is that at a fixed density and temperature α ∝ B2, which in turn can lead to orbit drifts
at the low boundary of synchrotron radiation due to the weak magnetic field. These orbit
drifts are thus ensured to be negligible by enforcing a minimum toroidal magnetic field
of B = 2 T, which corresponds to a lower bound (α ≈ 2.8 × 10−3) in the training region
for synchrotron radiation. Fifty randomly selected samples of (E‖,Zeff, α) are chosen as
input parameters for the Monte Carlo solver and the avalanche PINN, where cases below
the avalanche threshold are discarded, leaving forty-one samples. A comparison between
the predictions of the avalanche PINN and Monte Carlo solver is shown in figure 8(a).
Here, the grey dashed line represents equality (y-axis equal to x-axis) between the PINN
and Monte Carlo predictions. The coefficient of determination (Guilford & Guilford
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(b)(a) (c)

FIGURE 8. (a) Avalanche growth rate comparison between the PINN and Monte Carlo solver.
The grey dashed line represents the coefficient of determination of R2 = 1. (b) Same as
panel (a), but with the predictions of the avalanche PINN multiplied by the factor 0.94886.
(c) Avalanche growth rate comparison between (4.8) and the Monte Carlo solver. The avalanche
growth rates were evaluated across E‖ ∈ (1, 10), Zeff ∈ (1, 10) and α ∈ (2.8 × 10−3, 0.2). The
other parameters were chosen to be Te = 10 eV and ne = 1021 m−3.

1936) between the PINN predictions and the Monte Carlo avalanche growth rate was
evaluated to be R2 ≈ 0.9849, indicating that the PINN was able to accurately predict the
avalanche growth rate across a broad range of parameters. One noticeable feature present
in figure 8(a) is the systematic over-prediction of the avalanche growth rate by the PINN.
This feature is expected, and is due to the use of the simplified Rosenbluth–Putvinski
secondary source term described by (4.4), which assumes all primary electrons to have
p → ∞ and ξ = −1. We note that this feature can be mitigated by introducing a simple
discrepancy model, where for the parameter regime considered in this study, multiplying
the predictions of the PINN by a factor of 0.94886 significantly reduced the discrepancy
between the PINN and Monte Carlo predictions. The correlation between the avalanche
PINN predictions including the discrepancy model and the Monte Carlo predictions are
shown in figure 8(b), where the coefficient of determination increased to R2 = 0.9988.
Improving the RE closure used when approximating the Møller source will be the subject
of future work.

The PINN is also shown to robustly provide better avalanche growth rate predictions
than the analytical expression provided by (4.8) (compare figure 8a,c). Here, the avalanche
growth rate provided by (4.8) compared with the Monte Carlo solver has a weaker
correlation than that between the PINN and Monte Carlo solver, where the coefficient
of determination for figure 8(c) was R2 ≈ 0.9644. The avalanche PINN thus improves on
the accuracy of the avalanche growth rate predictions, even in the absence of the 0.94886
factor.

5. Summary and conclusions

This work utilized a PINN to evaluate the steady-state solution of the adjoint to the
relativistic Fokker–Planck equation. Noting that the PINN takes the physical parameters
of the problem as inputs, once trained, the PINN provides an efficient surrogate model
of the RPF. In addition, while a comprehensive description of the avalanche growth
rate requires evaluating the primary electron distribution, a quantity not evaluated in the
present approach, by invoking the often employed simplification that primary electrons
have infinite energy and a pitch ξ = −1 (Rosenbluth & Putvinski 1997) the RE avalanche
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growth rate was shown to be directly linked to an integral of the RPF (4.7). While this
approximation to the secondary source of REs is known to lead to a modest overestimate of
the avalanche growth rate at intermediate values of the electric field (McDevitt et al. 2018),
predictions from the PINN were shown to agree with direct Monte Carlo simulations that
utilized a complete Møller source across a broad range of parameters with an offset of
roughly 5 % (figure 8a).

An additional aim of this paper was to provide a proof-of-principle demonstration that
physics constrained deep learning methods offer an attractive avenue through which RE
surrogate models can be developed. In contrast to data-driven deep learning approaches,
the present method encodes the underlying kinetic solution into the neural network,
rather than just the QoI (avalanche growth rate in this case), and thus allows for greater
interpretability and hence greater confidence in the accuracy of the prediction. While
the present paper has focused on an idealized description of REs, generalization to more
complete models of RE formation, incorporating partial screening effects (Hesslow et al.
2017) for example, can be accomplished by modifying the collision coefficients in the
adjoint equation described by (3.2) and retraining the PINN. This extension, along with
a generalization to include temporal and spatial evolution of the RPF, will be the subject
of future work. We thus anticipate that the present approach provides a flexible means
through which RE surrogate models can be developed across a broad range of plasma
conditions.
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