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Abstract

The Quicksort process R (Rösler (2018)) can be characterized as the unique endogenous
solution of the inhomogeneous stochastic fixed point equation R

D= (UR1(1 ∧ t/U) +
1{U<t}(1 − U)R2((t − U)/(1 − U)) + C(U, t))t on the space D of càdlàg functions,
such that R(1) has the Quicksort distribution. In this paper we characterize all D-valued
solutions of that equation. Every solution can be represented as the convolution of a
solution of the inhomogeneous equation and a general solution of the homogeneous
equation (Rüschendorf (2006)). The general solutions of the homogeneous equation are
the distributions of Cauchy processes Y with constant drift. Any distribution of R + Y

for independent R and Y is a solution of the inhomogeneous equation. Every solution of
the inhomogeneous equation is of the form R + Y , where R and Y are independent. The
endogenous solutions for the inhomogeneous equation are the shifted Quicksort process
distributions. In comparison, the Quicksort distribution is the endogenous solution of
the Quicksort fixed point equation unique up to a constant (Rösler (1991)). The general
solution can be represented as the convolution of the shifted Quicksort distribution and
some symmetric Cauchy distribution (Fill and Janson (2000)), possibly degenerate.
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1. Introduction

One of the early results in branching processes is the convergence of the positive martingale
Zn/mn (Zn is a Bienaymé–Galton–Watson process and m = E[Z1]) to a limit W that satisfies
the equation

W =
∑
i∈N

1{X≥i}
m

Wi

with appropriate notation [4]. The limit W is endogenous, i.e. measurable with respect to the
natural filtration generated by the offspring. In this setting we consider the branching process
starting with one particle at time 0 and proceed forwards in time. Running the time forwards
seems very natural in view of biological examples, evolution of individuals, and daily life
experience.

For the construction of phylogenetic trees, we know the present and try to run the branching
process backwards in time in order to recover the whole genetic tree. In the limit we have an
entrance boundary at infinity and run the branching process backwards in time. By this intuition,
we obtain more solutions of the above equation, a whole bunch of nonendogenous solutions [2].
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They are nonendogenous, since at infinity some random variables (i.e. information) are added,
and they cannot be recovered from the observed process.

Consider now a weighted branching process (WBP) [22]. Name the vertices (i.e. individuals)
v in Ulam–Harris notation, while the edges (v, vi) are equipped with some transformations
Tv,vi . These transformations transport a weight either forwards from the individual v to vi or
backwards from the individual vi to v. We call this object a WBP if (Tv,vi)i∈N, v ∈ V , are all
independent and identically distributed random variables. Note that we require independence of
the families, but allow arbitrary dependence within a family. To every path (v, vw) we assign a
transformation Lv,vw by following the path from v to vw and composing the T -transformations
we pass. If we add some cost (toll) function Cv for passing the vertex v then we require
(Cv, (Tv,vi)i∈N), v ∈ V, to be independent, identically distributed random variables.

Again we seek solutions to either the homogeneous equation

W =
∑
i∈N

Ti(Wi)

or the inhomogeneous equation

W =
∑
i∈N

Ti(Wi) + C.

Here (C, (Ti)i), Wj , j ∈ N, are mutually independent and the Wj have the same distribution
as W . Equivalently, we can seek solutions to the stochastic fixed point equations (SFPEs)

W
D=

∑
i∈N

Ti(Wi) and W
D=

∑
i∈N

Ti(Wi) + C.

There exist many examples of such recursive structures [1], [24], [25], especially in the (running
time) analysis of algorithms, using the contraction method [16], [17], [24], which provides
endogenous solutions.

It is a more demanding mathematical question to find all solutions of SFPEs. We know the
set of all real-valued solutions of an SFPE if the dynamic is multiplication and the T -random
variables are either degenerate and real [3], positive real [11], [10], or real [2]. Furthermore,
there are some results for solutions in Rd [15] and for complex-valued solutions [14], but only
few for D-valued processes [17].

We are interested in D-valued processes [5]. In fact, we consider processes W = (Wt )t∈[0,1]
with paths in the space D− of càglàd (continue à gauche, limite à droite, i.e. left continuous
with existing right limits) functions f : [0, 1] → R with the convention that f (0) = 0. The
interpretation and notation of the processes is more natural in D− than in D . Mathematically,
it makes no difference to work here with càglàd or càdlàg functions.

The standard examples are Brownian motion and some Lévy processes, where T· are space–
time transformations. To give just one example, standard Brownian motion satisfies

W
D=

(√
UW1

(
1 ∧ t

U

)
+ √

1 − UW2

(
0 ∨ t − U

1 − U

))
t

for U a (0, 1)-valued random variable that is independent of W1 and W2.
Two more examples occur in the running time analysis of random algorithms. The Quick-

select (or Find) process [7], [8], [9] is characterized by the SFPE

W
D=

(
1{t≤U} UW1

(
t

U

)
+ 1{t>U}(1 − U)W2

(
t − U

1 − U

)
+ 1

)
t

,
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where U is uniformly distributed on (0, 1). (The Find-algorithm searches for the �th smallest
element out of n. Let X(n, �) be the number of comparisons. Then Yn defined by Yn(�/n) =
X(n, �)/n as a process on [0, 1] converges in distribution (or in Skorokhod metric for nice
versions) to a solution of the above SFPE.) In this case we have more a perpetuity than real
branching.

The other example is recent; the Quicksort process [23], satisfying the SFPE

W
D=

(
UW1

(
1 ∧ t

U

)
+ (1 − U)W2

(
0 ∨ t − U

1 − U

)
+ C(U, t)

)
t

. (1.1)

The random variables W1, W2, and U are independent, W1 and W2 have the same distribution
as W , and U is uniformly distributed on the unit interval. The function C : [0, 1]× (0, 1] → R

is given by

C(s, t) := 1{t>s} C(s) + 1{t≤s}[−1 + 2s + 2(1 − t) ln(1 − t) − 2(s − t) ln(s − t) + 2s ln s]
and

C(s) := 1 + 2s ln s + 2(1 − s) ln(1 − s), (1.2)

using continuous extension. We extend C by C(·, 0) = 0.
The Quicksort process R appears as the limit [18], [23] of the normalized running time of

some version of the algorithm Partial Quicksort, introduced by Martínez [12], [13]. The proof
makes considerable use of embedding the algorithm into a WBP and simultaneously using the
forwards and backwards views of the WBP.

In this paper we are interested in all solutions of SFPE (1.1) in D− (respectively D). The
Quicksort process R is the only endogenous [1] (measurable with respect to the random variables
T and C of the corresponding WBP) solution of SFPE (1.1) such that R(1) has the Quicksort
distribution. Other endogenous solutions are R + bI , where I is the identity, and these are all.
Any solution with finite first moment of the process at some time t ∈ (0, 1] (and then for any
t ∈ (0, 1]) is endogenous and vice versa.

Theorem 1.1. Any solution of SFPE (1.1) in D− has a unique representation as the distribution
on D− of R+aY +bI , where a, b ∈ R, a ≥ 0, R is the Quicksort process, Y is an independent
standard Cauchy process, and I denotes the identity.

The following outline of the proof precedes a formal proof given in Section 3. The easy part
is to show that the above processes are solutions; the difficult part is to show that there are no
other solutions. Evaluating (1.1) at the time point t = 1 yields the real-valued Quicksort SFPE
[20], [21], Q

D= W(1),

Q
D= UQ1 + (1 − U)Q2 + C(U),

where C is given in (1.2). Fortunately, by [2] and [6], we know all solutions of SFPEs

W
D=

∑
i∈N

TiWi + C, (1.3)

where (C, (Ti)i∈N), Wj , j ∈ N, are independent random variables, the Wj are distributed as
W , and all random variables are real valued. Under some very general conditions, the solutions
can be represented as the distribution of a solution R of the inhomogeneous SFPE (1.3) and
some general solution for the homogeneous SFPE ((1.3) with C ≡ 0)

R + Z1/αY.
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Here Y is an α-stable random variable, Z is an endogenous positive solution of the SFPE
X

D=∑
i |Ti |αXi , and α is such that E[∑i |Ti |α]=1 and there exists β > α with E[∑i |Ti |β ]<1.

The random variables (R, Z) and Y are independent. In our case α = 1 and Z is degenerate at
a constant.

As noted, we have control over the distribution of W(1) of the general solution of SFPE
(1.1) in D−. If we replace the distributional equality in (1.1) by equality of random variables
then we also control W(t) = UW1(1) at the random time point t = U . Replacing the recursive
distributional equalities for W1 and W2 by equality of random variables, we also control W(t)

at some random time points in (0, U ] and (U, 1], respectively. Iterating (1.1) several times with
equality of random variables we control W at more and more time points. In the limit we know
W(t) at countably many time points t ; these time points are dense in (0, 1] and determine the
path of W completely by continuity arguments. It remains to show that there is a version of
Wv, Uv, v ∈ V, such that

Wv =
(

UvWv1

(
1 ∧ t

Uv

)
+ (1 − Uv)Wv2

(
0 ∨ t − Uv

1 − Uv

)
+ C(Uv, t)

)
t

(1.4)

holds simultaneously for all v ∈ V. This follows from Kolmogorov’s result on projective limits
for consistent probability spaces (see [19]).

Our motivation for this study came from the algorithm Partial Quicksort introduced by
Martínez [12]. The input is a list of n different real numbers for n ≥ 2. The output of Partial
Quicksort for given 0 ≤ k < � ≤ n is the sorted list of all numbers between the kth and �th
smallest numbers of the input. We present here the deterministic algorithm Quicksort on the
fly given any finite input list. It works as follows:

• always choose the first element in the list as the pivot;

• sequentially compare every other element in the list with the pivot and thereby form
three smaller lists: the first list consists of all elements smaller than the pivot, the second
consists of the pivot, and the third consists of all elements larger than the pivot, though
it is possible for the first or last list to be null; and

• repeat from the first step above using the leftmost list with at least two elements.

Given n different real numbers, after applying these three steps k times there are between 2k

and min{n, 3k} nonempty ‘lists’ of which at least k contain one element and the largest has at
most n − k elements. The algorithm terminates when the collection consists of n ‘lists’, each
consisting of just one real number.

If we stop the algorithm Quicksort on the fly when the �th smallest element is identified
then we will have performed a version of the algorithm Partial Quicksort, namely, find the �th
smallest numbers ordered out of n, and we will have performed only the necessary comparisons
and not more.

We now consider �/n as some time index and take the limit n → ∞. Let X(u, �) denote
the number of comparisons necessary to find and sort the 0 ≤ � ≤ |u| ∈ N0 smallest numbers
given a finite input u. The Quicksort on the fly recursion satisfies

X(u, �) = X(u1, l ∧ |u1|) + X(u2, 0 ∨ (� − |u1| − 1)) + |u| − 1 (1.5)

for 1 ≤ � ≤ |u|, |u| ≥ 2, according to the above splitting procedure. In (1.5), u1 and u2 denote
the lists for 2 ≤ i ≤ |u| of all ui < u1 and ui > u1, respectively.
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Let U = (Un)n∈N be a vector of independent random variables with a uniform distribution
on the open unit interval, and let U|n := (U1, U2, . . . , Un). Then the distribution of the process
(X(U|n, �))� as in (1.5) depends only on the size n of the input. We obtain the following
recursion for the distribution of X(n, ·) for n ≥ 2:

(X(n, �))�
D= (n − 1 + X1(I − 1, � ∧ (I − 1)) + X2(n − I, 0 ∨ (� − I )))�.

Here, for given n, the random variables I and Xi(j, ·), i = 1, 2, j < n, are independent. The
random variable I = In is uniformly distributed on {1, 2, . . . , n} and Xi(j, ·) has the same
distribution as X(j, ·). We use the same starting values X(n, 0) = 0 = X(1, 1) as above. The
random variable I has the interpretation of the rank of the pivot U1 within U|n.

The expectation E[X(n, �)] =: a(n, �) was given explicitly by Martínez [12] as

a(n, �) = 2n + 2(n + 1)Hn + 2(n + 3 + �)Hn+1+� − 6� + 6, 1 ≤ � ≤ n,

where Hk = ∑k
i=1 1/i denotes the harmonic number.

The distributions of (
Y

(
n,

�

n

))
�

=
(

X(n, �) − a(n, �)

n + 1

)
�

satisfy the recursions for process distributions for n ≥ 2, i.e.(
Y

(
n,

�

n

))
�

D=
(

I

n + 1
Y1

(
I − 1, 1 ∧ �

I − 1

)
+ n + 1 − I

n + 1
Y2

(
n − I, 0 ∨ � − I

n − I

)

+ C(n, I, ·)
n + 1

)
�

,

where I = In is as above and

C(n, i, l) = n − 1 − a(n, l) + a(i − 1, l ∧ (i − 1)) + a(n − i, 0 ∨ (l − i)).

The distribution of Y (n, 1) is called the discrete Quicksort distribution with parameter n (to
sort n elements).

Martínez and Rösler [13] proved the weak convergence of Y (n, tn) as n → ∞ when
also tn → t . The convergence of finite-dimensional distributions was shown by Ragab and
Roesler [18]. The limit is the Quicksort process in D− (or D) satisfying (1.1). The given
specific processes Y (U|n, ·) even converge in the Skorokhod metric to the (right version of the)
Quicksort process pointwise and uniformly almost everywhere (a.e.) as n → ∞ [23].

2. Recursive equations

In this section we show the existence of the required version satisfying (1.4).
We use the Ulam–Harris notation for a binary tree V := {1, 2}∗ := ⋃

n∈N0
{1, 2}n, where

N0 = N ∪ {0} and {1, 2}0 = {∅}. Let Vm = {1, 2}m, (V<m), denote the set of v ∈ V

with length m (or strictly smaller than m). We consider V as a directed graph with edges
(v, vi), v ∈ V, i ∈ {1, 2}. We take ev = {(v, v1), (v, v2)} as the set of all edges starting in
v ∈ V , and let E denote all the sets ev, v ∈ V . We use E<m for the subset of all ev, v ∈ V<m.

Let (D−, BD , ρ) be the space of càglàd functions with value 0 at 0, endowed with the Borel
σ -field BD , and let ρ be the probability measure of a solution to SFPE (1.1). Take the Borel
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σ -field B on the squared unit interval (0, 1)2 and the probability measure ν on ((0, 1)2, B)

defined by ν(A×B) = λ(A∩ (1−B)) for the one-dimensional Lebesgue measure λ on (0, 1).

Let

(	i, Ai , μi) :=
{

(D−, BD , ρ) if i ∈ V,

((0, 1)2, B, ν) if i ∈ E.

For a set J ⊂ V ∪ E, define the product probability space

(	J , AJ , μJ ) :=
(∏

j∈J

	j ,
⊗
j∈J

Aj ,
⊗
j∈J

μj

)

with the product σ -field and product measure, and for K ⊂ J ⊂ V ∪ E, denote projections by

J,K : 	J → 	K .

For Im := Vm ∪ E<m, m ∈ N, we use the short form (	m, Am, μm) for the product measure
space. Let Īm := V≤m ∪ E<m for m ∈ N. On the product measurable space (	̄m, Ām) =
(	Īm

, AĪm
) introduce the probability measure μ̄m. We specify the measure on 	̄m by

μ̄m(
−1
Īm,Im

(·)) = μm(·), and let the other values of the coordinates be determined by the
given values for 	m and the recursions of (1.3) and (1.4), replacing equality in distribution by
equality for random variables, respectively. Formally, let h : D− × D− × (0, 1)2 → D− be
defined by

h(f, g, x, y)(t) = xf

(
1 ∧ t

x

)
+ yg

(
0 ∨ t − y

1 − y

)
+ C(x, t).

For given values Vm � w �→ Xw := 
Īm,{w} ∈ D− and

E<m � ew �→ (Uw, 1 − Uw) := (
Īm,{(w,w1)}, 
Īm,{(w,w2)}) ∈ (0, 1)2,

recursively define
Xv = h(Xv1, Xv2, Uv, 1 − Uv), v ∈ V<m.

Lemma 2.1. The probability spaces (	̄m, Ām, μ̄m), m ∈ N, form a projective family with
respect to the projections as morphisms. A projective limit exists and can be chosen as
(	V ×E, AV ×E, μV ×E) with projections as morphisms.

Proof. For consistency, it suffices to show that, for all m ∈ N and A ∈ Ām,

μ̄m+1(

−1
Īm+1,Īm

(A)) = μ̄m(A).

Fix m and, for brevity, write Xv = 
Īm,{v} for v ∈ V≤m and Uw = 
Īm+1,{(w,w1)} for w ∈ V≤m.
Then

Xv = h(Xv1, Xv2, Uv, 1 − Uv) for all v ∈ Vm.

For consistency, it suffices to prove the independence of Xv, v ∈ Vm, and that the distribution
of every Xv, v ∈ Vm, under μ̄m+1 is ρ. Independence is obvious from the construction via a
product measure μm+1, and the distribution is the correct distribution because ρ satisfies the
SFPE.

All 	· are Polish spaces endowed with the Borel σ -algebra. From Kolmogorov’s result on
projective families we obtain a projective limit, and this limit can be represented on the product
measurable space with a suitable probability measure. �
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3. Solutions

A Cauchy distribution Cau(b, c) on the reals for c, b ∈ R, c > 0, is determined by the
characteristic function R � λ → ebλ−c|λ|. A symmetric Cauchy distribution has the parameters
b = 0 and c > 0. Every Cauchy random variable with distribution Cau(b, c) has a represen-
tation X + b, where X has a Cau(0, c) distribution. The standard Cauchy distribution has the
pair of parameters (0, 1) and is symmetric.

Lemma 3.1. If the homogeneous SFPE

W
D=

(
UW1

(
1 ∧ t

U

)
+ (1 − U)W2

(
0 ∨ t − U

1 − U

))
t

(3.1)

in D− has a solution for which W(1) is standard Cauchy distributed, then the solution is unique.

Proof. We use the same construction as in Lemma 2.1. Let Wv = 
V ×E,{v} for v ∈ V and
(Uv, 1 − Uv) = 
V ×E,{ev} for ev ∈ E.

Let H be the set of half-open intervals (c, d] in the unit interval. Let G be the subspace of
HH generated by the maps gv,vi : H → H for which

gv,v1((c, d]) = (c, (d − c)Uv], gv,v2 = ((d − c)Uv, d],
to which we add the identity and a cemetery state. (∅ plays the role of a cemetery state in H

and the function identically ∅ in G is the identity.) G is a semigroup (G, ∗) with composition
g ∗ ḡ = ḡ ◦ g.

Define the path weights L by Lv,vi = gv,vi and recursively by Lv,vw ∗ Lvw,vwx = Lv,vwx .
Denote the interval L∅,v((0, 1]) by Jv = (cv, dv], v ∈ V . The Jv, v ∈ Vm, form a partition of
(0, 1] for every m ∈ N. Note that the random sets {cv | v ∈ Vm} and {dv | v ∈ Vm} are nested
in m, and converge to a countable dense random set.

Iterating (3.1) with equality of the random variables m-times we obtain

W =
( ∑

v∈Vm

(dv − cv)Wv

(
0 ∨ t − cv

dv − cv

∧ 1

))
t

.

Note that we assumed W·(1) to be standard Cauchy. For fixed m and t ∈ (0, 1], we observe
that

W(t) =
( ∑

Vm�v≺lwm,t

(dv − cv)Wv(1)

)
+ (dwm,t − cwm,t )Wwm,t

(
t − cwm,t

dwm,t − cwm,t

)

=: I + II.

Here wm,t is the element w ∈ Vm such that t ∈ Jw, and the sum is over all v ∈ Vm that are
strictly smaller than wm,t in lexicographic order (�l).

For t ∈ (0, 1], the distribution of W(t) is Cau(0, t). The first term of I is W(cwm,t ) by
construction. From the independence of the W(v), v ∈ Vm, for given c· and d· which are
(Uw)w∈V measurable, we conclude that W(cwm,t ) has a symmetric Cauchy distribution with
the (random) parameter (0, cwm,t ). For fixed t and m → ∞, this parameter converges to (0, t]
almost surely (a.s.). From the left continuity of W and 0 ≤ t − cwm,t ↘m 0 a.s., we deduce
that, as m → ∞, W(t) − W(cwm,t ) converges to 0 a.e.

The finite marginal distributions of W are those of a standard Cauchy process. Let 0 =
t0 < t1 < · · · < tn < tn+1 = 1 be in [0, 1]. We are interested in the distribution of
(W(ti) − W(ti−1))

n+1
i=1 . For large m, we may assume that every ti , 1 ≤ i ≤ n, is in some

interval Jvm,i = (cvm,i , dvm,i ] for different vm,i ∈ Vm. Note that cvm,i is increasing in m, dvm,i is
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decreasing in m, and both converge as m → ∞ to ti a.e. Consider the vector of differences

(W(cvm,1) − 0, W(cvm,2) − W(dvm,1+), . . . , W(cvm,n) − W(dvm,n−1+), 1 − W(dvm,n+)).

Every coordinate is the sum over some terms of the form (dv − cv)Wv(1), v ∈ Vm. By
independence of the Wv, v ∈ Vm, and conditioned on (Uw)w∈V (note that the c· and d· values
are (Uw)w measurable), the difference vector above is

(Cau(0, cvm,1), Cau(0, cvm,2 − dvm,1), . . . , Cau(0, cvm,n − dvm,n−1), Cau(0, 1 − dvm,n))

distributed. If we let m converge to ∞ then the distribution of the difference vector converges
to

(Cau(0, t1), Cau(0, t2 − t1), . . . , Cau(0, tn − tn−1), Cau(0, 1 − tn)).

From the pointwise almost-sure convergence of the c· and d·, we conclude that the W -difference
vector converges to

(W(t1) − 0, W(t2) − W(t1+), . . . , W(tn) − W(tn−1+), W(1) − W(tn+))

pointwise a.s., and, therefore, also in distribution. Finally, use P(W(t) �= W(t−)) = 0 for
every t ∈ [0, 1] to delete the right limits in this last vector. �

The standard Cauchy distribution is a solution in the sense of Lemma 3.1. For every solution,
any multiple is a solution. Also, the deterministic function W(t) = bt for all t is a solution.

Proof of Theorem 1.1. We first show that R + aY + bI is a solution of SFPE (1.1). Take
independent copies W1 = R1 + aY1 + bI and W2 = R2 + aY2 + bI of the solution. Let U be
uniformly distributed, independent of the copies, and substitute the values into the right-hand
side of the Quicksort process SFPE (1.1). We obtain([

U(R1 + b)

(
1 ∧ t

U

)
+ (1 − U)(R2 + b)

(
0 ∨ t − U

1 − U

)
+ C(U, t)

]

+
[
aUY1

(
1 ∧ t

U

)
+ a(1 − U)Y2

(
0 ∨ t − U

1 − U

)])
t

=: I + II.

The distribution of I is the same as that of R + bI . The distribution of II is the same as that
of aY . Argue that the Cauchy process is a strong Markov process and we can stop a Cauchy
process with U as the stopping time. Up to time U , it is a Cauchy process, and after time U , it
is, conditioned on the past of the stopping time U , again an independent Cauchy process with
the same parameter. Now a suitable random time change as given for the process up to the
stopping time U and another for the process after the stopping time makes II a Cauchy process
with the right parameter.

To show the independence of I and II , simply observe that, for given U , the conditional
distribution of II under U is a Cauchy process with parameter that does not depend on U .

Finally, we show that there are no more solutions other than those we have proposed. To
every solution ρ construct the projective limit as given in Lemma 2.1. Take Ww = 
V ×E,{w}
and (Uw, 1 − Uw) = 
V ×E,{ew} for w ∈ V. Then we obtain the equality

Wv =
(

UvWv1

(
1 ∧ t

Uv

)
+ (1 − Uv)Wv2

(
0 ∨ t − Uv

1 − Uv

)
+ C(Uv, t)

)
t

.
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The endogenous solutions Rv, v ∈ V , for the Quicksort processes starting in v satisfy [23]

Rv =
(

UvRv1

(
1 ∧ t

Uv

)
+ (1 − Uv)Rv2

(
0 ∨ t − Uv

1 − Uv

)
+ C(Uv, t)

)
t

.

Therefore, Wv − Rv =: Yv satisfies the homogeneous equation

Yv =
(

UvYv1

(
1 ∧ t

Uv

)
+ (1 − Uv)Yv2

(
0 ∨ t − Uv

1 − Uv

))
t

;

Yv(1) satisfies the equation Yv(1) = UvYv1(1) + (1 − Uv)Yv2(1) in R. We know all solutions
of the corresponding fixed point equation [2]: every solution is a Cauchy distribution, possibly
degenerate, with parameters b ∈ R and c ≥ 0. The degenerate case, c = 0, is the point measure
in 0 corresponding to a = 0 in the representation. For c > 0, the process (Y − b)/c has a
standard Cauchy distribution at t = 1. Lemma 3.1 states that there is at most one solution Y of
the homogeneous SFPE in D− with Y (1) standard Cauchy distributed with parameter (0, 1).
It must be the standard Cauchy process. �
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