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COMPACTIFICATIONS OF 3-DIMENSIONAL

COMPLEX AFFINE SPACE C°
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Introduction

Let X be an 7z-dimensional connected compact complex manifold and

A be an analytic subset of X. We say that the pair (X, A) is a complex

analytic compactification of Cn if X — A is biholomorphic to Cn. If X

admits a Kahler metric, we shall say that (X, A) is a (non-singular) Kahler

compactification of Cn. For n — 1, it is easy to see that (X, A) ~ (P\ oo).

For n = 2, Remmert-Van de Ven [17] proved that (X, A) ~ (P2, P1) if A is

irreducible, where A — Pι is linearly embedded in P2. Morrow [15] gave

more detailed classifications of complex analytic compactifications of C\

For n — 3, Brenton-Morrow showed the following

THEOREM ([5]). Let (X, A) be a non-singular Kahler complex analytic

compactification of C3 such that the analytic subset A has only isolated

singular points. Then X is projectίve algebraic and A is birationally equiv-

alent to a ruled surface over an algebraic curve of genus g — bs(X)/2.

Further, Brenton [3]* classified the possible types of singular points

of A in the case that the canonical line bundle KΛ of A is not trivial.

In this paper, we shall discuss in detail the structures of the non-

singular Kahler compactifications of C3 such that A has at most isolated

singular points.

Our results can be summarized as follows

THEOREM I. Let (X, A) be a non-singular Kahler compactification of C3

such that A has at most isolated singular points. Then A is an irreducible

Received December 10, 1983.
Revised August 27, 1985.
* We remark that there exist some ambiguities in the arguments in [3], but the

results are justified later by Hidaka-Watanabe [9].
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normal Gorenstein surface, the line bundle [A] defined by A is positive on

X, and Kx — — r[A] (1 ^ r ^ 4), where Kγ is the canonical line bundle of

X. Further, the structure of (X, A) is determined by r in case r >̂ 2 as in

the Table (I) below.

Table (I)

r I (X, A)

4 (P3, P2) A = P2 is linearly embedded in P\

(CΫ ίΨ\ ^ * s a n o n " s i n ^ u ' - a r quadric hypersurface in P 4 and
' ° Ql is a quadric cone which is a hyperplane section.

V-o is a 3-fold of degree 5 in P6, and Ho is a hyper-
plane section with an isolated singular point. (V3, £Γ5)

(V5, HΌ) is uniquely determined up to isomorphism. The de-
tailed structure of (V5, jff5) will described in Section
4 below.

! , i , A is not a cone over a compact algebraic curve with
1 i unknown ^ _

I I genus g > 0.

The main part of our proof is sacrificed to the investigation of the

structure of A. Particularly, we shall determine completely the structures

of singular Del Pezzo surfaces A with Pic A ~ Z (see § 3).

After such an investigation of the boundary divisor A and the normal

bundle NA of A, the projecting method from a line contained in A ~—> X

by Fano-Iskovski [11] enables us to prove the theorem (see § 4). In the

course of the proof of the case r = 2 of our Theorem I, we find the fol-

lowing fact, which gives the negative answer to a question of Brenton-

Morrow [5, p. 151].

THEOREM II. There exists a non-singular projective algebraic compactifi-

cation (X, E) of C3 such that E is irreducible but not normal

As for the case of r = 1, we have some more detailed informations,

but the complete structure of (X, A) is not yet unknown for us for the

present.

The author would like to express his hearty thanks to Prof. M. Suzuki

and Prof. E. Sato for their invaluable suggestions and encouragement.
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§ 1. Preliminaries and the case of r >̂ 3

(1.1) General properties. Let (X, A) be a non-singular Kahler com-

pactification of C3 such that A has at most isolated singular points. At

any point of A, one of the coordinate functions of C3 must have a singu-

larity. A has therefore, by Hartogs theorem, pure dimension 2. Let us

denote the set of regular points of A by Ao. Since A has at most isolated

hypersurface singular points, the canonical line bundle KΛQ on Ao is trivial

in a neighbourhood of each singular point of A. Such a singular point

is called Gorenstein singularity. We call a complex surface with at most

Gorenstein singularities a Gorenstein surface. Since C3 is connected at

infinity, A is connected, and since A is normal, A is an irreducible nor-

mal Gorenstein surface. Let us consider the long exact sequence of coho-

mology groups corresponding to the pair (X, A):

> H\X, A; Z) • H\X; Z) > H%A; Z) > Hί + 1(X, A Z) >

Since

H\X, A; Z) ~ H^i(X -A Z)- iί6_2(C3; Z) = 0 for 1 £ i ^ δ
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and 0 -* H\X; Z) -> Hb(A; Z) ~ 0, we have H%X; Z) ~ W(A; Z) for i ^ δ.

PROPOSITION 1 (Brenton-Morrow [p. 147, 5]).

(1) H\X\ Z) ~ H\A; Z) ~ 0.

(2) H\X\ Z) ~ H2(A; Z) ~ Z . H\X; Z) is generated by the first Chern

class (^([A]) of the line bundle [A] defined by A and H2(A; Z) is generated

by c^NJ, where NA = [A]\A is the normal bundle on A.

(3) The Euler number X(X) = 4- bs(A\ where bt(A) = dimΛ#*(A; R).

(because HS(X; R) = H%A, R) by the argument before Proposition 1.)

(4) The line bundle [A] is positive on X and the canonical line bundle

Kλ — — r[A] (r > 0). Especially X is protective algebraic.

(5) H\X; OΣ) = 0 (1 ^ i < 3).

PROPOSITION 2. W(A; ΘΛ) == 0 for 1 ^ i £ 2 if r ;> 2, and H\A; ΘA) = 0,

H2(A;ΘΛ)~ C i / r = l.

Proof. Let us consider the following exact sequence:

• H\X; &A- A)) • H\X; Θλ)

• H\A; ΘA) > W*\X; Θx(- A)) •

By the Kodaira-Serre duality, H\X; Θx(- A)) ~ HS-%X; ΘX(KX + A)).

Since Kx + A = (1 — r)A, if r ^ 2, then by Kodaira vanishing theorem,

HKX; Θx{- A)) = 0 for i ^ 3. Thus # 4(X; Θx) ~ H\A <PJ (1 £ i ^ 2).

Therefore, by Proposition 1, we have H\A 6^) = 0. If r — 1, then ϋΓ^ +

A ~ <PA . Thus H\X; Θx(- A)) = 0 (1 ^ i ^ 2). Therefore we have

H\A; <9A) ~ ίΓ(X; <PX) = 0 and H\A; ΘA) ~ H3(X; Θx(-A)) ~ H\X; Ox) ~ C.

Q.E.D.

Since A is a normal Gorenstein surface, we can define the canonical

line bundle KA on A as the trivial extension of KA<s to A. By the adjunc-

tion formula, we have

KA = Kx \A + [A] I, = (1 - r)NA , NA = [A] \A .

By Proposition l-(4), —KA is positive on A if r ^ 2 and KA ~ ΘA if r = 1.

DEFINITION 1. A normal Gorenstein surface A will be called a

(singular) Del Pezzo surface (resp. a singular K~3 surface) if —KA is posi-

tive on A (resp. —KA ~ ΘA and ίΓ(A; 0 J = 0).

Thus we have the following
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PROPOSITION 3. If r ^ 2, then A is a (singular) Del Pezzo surface

with Pic A ~ Z(NΛ). If r = 1, then A is a singular K-S surface with

Pic A ~Z(NΛ).

Proof By Proposition 2 and the fact that A is projective algebraic,

we have H\A; 0*) ~ # 2(A; Z) - Z. Q.E.D.

(1.2) Minimal resolution of singular points of A. Let x = {xu , xr}

be the set of singular points of A and μ: M->A be the minimal resolu-

tion of singularities of A. We put μ~\x) = U*=i C*, where C/s are the

irreducible components of C. Since A is projective algebraic, so is M.

Let us denote the canonical line bundle of M by Kyi. Since μ is the mini-

mal resolution and KA = (1 — r ) ]^ , we have

JΓ* - (l - Φ*(iv4) - έ nA (Ti, ^ 0).

PROPOSITION 4. Lei M be a relatively minimal non-singular model of

M, and v\ M-> M be the bίrational morphίsm. Then M is either the pro-

jective plane P 2 or the total space of a Pι-bundle on a non-singular alge-

briac curve.

Proof (Brenton-Morrow [p. 148, 5]). We have only to show that Pm(M) =

dimc H°(M; Θ(mKy[)) = 0 for m > 0, since Pm is birational invariant among

non-singular surfaces. But this follows from the inequality

dimc H°(M; Θ(mKM)) ^ dimc H\M; 0((1 - r)μ*NJ)

and the fact that 6+(M) = 6T(A) = 1 by Proposition l-(2). Thus from the

classification of surfaces [1], M is either P2 or the total space of a P1-

bundle on a non-singular algebraic curve. Q.E.D.

(1.3) The case of r ^ 3.

Let us quote a theorem due to Kobayashi-Ochiai;

THEOREM (K-0). Let Y be an n-dimensional compact complex manifold,

and L be a positive line bundle on Y. Then we have

(1) If cx{Y) = c(Lh) for some integer k > n + 1, then Y is biholomorphίc

to Pn.

(2) 1/ cx(Y) = c(Ln), then Y is biholomorphic to a non-singular quadrίc

hypersurface Qn in P n + 1.
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By this theorem, we have

PROPOSITION 5. (Ί) If r ^ 4, then A ^ M = M ^ P2, consequently r = 4.

(2) If r - 3, ί/ierc M - M - F 2 α n d A - F2/Γ0 ^ Q; -—> P3, where F2 is a

Px-bundle over a complex projectίve line P 1 with the zero section Γo with

Γl = — 2, and Qlc=—> P 3 is a quadric cone in P3.

Proof (1): By Theorem (K-O), one has X = P3, r = 4, and Θ{A) ^ Θ{1)

because r ^ 4. Thus A = P2 ^ M g± M. (2): Similarly by Theorem (K-O),

one sees X is a quadric 3-fold in P4 and 0(A) = ΘX{1) by r = 3. Thus A

is a smooth quadric or Ql, and one sees A ~ Ql because Pic A = Z.

Q.E.D.

One can easily see that P 3 — {a hyperplane P2} ^ C3 and Q3 — {a hy-

perplane section ^ Ql} = C3. Therefore we have the following

PROPOSITION 6. (1) r ^ 4 <£=> (Z, A) ^ (P3, P2) (/n /αcί, r - 4),

(2) r =

§2. Cone singularities and the compactifications of C3

(2.1) The genus of the cone singularity. Let (X, A) be as in Section 1.

We say that A has a cone singularity {x} of genus g if μ: M-> A being

the minimal resolution, M is a P^bundle over a non-singular algebraic

curve i? of genus g and /^(x) = C is a section of this bundle.

LEMMA 1. Let φ:M-+R be a Pι-bundle over a non-singular algebraic

curve R. Suppose that there exists a negative section Co and that the con-

traction A = M/Co of Co is algebraic. Then there exists a section C^ such

that C00 Π Co = φ.

Proof. Since A is algebraic, there exists another hyperplane section

D which does not pass through the singular point of A. In the surface

M, we have D Γ) Co = φ. For any point 2 of R, we put D Π φ~\z) =

{PD -9Pi}- Let pz be the barycentric point of the points {pl9 — -,p4} in

φ-\z) - φ~\z) Π Co ~ C. We put CL : = L U Λ P *
 T h e n w e h a v e a desired

section CTO. Q.E.D.

PROPOSITION 7. // A /ιαs α singularity of genus g, then the genus

g ^ 3 and ί/iβ following holds

( i ) r =

(ii) r =
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(iii) r = 1 Φ=Φ> g = 2 or 3.

Proof. Since A is algebraic, by Lemma 1, there exists a section D

which does not intersect the negative section C, and we have D9—— C2.

The curve D can be considered as a Cartier divisor in A. Since Pic A =

Z[NA] by Proposition 3 and since [D] is not divisible in Pic A (D is pulled

back to a section of M by μ), NΛ is linearly equivalent to the line bundle

[D] defined by D. Since KA = (1 — r)NΛ, by the adjunction formula, we

have KD == KA\D + ND, where ND = [D]\D is the normal bundle of D. By

the Riemann-Roch theorem, we have the equation

( * ) 2g - 2 = άegKD = (2 - r) degiV,.

Since degiV^ > 0 and r ^ 3, we have (i) r = 3 <φ=φ g = 0 and άegND = 2.

(ϋ) r = 2 <̂==> g = 1. In the case of r — 1, one has jfiΓj = ^ and ifj/ =

~2C by the adjunction formula for a fibre. Let L — Nc be the normal

bundle of C in M. Then — L = — Nc = ND. By the adjunction formula,

KD = KM\D + ND = ND. Since (A, x) is a hypersurface singularity,

emdim(A, x) = 3. Let mx be the maximal ideal of the local ring @ΛiX.

Since ΘAiX is the localization of ®k>QH%C; Θ( — kLj) at the vertex, one

has mjml +—=> H%C; Θ{- L)). Thus,

3 = emdim(A, x) == άimcmjm2

x ^ dim#°(C; ^ ( - L))

- dimH\D\ ND) = dimH\D; KD) = g ,

that is g ^ 3. By the equation (*), we have (iii) r — 1 <—> g = 2 and

= 2, or g = 3 and d e g ^ = 4. This completes the proof. Q.E.D.

(2.2) Structure of (X, A). In the case of r = 3, we have determined

the structure of (X, A) in Section 1. Therefore we have only to consider

the case of r ^ 2, to prove Theorem I.

In this case, X is a Fano 3-fold of index r <̂  2 with Pic X ^ Z

We note that the topological Euler number of A is written as

Z(A) - X(M) - χ(C) + 1

- 2(2 - 2g) - (2 - 2g) + 1 - 3 - 2g,

and X(X) = χ(A) + 1 = 4 - 2g because X(X - A) - Z(C3) = 1. We will see

that X(X) ψ 4 - 2g when r ^ 2.

(Case 1) r = 2. By Proposition 7, we have g = 1, and thus Z(X) = 2.

On the other hand, since χ(X) = 4 - 63(X) = 4 - 2Λ1'2, by Table 3.5 in

https://doi.org/10.1017/S0027763000022649 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000022649


8 MIKIO FURUSHIMA

p. 809 in [11J, we have X(X) = - 38, - 16, - 6, 0, 4. This is a contra-

diction. Therefore r Φ 2.

(Case 2) r = 1. We have then g = 2, 3. Thus Z(X) = 0, - 2. Since

άegND = 2,4 and since degiV^ = (A A A)Σ = A3, by Table 3.5 in [11J.

χ(X) = — 100, - 56. This is a contradiction. Therefore r Φ 1.

We note that we simply quoted a table in [11J instead of going

through lengthy calculation, to get bz(X) for Fano 3-folds X with (1) index

2, or (2) index 1 and (— Kx)
z = 2, 4. Because these are explicitly clas-

sified and bz(X) is well known among researchers in the field.

Thus we have the following

THEOREM 1. Let (X, A) be as in Theorem I. If A is a cone over a

compact algebraic curve of genus g, then g — 0 (<=> r = 3) and (X, A) =

(Q\ Qϊ)

§ 3. Singular Del Pezzo surfaces with free Picard group of rank one

(3.1) The two classes of singular Del Pezzo surfaces. Let A be a

singular Del Pezzo surface with isolated singularities x = {x19 , xm} (see

Definition 1 in § 1). Let π: M —> A be the minimal resolution of singularities

of A and put π'Xx) — C — ULi C{, where C/s are irreducible components

of C. Let us denote the canonical divisor on M (resp. A) by KM (resp. KΛ).

Then we have

1:

KM = π*KΛ — ΣniCi (linearly equivalent),
ί = l

where nt ;> 0 (1 <g i <̂  fe).

Brenton and Hidaka-Watanabe showed the following

PROPOSITION 9 ([3, 9]). Let A and M be as above. Then we have either

(a) A is the space obtained by blowing down the negative section Co

of a Pι-bundle M over a non-singular elliptic curve T, namely A ^ M/Co, or

(b) A is a rational surface with only rational double points as singu-

larities, obtained from P2 by blowing up s ( ^ 8 ) points and then blowing

down s non-singular rational curves, each with the self-intersection number

- 2.

(3.2) Almost general position. Let Σs — {pl9 , pJ be a finite set of

points on the complex projective plane P2 (infinitely near points allowed)

and assume that s = l^j ^ 8. We put Σj = {pl9 -,p3} (j £ s). Let V(Σ3)
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be the monoidal transformation with center Σό, Then we have the sequence

M = V(ΣS) - ^ > V(ΣS_X) > ^ ^

where pj+ί e V(Σ^ We put Et = πr\Pι).

DEFINITION 2 (Demazure [6]). The points of Σs are in almost general

position if

(1) no four of them are on a line.

(2) no seven of them are on a conic.

(3) for ally (1 <Ξ*j <^s — 1), the point pj+1 e V(Σj) does not lie on any

proper transform St such that β\ = — 2.

Then Demazure proved the following

PROPOSITION 10 ([6]). (1) There exists a non-singular cubic curve Γo

which passes through all the points of Σs.

(2) The anti-canonical linear system |— KM\ of M contains a non-

singular elliptic curve, especially, — KM = Γ8i where Γs is the proper trans-

form of ΓQ in M.

COROLLARY 1. Γ2

S = 9 — s.

Proof K\ = K*PΛ - s = 9 - s.

COROLLARY 2. Let D be an irreducible exceptional curve on M — V(Σ8).

Then we have either

(i) D is a non-singular rational curve with D2 = — 1 and DΓS = 1,

or

(ii) D is a non-singular rational curve with D2 = — 2 and D Γ8 — 0.

Proof, Let g be the genus of D and £ the number of cusps and nodes

of D. By the adjunction formula,

- D2 + DΓS + 2g + 2δ = 2.

Since -Z) 2 > 0 and DΓs^0, we have (i) or (ii). Q.E.D.

COROLLARY 3. Let C = U?=i Cf 6β ί/iβ zmίorc of all the non-singular

rational curves Cu > ,CN on M with CJ = — 2 (1 <; i <ί 2V). Then Γs Π

(3.3) Rational Del Pezzo surfaces. Let A be a rational Del Pezzo

surface with the singular points {xt} = x (see (b) in Proposition 9), and
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-: M-* A be the minimal resolution of the singular points of A. We put

C = -~\x) — U!=i Ci, where C/s are the irredudible components of C.

Then,

PROPOSITION 11 ([6], [9]). There exists a set Σs of points in P2 which

are in almost general position such that M ~ V(ΣS).

By Corollaries 2 and 3, we have

PROPOSITION 12. — KΛ = Γ, where Γ is a non-singular elliptic curve

in A such that Γ Π {x} — φ.

PROPOSITION 13. The following (1), (2) and (3) are equivalent,

(1) H*(A;Z)~Z

(2) PicA~Z(-iQ

(3) C = Uί-iC,, where s = \Σ,\

Proof. Let us consider the following exact sequences of cohomology

(c.f. Brenton [2]):

( * ) — -> H\C; Z) > H\A Z) > H\M; Z)

> H\C; Z) > H\A; Z) -—• H\M; Z) -—•

(**) 0 • > H\A, ΘA) > H\M, GM)

> H°(A, Rιπ*ΘM) > H\A, ΘA) >

Since the self-intersection number of each irreducible component C% of

C is equal to — 2, the singular points of A are rational double points,

and thus H\C; Z) = 0, H°(A, Rπ*ΘM) - 0. Since M is a rational sur-

face, H\M, ΘM) - 0 = H\M; Z). Hence rankiί3(A; Z) = rank# 3(M; Z) =

r a n k # W ; Z) = 0. Since M = V(Σ,), H*(M; Z) ~ Zs+1. We have, by (*),

rankHHC; Z) = s <=> H\A; Z) ~ Z This proves (1) 4=φ (3). By (**),

H\A, ΘA) = 0, and further H2(A, ΘA) ~ H°(A, KA) ~ H°(A, ΘA{- Γ)) = 0 by

Serre duality. Thus ίΓ(A, Θ*) ~ H\A; Z), where Θ* - GA - {0}. Let g be

a generator of H\A Z). Then Γ = kg for some integer k. Let L be an

exceptional curve of the first kind in M, and put L = ττ(L). Then,

hence k = 1. Therefore Pic A ~ Z(-KA) ~ H\A; Z) ~ Z. This proves

(1) 4=Φ (2). Q.E.D.

COROLLARY 4. ίF(A; Z ) ~ Z ς > s ^ 3
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Now, we put M(s> = V(Σ8\ A^ = A, C ( i ) = C and C^ = C, (1 < i ^ s).

Let E8 be an exceptional curve of the first kind in M(s\ M{*~1) = M{s)jEs

be the contraction of E8, and π{s): M(s) -> M{s~l) the projection. Since

- ϋ Γ v ( s ) = Γ s and Es-Γs = l, if we set Γ ^ = π{s)(Γs), then we have

- KMls-v = Γs_,. Let C ( s l ) - Uf- 'Cί*"^ be the union of all the non-

singular rational curves C\*~l) with the self-intersection number — 2.

We can see that C( s~ ! ) £ π^(C^). We put A(s-1} - M{s^IC{s~l\ We have

similarly M(S"Λ C(*-4) - Uf ' " 'C^- i } , r ( ' - f ) and A ( ^ (0 ̂  i ^ s - 3).

PROPOSITION 14. PicA{sί) ~ Z(— UL^.-O) 4=φ JV,_< = s — i

Proof. Since ff(M(s-^;Z)-Zs-ί + 1, H\&°-*; Z) ~ ZNs~\ and rank

H3(A(s~i}; Z) — rankjH"3(M(s~z); Z) = 0, we have, by a similar exact sequence

to (*), H\A{s-^\ Z) ~Zt=ϊ Ns_t = s -ί. Q.E.D.

(3.4) Determination of the points of blowing up. Let Γ be an elliptic

curve, and Po e Γ be a fixed point. We put Pic°Γ = {ξ e PicΓ; degf = 0}.

As a consequence of the Riemann-Roch theorem, the map P -» Θ(P — Po)

induces a bisection between the set of points of and the group Pic°Γ.

Thus the set of points of Γ form a group, with Po as the 0 element, and

with addition characterized by R + Q = R if and only if P + Q — R + Po

as divisors on Γ. This is the group structure on (Γ, Po) If w e embed Γ

in P2 by the linear system |0(3PO)|, then three points P, Q, R of the image

are on a line if and only if P + Q + R - 3P0, namely, P + Q + # = 0 i n

the group structure (see Hartshorne [8]). Thus, a point P is a point of

inflection of Γ if and only if 3P = 0.

Let g2, #3, , qr be infinitely near a point QΊ e Γo. Then we set q\ —

{Qi}, Ql = {Qu QΪ), ' ",Qί = {̂ i, , ̂ } Now, we put σ, = Σ8 — {infinitely

near points} = {P1? , Pk] (k ̂  s). We say that a point of σs is an ordi-

nary point of Σs. Then,

Σs = Pf1 U P22 U U P ? ,

where sx + s2 + + sk — s.

Let Γo be a non-singular elliptic curve through all the points of Σs.

Then the configuration of V(Σ^) is (not necessarily uniquely) determined

by the relation (Rs) among P1? , Pk e ΓQ in the group structure of Γo.

In the case of 3 ^ s ^ 7, one can get easily the relation (Rs) and is

already known but in the case of s — 8, it is more complicated (see [9],

[4]). Let us consider the case of s = 8 using the theory of elliptic surfaces
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12 MIKIO FURUSHIMA

(see Kodaira [12]). Let Γf and Γ" be two non-singular members of the

linear system |— KMw\. Since (KM(B)y = 1, the intersection of Γr and Γ"

is only one point P. Let F be a rational function such that (F) — Γr — Γ".

Then the point P is a point of indeterminacy of F. Let τr(9): Λf(9) -> M(8)

be the blowing up of M(8) with center P. Then F = Γ^-' F : Λf(9> - + P 1 is

a holomorphic mapping and the triple R = (M(9), F, P1) has a structure of

an elliptic surface. Let C = C(8) be as above, and C be the proper trans-

formation of C. Then C ~ C and C is contained in singular fibers of R,

since C does not intersect non-singular members of \—KMtΛ>\. The types

of singular fibres of elliptic surfaces are classified by Kodaira [12]. In

our case, C is contained in a fibre of one of the following types (Figure I).

Where each vertex is a non-singular rational curve with the self-intersec-

tion number — 2, and the number adjacent to the vertex is the multiplicity

of F. We put E= π^'\P). Then £ is a section of R. Let Co be the

irreducible component of a singular fiber of R intersecting E. Then F

has the multiplicity one on Co. Thus the graph Γ(C) can be obtained by

the combination of the following where the dotted vertices represent the

exceptional curves of the first kind, of course, they are not components

of C In the combination of the graphs in Figure Γ, the number of the

vertices must be equal to 8. Blowing down these exceptional curves of

the first kind, we can reduce the case of s = 8 to that of 3 ^ s <̂  7 (see

also Proposition 14), and pick up all the possible types of the graph ΐ(C).

2 2
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(Figure Γ)

Thus we have the following

THEOREM 2. Let A be a rational singular Del Pezzo surface. Suppose

that Pic A ~ Z. Then K\ = 9 — s (s >̂ 3) and the minimal resolution M of

the singularities of A is obtained from P2 by blowing up s points Σs (s^3)

on a non-singular elliptic curve Γo which are classified in the Table (II)

below, where each Dt is a cubic curve in P2 with a cusp or node, and the

proper transform of Dt in M(8) is a non-singular rational curve with the

self-intersection number — 2.

Table (II)

s

3

4

5

6

The type of
Sing A

A2 + A,

A4

A

A3 + 2At

A5 + A,

3A2

PI

Pί

Pί

(PI, Pί)

PΊ

(Pi, Pt)

(PI, Pϊ)

Relations (Rs)

3P, ΞΞO

3P, = 0

3P, ΞΞO

Γ3P, = 0
l2P2 + P, ΞΞ 0

3P! ΞΞO

f3P, ΞΞ 0
l2P2 + P, ΞΞ 0

Γ3P, = 0
13P2 ΞΞ 0
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The type of
Sing A

~'E7~

A + A ,

A,

A + A 3

MIKIO ]

Table (II)

Σ,

PI

(P\, Pΐ)

(PI, Pΐ)

(PL PI P

FURUSHIMA

(Continued)

Relations

3P, = 0

rap/iV
l2P2 + P , Ξ

rap,'=o
l2P2 + P l Ξ

f3P,"=O

ΐ) J o p _j_ P —
\ΔΓ2 -j- Γ1 =

0

0

0

A5 + A2

2A3 + A,

£7 + A,

£, + A2

A, + A,

i5 + A2 + A1

A

A + 2A,

(p p p\

(PL PL Pί)

PI

(PL Pΐ)

(PL Pί)

(Pi, PI, PS)

(PL PL Pi)

(PL PL Pϊ)

(pδ p3\

/D3 D3 D2\

U ^ + P . Ξ O

(3P, Ξ 0
3 P 2 Ξ 0

UP, + P, Ξ o
ί3P,=Ό

°2 + P3 = o
12P3

3, Ξ 0

3P, Ξ O

rap,'=b
l2P2 + P, ΞΞ 0

3P, Ξ 0
3P2 = 0

3P, = 0
3 P 2 Ξ 0

Pι + P2 + P3 :

(3P l Ξ 0
|2P2 + P , Ξ O

U A Ξ O

3

l Ξ 0

J3P2ΞΞ0

l2P,

rap, = o

', = 0

Ξ O

f3P, Ξ 0
2P2 + P , Ξ O

[2P3 + P , Ξ O
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Table (II) (Continued)

The t}φe of
Sing A

A

2A

4A2

2A3 + 2A,

2A4

(PL PL

(PL PL PI, PI)

(PI PL Pf)

(PL PL PL Pϊ)

(Pi, Pί)

Relations (Bs)

(3i> = 0
2P2 + P, = 0

[2PΛ + P: = 0

(2P2 + Λ ΞΞ 0

)2P3 + P,~0

; = 0

Remark. The position of the points of Σs is not uniquely determined

by M = V(ΣS).

§ 4. The case of r = 2

In the case of r = 2, we have seen in Section 1

Kx — — 2A and KA = — Γ, where P is a non-singular

does not pass through the singular points of A. Let

bundle of Γ in A. Since P is an elliptic curve, there

P such that 2VΓ = ΘΓ(m-p), where m = degNΓ = P 2 ( =

tion 8 and Theorem 1, we may assume that A is a

surface. Hence m = 9 — 5 (3 <̂  s ^ 8), namely, 1 ^ m

and Section 3 that

elliptic curve which

iVΓ be the normal

exists a point p of

= K\). By Proposi-

rational Del Pezzo

< 6.

LEMMA 2. T7ιe number X(X) = 4.

Proof. Since A has only rational double points

by 5 rational curves of M ( s ) (3 rg s ^ 8), one has Z(A)

= Z(A) + Z(C3) - 4.

and it is obtained

- Y.(P-) = 3. Thus

Q.E.D.
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16 MIKIO FURUSHIMA

(4.1) Non-existence of (X, A) with m = (A A A) <I 4. We can see

χ(X) φ 4 if m <L 4, which contradicts Lemma 2. In fact, if r = 2 and

ra = A3 - (A A A) ^ 4, then by Table 3.5 in [11J, we have X(X) = - 38,

-16, - 6 , 0. Therefore X(X) ψ 4 (cf. (2.2)).

(4.2) The structure of (X, A) with m = 5. In this case, by the linear

system \ΘX(A)\, X can be realized as a 3-fold of degree 5 in P 6 and then

A is a hyperplane section.

(1°) First we shall show the following

PROPOSITION 15. There exists unique line L in P6 contained in

A<=—>X.

Let μ:M—*A be the minimal resolution of singular points of A, and

put C = μ~ι(a), where {a} is the set of singular points of A. Then M =

V(Σi), where Σ4 = {Pu P2, P3, P4} are almost general position in P2. Let Γo

be a non-singular elliptic curve through all the points of ΣA. Then, by

Theorem 2 in Section 3, the point p1 is a point of inflection of Γo and the

points P/s (2 <L ί <^ 4) are infinitely near the point P1# Let

M = V(Σ4) - % y < ^ J^> v(Σ2) ^ > y ^ o Jϋ> P2

be the sequence of the monoidal transformations with center Σ s = {Pίy ,Pj}

U ^ 4), and put Et = πτ\Pt) (Pi e V(Σ,_,)), L = π:\P4) and π = π, o τr2 o τr3 o ̂ 4.

Then we have

T Γ - 1 ^ ) = E.Ό E2[J E3ϋ L

C = Co U ̂  U ̂ 2 U Ez

where Et is the proper transform of Et in M with the self-intersection

number —2 and Co is the proper transform of the line tangent to Γo at the

point Pj. Thus the graph ϊ(C) of C is of the form

- 2 - 2 - 2 - 2
r(C): o o o o

and the configuration of C and L look like Figure 1. We put Γ =

and L = μ(L). Then, Pic A ~ Z(-KA) ~ Z([Γ]) by Proposition 9 in Section

3. Since (L Γ)Λ = (L-ΓΪ)M = 1, we have (L A)X = 1. Hence, L is a line

of P6 contained in A c X L is the unique line contained in A. In fact,

let E ^ L be a line in A, and i?7 the proper transform of E in M. Then

(E'-Γi)M = (EΓ)Λ = 1, hence E7 is an exceptional curve of the first kind.
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We put D = π(E') and d = deg D ^ 1. Let ^ be the multiplicity of D at

p o where vt = 0 means that p^ e D. By Hurwitz formula,

( d - l ) ( d - 2 ) 1) _= 0 ,

that is, d2 — 3d + 2 = Σ ί = i ^ ~~ Σ l = i ^ Since — 1 — E'2 — d2 — Σί=i^>

we have Σί=i^* = d2 + 1 and Σί=iy« — 3d — 1. By Schwarz' inequality,

MΣUi^ϊ) ^ ( Σ t i ^ ) 2 , namely, 4(d2 + 1) ^ (3d - I)2. Thus we have 5d2 -

6d - 3 ^ 0 Hence d = 1, 1̂  = 1, ^2 = 1, vz = 0, y4 = 0. Then {pup2} are

on D. Therefore we have Co = D. This is a contradiction.

Γ4

Co

Figure 1.

(2°) Next, we shall show the following

PROPOSITION 16. Let Φ: X—> P 4 be the projection from the line L to

P\ We put W = Φ(X) and V - Φ(A). Then,

(1) W is a non-singular quadric hypersurface in P4 and V is a tangent

hyperplane section of W.

(2) Let σL: X; -> X be the monoidal transformation with center L. Then

we have the following diagram:

ψ

X' Φ
w ¥ = Φ o σL ,

where ¥:X' -> W is a birational morphism. Further, we have

( i ) The exceptional set E of Φ is an irreducible ruled variety of

dimension 2 swept out by lines which meat the line L,

(ii) the image Y — Φ(E) is a non-singular rational twisted cubic curve

contained in Ψ(σl\L)) = Vo = Ql.
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18 MIKIO FURUSHIMA

(iii) the birational morphism Ψ: X' -> W is the monoidal transformation

of W with center Y.

We shall study the linear systems \OA(Γ — L)\ and \ΘX(A — L)\. Since

A <=—> P 5 and Γ is a hyperplane section of A, we have dim H°(A; ΘJJΓ — L))

= 4. Let {/J (2 £ i £ 6) be a basis of #°(Γ; 0Γ(5p)) such that fjf2 = p,

fύU = P', U\U = P2> UU = P P' Let φt be a section of /i°(A; ^(Γ)) such

that φt\A= U Then φ2, φit φi9 φ, e H°(A; GA{Γ - L)). Let όt be the proper

transform of ot in M. Then we have

(rj2) = 5L + 2 ^ + 4£2 + 6£J3 + 3C0

(rj3) - 3L + 2Eγ + 3 ^ + 4^3 + 200 + 01

( 4̂) = 2L + E, + 2^2 + 3 ^ + 2C0 + C2

(rj5) - L + ^ + 2J52 + 2^3 + Co + 2Cj,

where Cx is a line intersecting transversally ΓQ at the point pu C2 is a

line with C2 H J 4 = ©, and C/s (1 ^ i ^ 2) are the proper transforms of

d in M. Let irV, e H%P2;Θ(Γ0)) be a section such that ψ r r = ό?> Then

we have

(f3) = 2C0 + C,

(ψ4) = 2C0 + C2

(ψ5) = Co + 2C,.

Let (Xo: X,: X) be the homogeneous coordinate system in P\ We put

the defining equation of Γo: XaX\ = 4X1 + g,X,Xl + g3Xs. Then the bira-

tional mapping f = (-v,: \'/ 3: ψ4: ψ5): P° ->• P3 is given by

w2 =

where (α;0: : ιι\) is the homogeneous coordinate system of P\ The

indeterminant point of ψ is the point (0: 0:1) e P2, and V = ψ(P2) =

{α;0w;3 = WΪ} -—> P3. Then ψ' = (π i o ̂ rS/. : V(J2) -> V=—> P 3 is a bira-

tional morphism (the resolution of indeterminant points of ψ ). Therefore,

ό = (φ2: φz: φ4: ό5): A —> P3 is a birational mapping, L is the set of indeter-

minant points of φ} and φ(A) = V. Thus we have the diagram:
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M = V(Σ<) - ^ > V(Σ3) — > V(Σ2) ~^-

Let Φi (2 <; i ^ 5) be sections of #°(X; 6?X(A - L)) such that Φ ^ = φt and

(Φo) = A. Since dim #°(X; 0X(A - L)) - 5, {Φo, Φ2, , Φ5} is a basis of

H°(X; ΘX(A — L)). Let us consider the rational mapping Φ = (Φo: Φ2:,

• , :Φ 5 ) :X->P 4 defined by the linear system \ΘX{A — L)\. By the con-

struction, we find that Φ\A = φ. Let a\Xf -* X be the blowing up of X

with center L, and A! be the proper transform of A in X\ and set L' =

σ~\L). Then 1/ is a ruled surface.

LEMMA 6 (see [11]). Let A(X) (resp. A(X')) δe #&e Chow ring of X

(resp. X'). Let ί be the class of a fibre of L\ Then,

(i) A(X') — σ*A(X) + ZLf + Zi as additive group, with </*(!/) =

σ*{£) - 0, and σ*σ*A(X) = A(X).

(ii) Lei Cj(X) 6β ί/iβ /irsί Chern class of X, NL/X normal bundle of L

in X, and c^N^*) its first Chern class. Then,

= - σ*(L) + Cl(NL,x)

= - cx(NLίx\

(L' £)= - 1 ,

(L' σ*(D)) = (L-D) £9 (£-σ*(D)) = 0 for all D e A\X),

(L'.**(C)) = (£-σ*(C)) for all C e A2(X),

where we denote the ί-th component of the Chow ring A(X) by A\X),

graded by codimension.

Furthermore, we have

cλ{NL/x) + 2 - 2g(L) - foW L),

where g(L) is the genus of L.

The linear system \Θχι(a*A — L')\ — \ΘX,(A')\ is without fixed compo-

nents and base points. Thus the rational mapping Ψ:Xf -> P4 defined by

the linear system \ΘX(A')\ is a morphism. We put W = Ψ(X'). Since

c1(iV/i/z) = 2(A L ) - 2 = 0, we have, by Lemma 6, (A')3 - O*A - L)3 -

A3 - 3(AL'L') - (L'f = 2. Hence, deg W = 2. Further, we can see that

!ί is a birational morphism of X onto W, and thus, the restriction W\Λ<:

A' —> V is a birational morphism since every irreducible quadric is normal.
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We put Ψ(U) = VQ. Since (L' A'.A%. = L'(σ*A - L'f = 2, deg Vo = 2.

Thus Vo and V are hyperplane sections of the quadric W ^—> P\

Let {α0} be a singular point of A. Since the graph of C looks like

the following

- 2 - 2 - 2 - 2
7(C): o o o o 9

if we choose the coordinates x, y, z is a neighbourhood Δ of {α0} in X,

then we may assume that

A Γ) A = {z* = xy}, where α0 = (0, 0, 0).

The minimal resolution of the singularity of Δ Π A is the manifold

Λf (2, 2, 2, 2) (see Laufer [14]). Then we have

By the coordinate transformation

V = 2?

/ = x - z2

A Π Δ = {yz + yxz + x2z = 0},

LΠΔ = {y = z = 0}.

Let σL: Δ —> J be the monoidal transformation of J with center L Γ\ Δ, and

set Δ = Δ^u, v, w) U Δ2(u', v\ wf) where

\x — u = uf

] y = vw = υf

\ = w = v'w' (see Griffiths-Harris [p. 603, 7]).

By a direct calculation, the proper transform A' oί A f) Δ in Δ has two

rational double points as singular points. Further, we find that A! is

obtained from M by blowing down the exceptional curves E1 and E3 U Co.

Let τ: M->A / be the projection. Then σl\aQ) = τ(E2), Ψ{τ(L)) = {v0} is a

regular point of V, ¥(τ(EJ) = {v} is a vertex oί V ~ Ql and Ψ(τ(E2)) = £0

is a generating line in V passing through the points υ and υ0.

LEMMA 7. L7 - F2 and Vo ~ Ql ^—> P3.

Proo/. By Proposition (5.2) of [11], L' is isomorphic to F2 or P 1 X P1.

Suppose that L' ~ P 1 X P1. The curve r(L) is considered as a curve in

ZΛ Since Ψ(τ{L)) = {u0}, r(£) is an exceptional curve in L' ~ P1 X P\
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This is a contradiction, Therefore U ~ F2, and thus Vo = Ψ(U) ~ Ql -—> P3,

since any quadric hypersurface in P 3 is isomorphic to Ql or P1 X P1, if it

is irreducible. Q.E.D.

LEMMA 8. Let V<=—> P 4 6e α singular quadric hypersurface and H a

hyperplane in P 4 such that H Γ) V ~ Ql. Let v0 be the vertex of H Π V,

and Sing V ί/ie singular locus of V. Then H Π Sing V — {v0}, and

(Hf]V- {v0}) Π Sing V=φ.

Proof. Since V is an irreducible singular quadric hypersurface in P\

Sing V = {v0} (a point) or L (a line in P4). In the case of Sing V = L,

H Π V ~ Ql if and only if L does not contained in H. This proves the

Lemma. Q.E.D.

LEMMA 8. W = Ψ(X') is non-singular.

Proof. Suppose that W is a singular quadric hypersurface. The point

{Ϊ;0} = Ψ(τ(Lj) is a regular point of V and a singular point of Vo. Since

both V and yo are tangent hyperplane sections of W, this contradicts the

above lemma. Q.E.D.

Let Y' be the exceptional set of W, and set Y= Ψ{Yf)<=—^ W, E =

<j( YO, fl'-FΠ V. Then X7 - F ~ W - Y

LEMMA 9. X — E is isomorphic to C3.

Proof. We shall show that Y is contained in Vo. In fact, assume that

Y <χ VQ. Then there exists a point y of Y such that y § Vo. Hence Ψ~\y) Π

Lx = 0, namely, a(?r-1(y)) Π L = φ. Let us denote the 2-dimensional projec-

tive plane in P6 spanned by {y} and L by { y} U L, and set ί7y = X f] ({y} U L).

Then Φ(Ey) = y. Since σ{Ψ~\y)) is a curve of X and σ(W'ι(y)) a {y} \J L

^ P2, we have σ(Φ~\y)) ΠL = φ. This is a contradiction. Therefore Y c Vo.

Further, Xr - Ψ~\V0) ~ W - Vo ~ X' - (U U YO Since W - Fo ~ C3

and (j(L0 = L d E, we have X - £ - C\ Q.E.D.

LEMMA 10. E is a ruled variety of dimension 2, swept out by lines

which meet the line L.

Proof (compare [11]). Since X — E ~ C3 by Lemma 9, one can see

that E is irreducible by the exact sequence of the relative cohomology

corresponding the pair (X, E). Given an arbitrary point on X, there is a

line <=—> X through it [11]. Thus there is a surface swept out by lines
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which meet the line L. Since it is contained in irreducible E, it must

coincide with E. Q.E.D.

LEMMA 11. Y' is linearly equivalent to σ*A — 21/.

Proof. Since X - E ~ C\ we have Pic X ~ Z[E]. On the other hand,

since Έ*icX ~Z[A], A is linearly equivalent to E. For simplicity, we

write A = E. Then Y' = σ*A — kU for some integer k > 0. Since Y' is

a degenerate set, we have Y'-{a*A — I/)2 = 0. Using Lemma 6, we have

k = 2. Q.E.D.

LEMMA 12. Y is a non-singular rational curve of degree 3.

Proof. By the adjunction formula and Lemma 6, we have

Kx. = - 2<τ*A + 1/

J£L, = - 2^ + 2(L')2,

where ^ is the class of a fibre of I/. On the other hand, since U ~ F2

by Lemma 7, we have KL, = — A£ — 2s0, where s0 = τ{L) is the zero sec-

tion of IΛ Hence (I/)2 = — $ — s0. Let 7* be the proper transform of

Y in L', Since £>' = ^ ( σ ^ A - 21/) = ^ + 2(L')2 = 3^ + 2s0 and s0 is con-

tained in L', we have Y* = 3£ + s0. Let sM be a section of 1/ with

si - 2. Then Y* sTO = (3^ + SoJ s^ = 3 and ^ Y* = 1. Therefore Y is a

rational curve of degree 3. Y is non-singular, in fact, if Y has singular

points, then Y is contained in a complex projective plane P2. Thus Y is

contained in the intersection of the plane and the quadric VQ. Since

deg Y = 3, this a contradiction. Q.E.D.

Since W, Y are non-singular, By Lemmas 8, 12, and since Xf — Y' ~

X — Y, we have, by Griffith-Harris [7], that the birational morphism ¥:

Xf —> VF is the blowing up of W with center Y. Therefore, the proof of

Proposition 16 is complete.

(4.3) The construction of (X, A) with m = 5. Let VΓ be a non-singular

quadric hypersurface in P\ £ be an arbitrary line contained in W, and u, u0

(u ^ v0) be arbitrary points of L Let V (resp. Vo) be a tangent hyperplane

section of W at the point v (resp. u0), and Y be a non-singular rational

twisted cubic curve contained in VQ. Then, V- Vo — 2£ and Y passes

through the vertex v0 of Vo. The pair (W, Y) is uniquely determined up

to projective equivalence (see p. 513 in [11]).
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Let (w0: wx: w2: w3: w4) be the homogeneous coordinate system of P\

Then we may assume that

W = [w\ = wowί + w^w,}

V = {wx = 0} Π W

v0 = {w, = o} n w

Then, ^ - {^ = w2 = w, = 0}, y - (1: 0: 0: 0: 0), υ0 - (0: 0: 0: 1:0). Let Ψ:

Xf -> W be the blowing up of W with center Y, and set T = Ψ~\Y). Let

Z7 be the proper transform of Vo, and A7 the proper transform of V.

LEMMA 13. U is isomorphic to F2

Proof. Let us first show that ΊJ is non-singular. In the affine part

{w, = 1} ~ C\w09 wu wz, w,), we have

W ~ [w\ = u;^! + M J ~—-> Cκ

V ~ [w, = 0} Π W

Ϋ ~ {wί = 0, wι = wl, wQ = w\}
o

£0 ~ {wί = w2 = a?4 = 0} .

We define a one to one regular map a: C\x,yy z) -> C4(α;(), ̂ , «;2, ^ ) by a:

ιvQ = x, wι— y, w2 = z, w4 = z2 — xy. T h e n we h a v e

^ {y = 0}

By the coordinate transformation: u = x, υ = y — x\ w = z — x2, we may

assume that in the affine part,

W~ C3

o

V = {u + ^3 = 0}

Ϋ = {v = w = 0}.

Let ?Γ:C^->C 8 be the blowing up of C3 with center Ϋ, and set

C}. = Ω(zu z2, z2) U fl'(2i, 22

7, 230. Then r is given by
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(U = Z1 = ^ί(U =

wr. J 7, _ ^ p — y
* \ t/ <^2^3 ^ 2

' w = z3 = 2£ε£

and we have

U Π Ω = {zz + 2z\ = * A }

L' Π .0' = {̂  - *& + 2z'sz'2
2}.

Therefore L7 is non-singular. Since the minimal resolution of a singularity

of Vo is isomorphic to F2 and b2{U) = 2, we find that L' is isomorphic to

F2 and ^"X^) is the zero section of ZΛ Q.E.D.

LEMMA 14. A/ is a normal Gorenstein surface with two rational double

points {do, a{} as singularities. The graph of the minimal resolution of the

singularity [a{] (resp. {a{}) looks like

—2 —2 —2

o (resp. o——o ) .

Proof. Since Y does not pass through the vertex υ of V, A! has a

singularity with the graph of the form ~o. Let Ω, Ω' be as in Lemma 13.

Then we have

Ω Π A' = {z3 + *ί = 0}

Ω' Π A' = {z'2zί + z?) = 0 .

Therefore A/ has a singularity in Ω' with the graph of the form

~ 2 ~ 2 Q.E.D.

LEMMA 15. Lei £Q be the proper transform of £0. Then the singularities

«o and a[ are contained in £'o.

Proof We have

ψ-\β0) ΠΩ = [zλ = z3 - 0} U {z2 = zl9 z3 + zl = 0}.

Since ?r(z: = z2 = 0) = (0, 0, 0), we have that

s0 n β = {̂  = z2 - o},

where s0 = Ψ~ι(u0), and that

a ΠΩ = {zx = z2, zz + z\ = 0} 3 (0, 0, 0) = αί. Q.E.D.
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LEMMA 16. 1/ and A7 intersect transversally on s0.

Proof. Let us consider U and A7 on the covering Ω. Then,

U Π Ω = {z3 + 2z\ = ̂ 2 } ,

A / n β - {*2z8 + 2? = 0},

and

1/ n Ar n β = (s0 u ΛO n β.

Since {z2 = 1} Π L' = {z3 + 2z\ = zj, {z2 = l } n A ; - {z3 + zϊ = 0}, we find

that U and A7 intersect transversally at the point (0, 0, 1). This proves

the lemma. Q.E.D.

LEMMA 17. Z/ satisfies the criterion for contractibility.

Proof. Let ί' be the proper transform of a generating line ί of V,

and put e = [L']\L, (in X7)- We have only to show that e-ί' = — 1. In

fact, since L' = ¥*V0- F , e = r*y o | L , - y'|L,. Therefore, e ^ = S o β . ^ -

(2s0 + Zi')lf = 1 — 2 = — 1, where sOT is the section of 1/ ^ F2 with the

self-intersection number 2. Q.E.D.

Let σ: X' -> X be the contraction of I/. Then X is a non-singular

3-fold and σ(L') = L is a non-singular rational curve. We set A = σ(A7)

and E = <y(Y0. Since X' - ^ - ^ Vo) - Z 7 - (U U F ) - W - Vo ~ C3 and

*(!/) = L —-> E, we have X - E = C\

By the similar arguments to Proposition 1, we can see that the line

bundle [E] is positive on X and PicX^r: Z Cjfli?]). On the other hand,

V is linearly equivalent to Vo, we have ?Γ* V - Ψ*VQ, that is, A7 ~ Y' + L ;

in Xr. Therefore A — E, namely, A is linearly equivalent to E. By

Lemmas 15, 16, A is a singular Del Pezzo surface with an isolated singu-

lar point {α0} = σ(£ζ). Since Kx, = - 3Ψ*V0 + Y7 = - 3 1 / - 2 F , we have

Kx = - 2£ = - 2A. By Lemma 6, c îV,,,̂ ) = 7, hence (Y7)3 = - 7. Since

(L7)3 - (?Γ* Vo - Y7)3 - VI + 3(W*V0- Y' Y) - (77)3 - 2 - 9 + 7 = 0, we have

Cl(NLlΣ) = -(L 7) 3 = 0. Thus (Cl(X).L) - c^iV^^) + 2 - 2 , hence (A L) - 1.

Since 2 - (A7)3 - (σ*A - I/)3 - A3 - 3(A L)A3 - 3, we have A3 = 5. One

can easily verify that X is realized as a non-singular 3-fold of degree 5

in P\ by the linear system \ΘX(A)\.

We shall finally show that X — A = C3 In the affine part {ẑ  = 1} ~

C\w0, w2, wZ9 w±), we have
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W ~ {W\ = WQ + WZW4]

v0 ~ {w, = o} n w

Ϋ ~ {wA = 0, ^ 3 = M4 wQ = wl].

We define a one to one regular mapping β: C\x, y9 z) -> C\w0. w2, wz, w4) by

Then we have

By the coordinate transformation:

w0

w2

w,

w4

Jίϊ.

V =

w •

-V2

— X

= X

= y

= Z ,

c 3

{z =

= X

= y -

= 2,

- yZ

0}

X'\ Z =

• X3

we have

W ~ C3(u, v, w)

V*-{w = 0}

Ϋ - {v = w = 0} .

Let Ψ'': W' -> W be the blowing up of W with center Ϋ above, and L" be
o

the proper transform of Vo. Then we have

W' - L" ^ X - A .

By the definition of the blowing up, one can easily verify that Wf — L"

^ C3, and thus X - A ^ C3.

From the above arguments, we have also the following

THEOREN II. There exists an projectίve algebraic compactification (X, E)

of C3 such that E is irreducible but not normal.

Proof. Under the same notations as above, we put E = σ(Y'). Then

we have seen that X — E ^ C3 and E is irreducible (see Lemma 9). Since
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E is a ruled variety swept out by lines which intersect L, E contains a

plenty of lines. By Proposition 15, E is not normal. Q.E.D.

(4.4) Non-existence of (X, A) with m = 6.

By Iskovski [11] (N.B.: Iskovski's result on ( — Kxj2)z = 6 misses one

case, see T. Fujita, On the structure of polarized manifolds with total

deficiency one, I, J. Math. Soc. Japan 32 (1980) 707-725; II, 33 (1981) 415-

434.) it is shown that a Fano 3-fold X with index 2 and Pic X = Z satis-

fies (~KX/2Y ^ 5. Therefore m Φ 6.

(4.5) Conclusion. Let (X, A) be a non-singular Kahler compactifica-

tion of C3 such that A has at most isolated singular points. If r — 2,

then X is a non-singular 3-fold of degree 5 in P6 and A is a tangent

hyperplane section which is normal. Further, such a (X, A) is determined

uniquely up to isomorphism. The detailed construction of this (X, A) is

given in (4.3) of this section.
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