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Introduction
We proved in (1) that every continuous endomorphism can be generated on

a subring of the field M. More precisely, the ring H of piecewise polynomial
functions has the property that every isomorphism from H into M, continuous
in the sequential topology of H, can be extended to a continuous endomorphism
of M where the notion of continuity in M is the usual sequential one.

Gesztelyi (7) studied integral representations of linear transformations of the
operator field and he proved that every continuous operator transformation
which is continuous in his sense can be realized on the set of continuous func-
tions as an integral transformation. But to decide whether an operator trans-
formation is continuous in Gesztelyi's sense is either very difficult or cannot be
carried out at all. The case when the operator transformation is multiplicative,
i.e. is an endomorphism, is not any simpler.

In the applications there are several integral transformations whose Laplace
transforms are more easily handled but it is not yet known whether these
transformations are continuous in the sense of Gesztelyi. Since the unique
extension is more important than continuity we do not lose too much if we
weaken the above notion of continuity. This is the purpose of the present
paper.

Throughout the first part we shall deal with a convergence that is weaker than
that used in papers of Gesztelyi (7) and the author (1) but is strong enough for
the extension theorem proved in (1). In the second part we give a new proof
of Gesztelyi's representation theorem, and our theorem is a generalization of
that in a certain sense; we prove the same statement under the condition of
pointwise continuity assuming that ^(s), the J^-map of the operator of differen-
tiation, is a logarithm in the sense of MikusinSki.

Finally we remark that in the construction of the operator field we start
with the set of continuous functions with left bounded support. The operator
field generated by the above set is isomorphic to the original operator field
defined by Mikusins"ki.

For this it is enough to show that every operator generated by functions with

t This paper was written while I was a Postdoctoral Fellow at the University of Edinburgh
on a grant awarded by the Hungarian Academy of Sciences.
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left bounded supports can be generated by functions of <g\. Indeed, let x be
an operator generated by functions /and g with left bounded supports. Then
for some real numbers a and /?, fe~™, ge~0s e c€. But

/ fg-

and lfe~ix+fi)s, Ige ( a+ / i ) s are functions from <6.

I. i-convergence and i-continuity
Definition 1.1. The sequence of continuous functions pn is r-convergent to

p, pn^p, if pn-*p almost uniformly and there is a number K>0 such that
| pn(t)\ <£max {I p{t)\, 1} for each n and for all 0 ^ t< oo.

Definition 1.2. The sequence of operators pn (pn e M) is t-convergent to
p(p 6 M), pn^p, if there is a function g of & such that gpn^*qp in <€.

Definition 1.3. A linear operator transformation !F\ Mt-*M (M, is a
subspace of M) is t-continuous if pn^*p always implies ^(pn)^^(p) where ^*
is the usual convergence (the Mikusingki convergence) in M.

Definition 1.4. A linear operator transformation IF: Mt-*M is said to be
Mx -strongly continuous if the operator function ^"(/(A)) is continuous whenever
the operator function/(A) is continuous on a ^ A ̂  b and has values in Mv

This definition coincides with Gesztelyi's definition (7). The proofs of the
following Theorems, 1.1 to 1.5, are similar to proofs given by Gesztelyi and will
not be repeated here.

Theorem 1.1. Every M^-strongly continuous linear operator transformation
is continuous {in the sense of Bleyer (1) i.e. pointwise continuous) and hence is
x-continuous.

Theorem 1.2. IfueVW then%

(1.2.1)= f
J -/ —CO

It is a well-known fact that the Mikusinski integral holds for every locally
integrable function with left bounded support. Hence we obtain a stronger
form of Theorem 1.2 for H:

pa,
u = u(Z

J—CO

)exp(-As)dA (1.2.2)
J — oo

for all ueH.
We shall use Stieltjes type integrals of operator functions defined by Gesztelyi

(6, 7) for the integral representation of an operator transformation.
t / e f! if and only i f / i s continuous on [0, oo) and / = 0 on (— oo, 0).
\ tg^ — {/: / i s continuous on [af, oo) and / = 0 on (— oo, ar) for some a/> — oo}.
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Theorem 13. Iff(X) is an operator function which is integrable with respect
to <j>(X) in the interval [a, /?], /(A) e [H~\ and !F is an \tf\-strongly continuous
linear operator transformation then\ &(f(X)) = g(X) is an integrable operator
function and

T (1.3.1)

The theorem is valid for infinite intervals, but in that case we have to assume the

Cconvergence of the improper integral /(A)rf$(A). If /(A) is a differentiable
Ja

operator function in (a, /?) then ^(J{X)) is also differentiable and

±nfW) = P (*§>). (1.3.2)
dk \ aA /

Theorem 1.4. Every [H~\-strongly continuous linear operator transformation
of[H~\ into M can be written in the form

{u)= r w (1.4.1)

forallueH.%

Theorem 1.5. If 2F is an \H~\-strongly continuous isomorphism of [//] into
M, then ^(s) = (^"(Z))"1 is a logarithm and

-I w(A)exp(-A^(s))dA (1.5.1)

for every ue H.
We proved the following theorem in (1).

Theorem 1.6. Let c€1 be an arbitrary subalgebra of M containing H and let
SF be a continuous isomorphism of<61 into M. Then SF can be uniquely extended
to a continuous endomorphism of M.

The theorem is also true when we consider !F as a t-continuous mapping.
The proof is the same as before. (The results used for the proof of Theorem 1.6
can be found in papers of Boehme (2) and Mikusins"ki (10).) Theorem 1.6 gives
an unambiguous description of the continuous endomorphisms. In fact, SF{s)
is a logarithm by virtue of Theorem 1.5 for every [/f]-strongly continuous
endomorphism !F and it follows from Theorem 1.1 that every [/7]-strongly
continuous endomorphism is also continuous, whence it is x-continuous too.

The truth of the converse statement is unknown. However, it seems unlikely
that the converse statement is true unless we make further restrictions.

The following theorem will show how the integral representation of Theorem
1.5 is useful to describe T-continuous endomorphisms of M. But the complete

t [H] is the field of operators generated by H. Evidently
j It is easy to see that e"* e [H].

E.M.S.—Z
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answer to the question when there exists the integral representation of Theorem
1.5 is not yet known.

Theorem 1.7. (a) If !F is an \H\strongly continuous isomorphism of H into
M then

f (1.7.1)

exists for all <x > — oo.

(b) If exp( — Xw)dX is absolutely convergent for all a> — oo, i.e., ifT
Jotthere is a continuous function goffi such that g exp (—Xw) e <& for all X > — oo

and the integral

\gexp(-Xw)\dX (1.7.2)f
is convergent for all a > — oo then there exists only one x-continuous endomorphism
# of M for which w = #(s) a/wf

(u)= u(
J - 0 0

(1.7.3)
./ — res

allueH.

Proof. Part (a) is an obvious consequence of Theorem 1.5. For part (b),
if the integrals (1.7.1) exist then they exist for all ue H since every ue H can

n

be written either in the form u = £ c;^f ai(t) or as a convolution product of
i = I

a finite number of functions of this type. However the integral commutes with
olution and if u = un*um then

u(X)exp(-Xw)dX

um(X)exp(-Xw)dX~\.
J

Consequently the operator transformation ^(u) = I w(A)exp (-Aw)dAu)= w(
J — oo

is a homeomorphism of H into M. Now we show that $F{ii) = 0 implies u = 0,
i.e. ^" is, in fact, an isomorphism. To prove this, let us suppose that

J-- o o

for some a0> — oo. Then for all at ><x0

- r JPao(X)exp(-Xw)dX= I" jrjX)ex.p(.-Aw)dX,
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i.e.
1 f°°
- [exp(—a1w)-exp(-aow)] = exp(—Aw)dA.
w J«,

The right-hand side of this equation is uniformly convergent to zero in
every interval [0, 7"] as a ^ o o . The left-hand side is convergent to

exp(—aow) ¥> 0
w

since exp(—a1w)-»0 as O^-KX) follows from the absolute convergence of the
integral (1.7.1). So for any ao> — oo

i: = 0. (1.7.4)
F - o o

Let us note that the integral (1.7.4) is equal to the integral (1.7.1) with a = a0.
Moreover, it is easy to verify that for every finite number n the function system

ff00 1"
< ^ (A) exp (—kw)d/.> , for any pairwise different a.,, is a linearly
U-oo J ' = l
independent function system. Hence we have that if u = V y^AX) # 0

t i
then ^(u) =£ 0. Thus by virtue of the multiplicative property of ̂ \ ^(u) = 0
if and only if u = 0.

Now we show that IF is a T-continuous isomorphism of H into M, so that
by Theorem 1.6 it can be extended to the whole of M uniquely.

Let un'-*u in H. Let us choose the numbers rk so that

f u*(l)\\gexp(-Aw)\dA<ek(t)

where | w*(A)| = max {| u(X); 1}, efc(i) is an arbitrary sequence almost uniformly
convergent to zero, and g is a continuous function for which

gexp(-Xw) = {^t(A,0}
is a continuous function of both variables and g is as in Theorem 1.7 (b). From
the fact that un^m it follows that the supports of these functions are bounded
below, i.e. there is a common lower bound a say. Let the maximum of-fl^Ol, *)l}
on the set [a, /*]*[(), J1] be denoted by K(rk, T). Choose n0 so that for all

1 K
(rk-oc)K(rk,T)

for all A e [a, rk] where sA = max | ek(t)\. Then
(e[0, n
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I f °° Crk

+ ("„(<*) ~ "(A))0 exp ( - Xw)dk g | Mn(A) - u(A) II g exp ( - Aw) I dX
\Jrk L

+ | unW\\ 9 exp ( —Aw)| dX+ \ u*(A)|| g exp (—Aw)| dA

(rk-OL)K(rk,
~ (rk-oi)K(rk, T)

where Kx is the factor of the convergence, i.e.

| un{t)\<K, max {| u(Q|; 1} = K, | u*(»)|.

Thus we obtain

for all f e[0, T] when n>no{K). This holds for every sequence {ê O}™ so
we may assume that | ek+K*ek(t)\<e for all / e [0, T~]. This gives the required
result, i.e. & is x-continuous.

The proof is now complete.
Part (b) of Theorem 1.7 shows that a large class of endomorphisms can be

obtained by integral representation on H, but we may have to sacrifice the
integral representation on the whole of M.

Logarithms. In this part we deal with a certain class of logarithms for which
the integral

f exp(-Aw)dA (1.8.1)

exists for all <x> — oo.
L. Mite (8) investigated the so-called bounded logarithms and he gave a

necessary and sufficient condition for a logarithm to be bounded. Here we
introduce a more restricted class and prove an existence theorem related to the
integrals (1.8.1).

Definition 1.5. For every f, g €%> and for a positive number a we write
11/11 ^ a II 9 II if sup | / ( i) | ^ sup a I g(t)\for every T>0. A logarithm is said

t<T t<T

to be a bounded logarithm if there exists a continuous function f such that, for
every A>0,/.exp (—Aw) is a continuous function and

We say that a logarithm is a bounded logarithm oftauberian type if

||/exp(

e > 0, whenever A is large enough.
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Theorem 1.8. Let w be a bounded logarithm of tauberian type. Then

SF{u)= | u(X)exp(-Xw)dX (1.8.2)
Jo

defines an isomorphism of H+ into M.f This isomorphism is x-continuous and
can be uniquely extended to M. Moreover there exists no continuous endomorphism
& i of M which is \H\strongly continuous on H, different from SF on H and for
which w = &\(s).

Proof. If the integral representation (1.8.2) holds then & can be uniquely
extended from H+ to H and if !F is x-continuous then the extension is also
r-continuous. Thus by Theorem 1.6 2F can be uniquely extended to a x-
continuous endomorphism of M. But ^ is a continuous endomorphism
satisfying the condition of Theorem 1.8. Thus by Theorem 1.7, OF has the
integral representation (1.7.3) or equivalently (1.8.2).

Now by Theorem 1.7 it is enough to show for T-convergence that the integral
(1.7.1)or(1.8.1)existsforalla ^ 0. Since w is a bounded logarithm of tauberian
type,

I [°°/exp(-AvV)dA ^ fA° ||/exp(-Aw)| dX+ f°° ||/exp(-Aw)|| dk
I Jo Jo J A 0

o JA0

This means the integral (1.8.1) is absolutely convergent. The proof is now
complete.

Remark 1.9. Let us suppose that w = l/k, where A: is a locally integrable
function; we can compute the value of the integral (1.8.1). Indeed, by the
continuity of the convolution

\ c"";i/exp(-Aw)dA= P (w+^e-^Z-exp (-Aw)dA

where/is a continuous function as in Definition 1.5. The right-hand side of

this equality can be written in the form — —[/exp(-Aw)e"/I'l]dA. There-

J dkfore, because

I lira e-
p"fexp(-wp)\\ ^ | | / | | lira «"'" = 0

it follows that

>(-Xw)dX =r
Jo

t H+ = {«: u e H and spt u e [0, oo)} where spt u = {x: u(x) ^ 0}.
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Since w = l/k, we obtain

lim -£— = Umfk (1 + £ n"lA =fk =//w.
H-0 W + fl n-+0 \ n = 1 /

It is worth noting that if w = l/k, where k is a locally integrable function,
the IF map o f j " 1 = / = {1} (the operator of integration) is also a locally
integrable function.

Now let us consider the value of ^{{stfiit)}). By the previous result for
'* ' s v e ry e a sy t o obtain the value of the integral

f exp ( -

Too po |*co r o
Indeed, = 1 + 1 and exp (—Aw) is continuous, that is, exists (see

Ja Ja Jo Jj
Gesztelyi, (6)); thus

f exp ( — kw)dk = —exp ( — aw).
w

Remark 1.10. The exponential function exp (—bfs) is very important for
the heat conduction equation. There exists an endomorphism of M for which
yjs = !F{s). That & is a T-continuous endomorphism follows from Theorems
1.7 and 1.8 and from the inequality

Since
r°° ,- r°° r- f1 /- T00 / A 1

e oA = e W. < \ e dA+1 3 /—r — fl/<+oo
Jo Jo Jo Ji V n c x

_ y- f1 _ ̂ ~
because e s is a continuous operator function and so e x sdk is an operator

Jo
(see (6)).

It is worth noting how the endomorphism !F acts. Let x = a/b be an
arbitrary element of M; a, b e <&. Let us choose sequences {/?„}, {qn} in H such
that pn->a, qn-*b and let us use their integral formulas which exist by Theorem
1.2. Then

A)exp( —

= fC°gn(A)exp(-^(s))dA = f" 9.
Jo Jo

Since J* is T-continuous qn(*Js)^*b(yjs) = Aet^{b) and
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But

and then

w
The above reasoning holds for every r-continuous endomorphism with a

modification w = !F{s) instead of y/s. (More generally it holds for pointwise
continuous endomorphisms which have integral representations on H.)

Now we shall consider another class of logarithms which is closer to the
classical Efros transformation. (See Bleyer (1), Efros (4) and Ditkin & Prud-
nikov, (3)).f

Definition 1.6.1. A logarithm w is called Laplace transformable in the sense
of Ditkin if there are functions f and g in SC {the set of Laplace transformable
functions for which the Laplace integral converges absolutely in some half-plane
Re p > <rf) such that w = fjg. In this case the Laplace transform of w is defined
by

for every Re p ^ max (af, <jg) = <jw. (See (3).)
(Not every logarithm is Laplace transformable, e.g. w = {e'k} for k = 2 , 3 , . . .

is a bounded logarithm but not Laplace transformable, see Stopp (11).)
E. Gesztelyi discussed Laplace transformable logarithms and he gave a more

general definition of them.
Definition 1.6.2. A logarithm w is Laplace transformable according to

Gesztelyi if the limit

M'Mim UnT-"w = £eG{w) = w*(p)

exists for some complex number p.
Here we refer to Gesztelyi (7). The definitions of £/„, T* are as follows:

VJJ) = {«/(«0}, T'(f) = K'/(0} if/s « and

if x = o/ft e M where a, b e^.

t A linear function transformation £ defined for Laplace transformable functions (here
we mean the Laplace integral of a function is absolutely convergent) is called an Efros-
transformation if it is of the form

Ef(t)= f00' k{x,t)f(x-)dx (E)
Jo

where

f00 k{x, t) exp (~pt)dt = a(p)e-'iM

Jo
if Rep>o c and Req(p)>oc and we suppose that the last integral absolutely converges for
all x e [0, oo). Writing the kernel function of (E) in operator terms

{*(*, f )} = <*(*) exp (-*#5)).
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M'-lim xn = x if xn = ajbn, x'= a/b and an-*a, bn-^b
n-*co

almost uniformly in [0, oo).
It is obvious that Af-convergence implies M1 '-convergence.
E. Gesztelyi proved that if JS?D(W>) exists in a certain domain then &G{w)

also exists there and £?D{w) = ££G{w).
Now we prove a lemma related to an exponential function generated by a

Laplace transformable logarithm.

Lemma 1.11. If J(X) = exp (-Aw) and w is a Laplace transformable
logarithm in the sense of Ditkin then ./(A) is a Laplace transformable operator
function in the sense of Gesztelyi and

for every Rep>aw where S£D{w) = S?G(w) = w*{p)for all Rep>am.

Proof. Indeed, using Gesztelyi's method, there is only one thing to prove,
namely that

UnT-p (exp (-Aw)) = txp(-XUaT-'w) (1.11.1)

for every Rep>cw. Since the exponential function is continuous and the
operator transformations Un and T~p are continuous endomorphisms of M
(see Gesztelyi (7)) the lemma obviously follows from (1.11.1).

To prove (1.11.1), note that if /(A) is an arbitrary differentiable operator
function then

and

Thus

| - Un(exp (-Xw)) = Un(-w exp (-Xw)) = - Un(w)Un(exp (-Xw)).
OA.

Further, the definition of the exponential function implies that t/n(exp(—Aw))
is a solution of the operator differential equation

x'(X) + Un(w)x(X) = 0. (1.11.2)

A similar result can be obtained for T~p(w).
Now (1.11.1) evidently follows from the uniqueness of the solution of

(1.11.2).
Let us remark that the fact that w = f/g and / , g are in JS? does not imply

that exp (-Xw) = t(A)/g'1 where g1e£C and T(A) = {T(A, t)} is an (absolutely)
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Laplace transformable function in the variable /, i.e. exp( — kw) may not be a
Laplace transformable operator function in the sense of Ditkin.

Theorem 1.12. Every (classical) Efros-transformation can be extended to a
•z-continuous linear operator transformation of the Mikusinski operator field and
this extension is unique.

Proof. Using the properties of classical Efros-transformations we obtain
an operator a in M (in fact, it is a Laplace transformable operator in Ditkin's
sense) for the Efros transformation E such that a~iE is an isomorphism of ~S?
into M. This operator always exists, as can be seen from the connection between
the operator and the Laplace transformation forms of the Efros transformation.
(See the definition of the Efros transformation, Bleyer (1) and Efros (4).)f

Now we prove that a~1E, or equivalently E, is r-continuous on Of {Hai£
is obvious). Indeed, if un-*u and un, u are Laplace transformable functions
then there exists a Laplace transformable function u* such that | un \ < | u* |
and | M | < | M* |. Thus •SfJ,(ttn)-

>-^D(M) uniformly in the half plane Rep ^ <J0

and from this and from the Theorem of Efros we deduce that .Sf'D(Eun)-> S£'D(Eu)
uniformly in Rep ^ a0. Finally this implies the desired convergence Eun^*Eu.

Several classical integral transformations can be identified as Efros trans-
formations. Thus they can be extended uniquely to t-continuous linear operator
transformations of the whole operator field. For example, the Hankel transfor-
mation belongs to the above class, as do several types of integral transforma-
tions based on special functions.

n . Pointwise continuous endomorphisms and their integral representations
In this part we shall again deal with pointwise continuous endomorphisms

of M. We know by Theorem 1.6 that they can be extended uniquely to the
whole of M; that is, they are completely characterized on H. The purpose of
this part is to give a generalization of the theorem, due to E. Gesztelyi (7), by
which every strongly continuous endomorphism !F of M has an integral repre-
sentation on mty, !F(s) is a logarithm and

• J : (2.0)

for every u
The integral is understood to be a Stieltjes type integral defined by Gesztelyi

(6).

t Theorem of Efros. Let/(x) be an absolutely Laplace transformable function on the
half plane Kep>af then

for Kep>a, where/(p) = -£?(/). (See the definition of the Efros transform in a previous
footnote). Here we refer to Efros (4) and Ditkin & Prudinkov (3).
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Theorem 2.1. If the operator function /(A) is integrable with respect to <f>(X)
{<f>{X) is a numerical function) on [a, /?] then the operator function J^(/(A)) = g(X)
is also. Moreover

Proof. (Our proof follows that of the corresponding theorem of Gesztelyi
(7).) According to the definition of the integral

liman= lim £ S{^\MJ^)-W^Ci\= PV
n-»oo k = 1 Jx

independent of the choice of numbers

a0 =4" ) <4 I l ) < -<4" ) = P (it = 1, 2, ...),

A ^ I ^ S ^ A J 0 (k = 1,2, ...,«)

provided that lim max (Â B) - 4-1) = 0. By the linearity of &
n-»oo * = 1 , 2 n

t
k = 1

Now we obtain

(atfZ*&( f(A)d<j>(X)\ as n->oo

by the continuity of #". The proof is complete.

|*oo Too

Theorem 2.2. If f(k)d(j)(X) exists then so does &(f{X))d<j>(X) and
J — co J —co

J — co \ J — 00 /

Proof. The truth of the statement follows from the continuity of J5" and
from the relation

as an-* — oo, btt-*oo in any manner.

Theorem 2.3. If^ is a pointwise continuous linear transformation then

^(w)= u(A)J5'(exp(-As))dA (2.3.1)
J — co

for all u e <€<%.
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Proof. The theorem obviously follows from Theorems 1.2 and 2.2 and
from the relation

&(u(k) exp (-As)) = u(X)& (exp (-As)).

For the integral representation of pointwise continuous endomorphisms we
will need some new definitions.

Definition 2.1. Let /(A) be an operator-valued function of a real variable A.
We callf(X) (sequentially) continuous if\imf(Xn) =/(A0) whenever Xn-+X0.

Definition 2.2. /(A) is called (sequentially) differentiable at a point Ao with
derivative f'(X0) if

whenever Xn-*X0.
It is easy to see that every operator function which is continuous or differen-

tiable in Mikusins"ki's sense is continuous or differentiable in the sense of
Definitions 2.1 and 2.2. The converse of this is probably not true.

Lemma 2.4. Iff(X) is differentiable in the sense of Definition 2.2 then it is
continuous in the sense of Definition 2.1.

Proof. This follows from

g[/(An)-/(A0)] ^

because
0[/(An)-/(Ao)] = (An-

where e(z) is a continuous function. Here g and e(t) may depend on the sequence

a,}.
The previous remarks and Lemma 2.4 show that the notions of sequential

continuity and differentiation are weaker than Mikusins"ki's notions but they
are consistent with Mikusins"ki's definitions.

Definition 2.3. Let us consider the functional equation

E(x+y)E(0) = E(x)E(y) (D.2.3.1)

for the operator function E(x) in some real interval containing 0. Let E(x) be a
sequentially differentiable solution of (D.2.3.1) for which E'(0) = — wE(0).
This solution is said to be a weakly exponential function and the operator w is
called a weak logarithm.

Lemma 2.5. Every exponential function is a weakly exponential function and
every logarithm is a weak logarithm.

Proof. It is well-known that every exponential function satisfies the equation
(D.2.3.1) and [exp(—Aw)]' = —wexp(—Xw) also holds. Thus, by Lemma
2.4, Lemma 2.5 follows immediately.
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Theorem 2.6. Every weakly exponential function £(x) has the following
properties:

(a) it can be defined for every real x;

(b) E(x0) = 0, for some x0, implies E(x) = Ofor all real x;

(c) ^ p + w £ ( x ) = 0 (2.6.1)

where differentiation should be taken in the sense of Definition 2.2;

(d) E(x) is infinitely differentiable;

(e) the equation (D.2.3.1) has only one solution for which E(0) = 1,
£"(0) — —w and £(x) = & (exp(-xs)) where $F is a pointwise continuous
endomorphism of the operator field M.

Proof. (fl)f Let £(x) be a non-trivial solution of (D.2.3.1) in the interval
x t ^ x ^ x2. Then there is xQ e (x1; x2) such that E(x0) # 0. For, if E{x) = 0
for every xl<x<x2 then by continuity, E{x^ = £(x2) = 0 would follow. Let
x0 e (xu x2) be such that E(x0) = a0 # 0. Then E{x) can be extended beyond
the interval [xu x{\ using (D.2.3.1). Set x3 = 2x2—x0>x2 and

Ex(x) = aolE(x2)E(x-x2+xo)

for x2 <x<x3. Since x—x2+x0 e [xlt x2~\ we obtain that Et(x) is continuous
in [JC2, x3] and E^x2) = E(x2). This means that Et(x) is a continuous extension
of E(x). This method can be used in both directions and the interval [_xu x2]
is extended by | x2—x0 \ to the right, by | x0—xt | to the left. This means that
every real x can be reached by a finite number of such extensions.

(b) VE(x0) = 0 then E(x)E(x-x0) = E(0)E(x) = 0. Thus either E(x) = 0
or E(0) = 0. Put y = x in (D.2.3.1). Then ^ ( x ) ^ ) = E(0)E(2x) = 0
implying E(x) = 0.

(c) £(*) is a sequentially differentiable solution of (D.2.3.1) by Definition
2.3. Now

dE(x) = ma £(».)-£(x) = , i m £(3
ma , i m

dx xn-« xn—x xn->x E(0) xn—x

m £ (x . -x ) -£ (0) = E(x)
^ x x n - x £(0)

and if we set — ̂ (O))!' = £"(0) we obtain an equation of type (2.6.1) for the
weakly exponential function £(x).

(d) This is obvious since £(x) satisfies the equation (2.6.1).

(e) If E{x) = .^(exp(-xj)) then E{x) is a solution (D.2.3.1) whenever &
is a pointwise continuous endomorphism. Since in that case differentiation

t See A. Erdelyi (5), J. Mikusinflci (9).
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with respect to the parameter x and application of !F commute, we have
£'(0) = -F{s) and £(0) = 3?(1) = 1. Moreover, by the continuity of &
and by the well-known limit

( / ) p ( — x s ) as n
we obtain

+xs//z)~B] ^ ^(exp (-xs)) as H-K» . (2.6.2)
Now we prove that £(x) is the unique solution of (D.2.3.1) under the conditions
£(0) = 1, £'(0) = -&{s) = ~w and £(x) = 3?(exp(-xs)) where ^ is a
pointwise continuous endomorphism. Assuming that there are two different
solutions Eu E2 satisfying the above conditions we have by (2.6.2)

Et(x) = lim ^ [ ( 1 + xs/B)-] = lim [ ^ (^ (x s ) ) ] " 1 = lim
n-*oo n-»oo n~*oo

= lim [Pn(xw)]-» = lim [Pn(x^2(s))]"1 = lim [
n-*oo

= lim 3?2[(l + xsln)-"l = E2(x)
n->co

where Pn(-) is a polynomial.
The proof of the theorem is now complete.
Now we give a list of some further properties of the weakly exponential

function which can be obtained by simple computations.

(2.6.3) // ™ = _ w and EM = _ w then (*M) = 0.
£(0) £2(0) \E2(x)J

Indeed, it follows from (2.6.1) that

for all x.

(2.6.4) If E[x) is a weakly exponential function such that £(0) = c ^ 0 and
£'(0) = — we # 0 then there is a weakly exponential function Et(x) for which
£i(x)=£(x).

Indeed, £i(x) = £(x) satisfies the conditions and £t(x) is a sequentially

differentiable solution of (D.2.3.1).

(2.6.5) A non-constant weakly exponential function cannot be written in the
form Et(x) + c where E^x) is a weakly exponential function and c is a non-zero
constant.

Let us assume that £(x) = £t(x)+c then

and since Et(x) is a solution of (D.2.3.1) we obtain

c(£1(O)+£1(x+>0) =
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Taking x = y and multiplying by E^O) # 0 (by virtue of Theorem 2.66) we
have

c(£f(0)-2E1(*)E1(0) + £1(2x)£1(0)) = 0
and as ^ ( ^ ^ ( O ) = ^ ( x ^ O c ) by (D.2.3.1), c(Et(0) -E^x))2 = 0 follows.
Thus either c = 0 or ^ ( 0 ) = E^x) for every real x.

(2.6.6) If E(x) i= 0 is a weakly exponential function and if there exists a
weakly exponential function Ey{x)for which E[(x) = E(x) then E'(0) ¥= 0.

If £i(x) = £(x) then £;(0) = E(0) ± 0. Now

£i(0)
Hence obviously

F ( o ) = CEI(O))! = £!(«)
£(0) £(0)

follows, since £^0) * 0 by Theorem 2.6(6). Thus £'(JC) = £(x)£'(0) ¥= 0 for
a l l * .

If we could prove that f'(x) = 0 (in the sense of Definition 2.2) implies
f(x) — c or the weaker statement that/'(*) = 0 and/(x) is a weakly exponential
function implies f{x) = c then the uniqueness of the common solution of
(2.6.1) and (D.2.3.1) would follow from (2.6.3) or (2.6.6). The first of these
does not seem to be true and if the second statement is valid it is probably very
hard to prove.

Notation. As we know, from Theorem 2.6(e), that there is a unique
weakly exponential function which is a solution of (D.2.3.1) under the conditions
of Theorem 2.6(e) we shall write Exp (—xeo) instead of E{x).

Theorem 2.7. Let !F be a pointwise continuous endomorphism of M. Then
^(s) is a weak logarithm and

for every u 6

= f°
J —

Proof. E(A) = & (exp (-Ay)) is a common solution of (D.2.3.1) and (2.6.1)
by the pointwise continuity of &?. By the simple computation

S = ^(exp (-
we obtain that 2F(s) is a weak logarithm. By Theorems 2.3 and 2.6(e) the
statement of Theorem 2.7 follows from

^(exp (-As)) = E(x) = Exp (-k3F{s)).

(See the above note on Notation.)
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Theorem 2.8. If IF is a pointwise continuous endomorphism of M and !F{s)
is a Mikusinski logarithm then

r>co

«(A)exp(-A^(s))rfA = ^(u) (2.8.1)

for all u e <€%.

Proof. By virtue of Theorem 2.6(e), ^"(exp (—As)) is the unique solution
of (D.2.3.1) with ^(s) = - w. So by Theorem 2.4 the existence of the integral
representation (2.8.1) follows from

^"(exp(-As)) = Exp(-A^(5)) = exp (-XF(s)).

Let us remark that Gesztelyi's representation theorem of strongly continuous
endomorphisms now immediately follows from Theorems 1.1, 1.5 and 2.7.
Theorem 1.1 proves the pointwise continuity. Theorem 1.5 proves that the
map of s is a logarithm, and finally from Theorem 2.7 we have the required
integral representation.
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