
Bull. Aust. Math. Soc. 85 (2012), 482–496
doi:10.1017/S0004972711002826

AN EXTENSION OF SURY’S IDENTITY AND
RELATED CONGRUENCES

ROMEO MEŠTROVIĆ
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Abstract

In this paper we give an extension of a curious combinatorial identity due to B. Sury. Our proof is very
simple and elementary. As an application, we obtain two congruences for Fermat quotients modulo p3.
Moreover, we prove an extension of a result by H. Pan that generalizes Carlitz’s congruence.
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1. Introduction

For nonnegative integers n and m the binomial coefficients are defined by(
n
k

)
=


n!

k!(n − k)!
n ≥ k

0 n < k.

Sury [13] proved a most curious combinatorial identity, namely
n∑

j=0

1(
n
j

) =
n + 1

2n

n∑
k=0

2k

k + 1
=

n + 1
2n

∑
1≤ j≤n+1

j odd

1
j

(
n + 1

j

)
. (1.1)

A polynomial analogue of the first identity in (1.1) is established in [14,
Theorem 2.1] by Sury et al. In the proof of both above identities, as well as in the
proof of [14, Theorem 2.1], the authors use the following integral expression for the
inverses of binomial coefficients

(
n
k

)
with 0 ≤ k ≤ n:(

n
k

)−1

=
k!(n − k)!

n!
=

Γ(k + 1)Γ(n − k + 1)
Γ(n + 1)

= (n + 1)
∫ 1

0
tk(1 − t)n−k dt.

We point out that the first equation of the identity (1.1) is identity no. 2.25 in Gould’s
collection [4] (due to Staver [8]). Combinatorial sums involving inverses of binomial
coefficients have been studied by many authors; see, for instance, [16–18].
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For a nonnegative integer n, let

Hn = 1 +
1
2

+ · · · +
1
n
, n ≥ 1,

be the nth harmonic number (we assume that H0 = 0). In this note we establish a
double extension of the identity (1.1) as follows.

T 1.1. For any positive integer n,

2n

n + 1
·

n∑
k=0

1(
n
k

) =

n∑
k=0

2k

k + 1
=

∑
1≤ j≤n+1

j odd

1
j

(
n + 1

j

)

=
1
2

n+1∑
i=1

1
i

(
n + 1

i

)
+

1
2

Hn+1 = 2nHn+1 −

n∑
k=1

2k−1Hk. (1.2)

In the next section we give a complete proof of Theorem 1.1. More precisely, if we
denote the expressions in (1.2) by A, B, C, D and E in given order, then we prove the
identities C = D, D = B, B = E and E = A. The proof of each identity is derived easily
by induction on n.

In Section 3 we present the proof of Theorem 1.5. Our proof is combinatorial in
spirit and we additionally use some known congruences modulo prime powers related
to harmonic numbers. As is shown at the end of this section, Theorem 1.7 easily
follows by combining the first congruence of (1.3) and the first identity in (1.2).

The equalities C = D = B in (1.2) clearly yield the following identity.

C 1.2 [14, Corollary 2.3, identity (13)]. For any positive integer n,∑
1≤ j≤n+1

j even

1
j

(
n + 1

j

)
=

n∑
k=1

2k − 1
k + 1

.

R 1.3. The proof of the first equation in the identity (1.2) immediately follows
from the known binomial harmonic identity (2.2) given in Lemma 2.2 (see for
example, identity no. 1.45 on page 6 in Gould’s listing [4]). Observe also that this
identity can itself be established directly from a few other results in [4] (for instance,
setting a = 1 in identity no. 1.134, p. 17, or taking m = n in identity no. 7.17, p. 60).
Moreover, in Theorem 1.1 we give a simple induction proof of this identity which is
based on another binomial coefficient identity.

R 1.4. A natural question is as follows: is it possible to establish certain
identities analogous to (1.2) involving the sum

∑n
k=0 ak/(k + 1) with some integer

a , 2?
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For an integer a not divisible by p let qp(a) := (ap−1 − 1)/p be the Fermat quotient
of p with base a. Then using the binomial formula,

aqp(a) =
ap − a

p
=

((a + 1) − 1)p − a
p

=

p−1∑
k=1

(
p
k

)
(a + 1)k(−1)p−k

p
+

(a + 1)p − (a + 1)
p

=

p−1∑
k=1

1
p

(
p
k

)
(a + 1)k(−1)p−k + (a + 1)qp(a + 1),

whence, using the congruence

1
p

(
p
k

)
=

1
k

(
p − 1
k − 1

)
≡

(−1)k−1

k
(mod p)

(see (3.3) of Lemma 3.2),

aqp(a) ≡ −
p−1∑
k=1

(a + 1)k

k
+ (a + 1)qp(a + 1) (mod p),

which for a = 1 becomes Glaisher’s congruence given in Remark 1.6, while for a = −2
it becomes the first part of the second congruence given in Remark 1.6.

Inductively on a ≥ 1, the above congruence yields

qp(a) ≡ −
1
a

p−1∑
k=1

1k + 2k + · · · + ak

k
(mod p).

Analogously, for a negative integer −a (instead of a), also by induction on a ≥ 1,

qp(a) ≡ −
1
a

p−1∑
k=1

(−1)k(1k + 2k + · · · + (a − 1)k)
k

(mod p).

Notice that the term of the sum on the right-hand side of either of the above two
congruences can also be expressed in terms of the Bernoulli polynomial of degree k.
We believe that the above two congruences may be useful for establishing congruences
involving the Fermat quotient qp(a) with a ≥ 3 that are analogous to the congruences
given in our Theorem 1.5.

As an application of Theorem 1.1, we establish the following two congruences.

T 1.5. Let p > 3 be a prime. Then

qp(2) ≡ −
1
2

p−1∑
k=1

2k

k
−

7
24

p2Bp−3 ≡

p−1∑
k=1

2k−1Hk +
1
24

p2Bp−3 (mod p3). (1.3)
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In particular,

qp(2) ≡ −
1
2

p−1∑
k=1

2k

k
≡

p−1∑
k=1

2k−1Hk (mod p2).

R 1.6. Note that the first congruence of (1.3) was recently obtained by Sun
in [10, Theorem 4.1(i)] using congruential properties of the Mirimanoff polynomial
associated with p. We point out that this congruence is a generalization of a classical
result due to Glaisher (see [3] or [5]) which asserts that for a prime p ≥ 3,

qp(2) ≡ −
1
2

p−1∑
k=1

2k

k
(mod p).

Note also that the above congruence may be extended by the following well-known
congruences (see, for example, [12, proof of Corollary 1.2]; see also our Remark 1.4)

qp(2) ≡
1
2

p−1∑
k=1

(−1)k−1

k
≡ −

1
2

(p−1)/2∑
j=1

1
j

(mod p).

Recently, Pan [7, Theorem 1.1] established a generalization of Carlitz’s
congruence [2] of the form

p−1∑
k=0

(−1)(a−1)k

(
p − 1

k

)a

≡ 2a(p−1) +
a(a − 1)(3a − 4)

48
p3Bp−3 (mod p4), (1.4)

where p is an odd prime and a a positive integer. Note that this congruence modulo p3

is proved by Cai and Granville in [1, Theorem 6], and their result generalized Morley’s
congruence [6].

Surprisingly, here we show that the above congruence holds for a = −1; in other
words, we have the following congruences for the sum of the reciprocals of binomial
coefficients.

T 1.7. Let p ≥ 3 be a prime. Then

p−1∑
k=0

(
p − 1

k

)−1

≡ 21−p −
7
24

p3Bp−3 (mod p4).

In particular,
p−1∑
k=0

(
p − 1

k

)−1

≡ 21−p (mod p3).
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R 1.8. Since

−1 + 21−p = −1 +
1

1 + pqp(2)

= −
pqp(2)

1 + pqp(2)
≡ −pqp(2)(1 − pqp(2) + p2qp(2)2) (mod p4),

the first congruence of Theorem 1.7 may be written as

p−1∑
k=0

(
p − 1

k

)−1

≡ 1 − pqp(2) + p2qp(2)2 − p3qp(2)3 −
7

24
p3Bp−3 (mod p4),

which setting pqp(2) = 2p−1 − 1 reduces to

p−1∑
k=0

(
p − 1

k

)−1

≡ 4 − 6 · 2p−1 + 4p − 8p−1 −
7
24

p3Bp−3 (mod p4),

while modulo p3 and p2 we have

p−1∑
k=0

(
p − 1

k

)−1

≡ 3 − 3 · 2p−1 + 4p−1 (mod p3),

p−1∑
k=0

(
p − 1

k

)−1

≡ 2 − 2p−1 (mod p2).

R 1.9. A computation in Mathematica suggests that the congruence (1.4) holds
for all odd primes p when a is any negative integer. We point out that this result can
be proved by using Pan’s technique applied in [7, proof of Theorem 1.1].

It is also interesting to note that Cai and Granville [1, Theorem 6] also showed that
for any prime p > 5 and any positive integer a,

p−1∑
k=0

(−1)ak

(
p − 1

k

)a

≡

(
ap − 2
p − 1

)
(mod p4).

Recently, using some new identities for multiple harmonic sums, Tauraso [15,
Theorem 1.1] generalized the above congruence modulo p6, where a ranges over the
set of all integers.

In the next two sections we give proofs of all auxiliary results and the proofs of
Theorems 1.1, 1.5 and 1.7.

2. Proof of Theorem 1.1

L 2.1. Let n be a positive integer. Then
n∑

k=0

(−1)k

k + 1

(
n
k

)
=

1
n + 1

. (2.1)
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P. By the identity
1

k + 1

(
n
k

)
=

1
n + 1

(
n + 1
k + 1

)
with 0 ≤ k ≤ n, and the fact that by the binomial formula,

0 = (1 − 1)n+1 =

n+1∑
j=0

(−1) j

(
n + 1

j

)
,

we find that

n∑
k=0

(−1)k

k + 1

(
n + 1

k

)
=

1
n + 1

n∑
k=0

(−1)k

(
n + 1
k + 1

)

= −
1

n + 1

n+1∑
j=0

(−1) j

(
n + 1

j

)
+

1
n + 1

=
1

n + 1
,

as desired. �

L 2.2 [4, identity no. 1.45, p. 6]. Let n be a positive integer. Then

n∑
k=1

(−1)k−1

k

(
n
k

)
= Hn. (2.2)

P. By induction on n, assuming that (2.2) holds, using the identity
(

n+1
k

)
−

(
n
k

)
=(

n
k−1

)
and applying (2.1),

n+1∑
k=1

(−1)k−1

k

(
n + 1

k

)
− Hn =

n+1∑
k=1

(−1)k−1

k

(
n + 1

k

)
−

n∑
k=1

(−1)k−1

k

(
n
k

)

=

n+1∑
k=1

(−1)k−1

k

((
n + 1

k

)
−

(
n
k

))

=

n+1∑
k=1

(−1)k−1

k

(
n

k − 1

)

=

n∑
k=0

(−1)k

k + 1

(
n
k

)
=

1
n + 1

,

whence
n+1∑
k=1

(−1)k−1

k

(
n + 1

k

)
= Hn +

1
n + 1

= Hn+1.

This concludes the induction proof. �
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P  T 1.1. Denote the expressions from (1.2) by A, B, C, D and E in the
corresponding order. We prove by induction the identities C = D, D = B, B = E and
E = A. First note that all these identities are satisfied for n = 1.

The identity C = D from (1.2) may be reduced to

1
2

∑
0≤ j≤n+1

j odd

1
j

(
n + 1

j

)
−

1
2

∑
0≤ j≤n+1

j even

1
j

(
n + 1

j

)
=

1
2

Hn+1,

or equivalently,
n+1∑
k=1

(−1)k−1

k

(
n + 1

k

)
= Hn+1.

The last identity follows from (2.2) with n + 1 instead of n, and so the identity C = D
is satisfied.

Further, using the well-known identities(
k
i

)
=

k
i

(
k − 1
i − 1

)
,

n∑
k=i

(
k − 1
i − 1

)
=

(
n
i

)
,

with i ≤ k ≤ n, and the fact that
(

k
i

)
= 0 when i > k,

n∑
k=1

2k

k
=

n∑
k=1

(1 + 1)k

k
=

n∑
k=1

∑k
i=0

(
k
i

)
k

=

n∑
k=1

∑k
i=1

(
k
i

)
+ 1

k

=

n∑
k=1

n∑
i=1

1
k

(
k
i

)
+

n∑
k=1

1
k

=

n∑
i=1

n∑
k=i

1
k

(
k
i

)
+ Hn

=

n∑
i=1

n∑
k=i

1
i

(
k − 1
i − 1

)
+ Hn =

n∑
i=1

1
i

n∑
k=i

(
k − 1
i − 1

)
+ Hn

=

n∑
i=1

1
i

(
n
i

)
+ Hn.

The above identity with n + 1 instead of n immediately gives

n∑
k=0

2k

k + 1
=

1
2

n+1∑
k=1

2k

k
=

1
2

n+1∑
i=1

1
i

(
n + 1

i

)
+

1
2

Hn+1,

which implies B = D.
In order to prove B = E, note that by setting Hn+1 = Hn + 1/(n + 1), this identity can

be written as
n−1∑
k=0

2k

k + 1
= 2nHn −

n∑
k=1

2k−1Hk. (2.3)

https://doi.org/10.1017/S0004972711002826 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711002826


[8] An extension of the identity by Sury and related congruences 489

If (2.3) is satisfied, then by induction we have

n∑
k=0

2k

k + 1
=

n−1∑
k=0

2k

k + 1
+

2n

n + 1
= 2nHn −

n∑
k=1

2k−1Hk +
2n

n + 1

= 2nHn + 2nHn+1 −

n+1∑
k=1

2k−1Hk +
2n

n + 1

= 2nHn + 2n
(
Hn +

1
n + 1

)
+

2n

n + 1
−

n+1∑
k=1

2k−1Hk

= 2n+1
(
Hn +

1
2(n + 1)

+
1

2(n + 1)

)
−

n+1∑
k=1

2k−1Hk

= 2n+1
(
Hn +

1
n + 1

)
−

n+1∑
k=1

2k−1Hk

= 2n+1Hn+1 −

n+1∑
k=1

2k−1Hk,

as desired.
It remains to prove E = A. Suppose that this identity holds for n − 1, that is,

2n−1

n
·

n−1∑
k=0

1(
n−1

k

) = 2n−1Hn −

n−1∑
k=1

2k−1Hk. (2.4)

Note that by the identities(
n
k

)
+

(
n

k + 1

)
=

(
n + 1
k + 1

)
and

(
n

k + 1

)
=

n
k + 1

(
n − 1

k

)
with 0 ≤ k ≤ n − 1,

1
n + 1

 1(
n

k+1

) +
1(
n
k

)  =
1

n + 1
·

(
n
k

)
+

(
n

k+1

)(
n

k+1

)
·
(

n
k

) =
1

n + 1
·

(
n+1
k+1

)(
n

k+1

)
·
(

n
k

)
=

1
n + 1

·

n+1
k+1 ·

(
n
k

)
n

k+1 ·
(

n−1
k

)
·
(

n
k

) =
1
n
·

1(
n−1

k

) . (2.5)

Next, summing (2.5) over k,

1
n + 1

n−1∑
k=0

1(
n

k+1

) +

n−1∑
k=0

1(
n
k

)  =
1
n

n−1∑
k=0

1(
n−1

k

) ,
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or equivalently,

1
n + 1

2 n∑
k=0

1(
n
k

) − 2

 =
1
n

n−1∑
k=0

1(
n−1

k

) . (2.6)

Then multiplying (2.6) by 2n−1, and combining this with the induction hypothesis given
by (2.4),

2n

n + 1
·

n∑
k=0

1(
n
k

) =
2n

n + 1
+

2n−1

n
·

n−1∑
k=0

1(
n−1

k

)
=

2n

n + 1
+ 2n−1Hn −

n−1∑
k=1

2k−1Hk

=
2n

n + 1
+ 2n−1Hn + 2n−1Hn −

n∑
k=1

2k−1Hk

= 2n
(
Hn +

1
n + 1

)
−

n∑
k=1

2k−1Hk

= 2nHn+1 −

n∑
k=1

2k−1Hk.

This concludes the induction proof. �

3. Proof of Theorems 1.5 and 1.7

For the proof of Theorem 1.5, we need some auxiliary results.

L 3.1. Let p be an odd prime. Then

qp(2) =
1
2

p−1∑
k=1

1
k

(
p
k

)
+

1
2

Hp−1 −
1
2

p−1∑
k=1

2k

k
. (3.1)

P. Taking n = p − 1 into the identity D = B from (1.2),

1
2

p∑
k=1

1
k

(
p
k

)
+

1
2

Hp =
1
2

p−1∑
j=0

2 j+1

j + 1

=
1
2

p−1∑
k=1

2k

k
+

1
2
·

2p

p
.

(3.2)

Substituting Hp = Hp−1 + 1/p into (3.2), we immediately obtain (3.1). �
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L 3.2. If p is an odd prime, then(
p − 1

k

)
≡ (−1)k − (−1)k pHk (mod p2) (3.3)

for each k = 1, 2, . . . , p − 1.

P. For a fixed 1 ≤ k ≤ p − 1 we have

(−1)k

(
p − 1

k

)
=

k∏
i=1

(
1 −

p
i

)
≡ 1 −

k∑
i=1

p
i

(mod p2),

which is actually the congruence (3.3). �

Recall that the Bernoulli numbers Bk are defined by the generating function

∞∑
k=0

Bk
xk

k!
=

x
ex − 1

.

It is easy to find the values B0 = 1, B1 = − 1
2 , B2 = 1

6 , B4 = − 1
30 , and Bn = 0 for odd

n ≥ 3. Furthermore, (−1)n−1B2n > 0 for all n ≥ 1.

L 3.3. Let p > 3 be a prime and let m ≤ p − 3 be a positive integer. Then

p−1∑
k=1

1
km
≡


−

m(m + 1)
2(m + 2)

p2Bp−2−m (mod p3) if m is odd

m
m + 1

pBp−1−m (mod p2) if m is even,
(3.4)

(p−1)/2∑
j=1

1
j2
≡

7
3

pBp−3 (mod p2), (3.5)

(p−1)/2∑
j=1

1
j3
≡ −2Bp−3 (mod p). (3.6)

P. The first congruence in [9, Theorem 5.1(a)] asserts that

p−1∑
k=1

1
km
≡

m(m + 1)
2

·
Bp−2−m

p − 2 − m
p2 (mod p3) if m < p − 1,

which immediately implies the first congruence from (3.4). Similarly, the second
congruence in (3.4) is in fact the first congruence in [9, Corollary 5.1] with even
k ≤ p − 3.

The congruences (3.5) and (3.6) are the congruences (a) with k = 2 and (b) with
k = 3 in [9, Corollary 5.2], respectively. �
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L 3.4 [11, (2.1) in Lemma 2.1]. Let p be an odd prime. Then

Hp−k ≡ Hk−1 (mod p) (3.7)

for every k = 1, . . . , p − 1.

P. For a fixed k we have

Hp−k =

p−k∑
j=1

1
j

=

p−1∑
i=k

1
p − i

≡ −
∑p−1

i=k

1
i

(mod p),

whence

Hk−1 − Hp−k ≡

k−1∑
i=1

1
i

+

p−1∑
i=k

1
i

= Hp−1 ≡ 0 (mod p).

This yields (3.7). �

L 3.5. Let p > 3 be a prime. Then

p−1∑
k=1

(−1)k−1

k2
Hk−1 ≡ −

1
4

Bp−3 (mod p). (3.8)

P. Substituting Hk−1 = Hk − 1/k into (3.7) of Lemma 3.4 and multiplying this by
(−1)k/k2, for k = 1, . . . , p − 1,

(−1)k

k2
Hk −

(−1)k

k3
≡

(−1)k

k2
Hp−k = −

(−1)p−k

k2
Hp−k (mod p),

whence, because k2 ≡ (p − k)2 (mod p),

(−1)k

k2
Hk +

(−1)p−k

(p − k)2
Hp−k ≡

(−1)k

k3
(mod p). (3.9)

Summing (3.9) over k,

p−1∑
k=1

(−1)k

k2
Hk +

p−1∑
k=1

(−1)p−k

(p − k)2
Hp−k ≡

p−1∑
k=1

(−1)k

k3
(mod p),

or

2
p−1∑
k=1

(−1)k

k2
Hk ≡

p−1∑
k=1

(−1)k

k3
(mod p). (3.10)

Further, using (3.4) with m = 3 and (3.6) of Lemma 3.3,

p−1∑
k=1

(−1)k

k3
= 2

∑
1≤ j≤p−1

2|k

1
k3
−

p−1∑
k=1

1
k3

=
1
4

(p−1)/2∑
k=1

1
k3
−

p−1∑
k=1

1
k3
≡ −

1
2

Bp−3 (mod p)
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which inserting in (3.10) immediately yields

p−1∑
k=1

(−1)k

k2
Hk ≡ −

1
4

Bp−3 (mod p).

Finally, taking Hk−1 = Hk − 1/k, the previous two congruences give

p−1∑
k=1

(−1)k−1

k2
Hk−1 =

p−1∑
k=1

(−1)k−1

k2
Hk −

p−1∑
k=1

(−1)k−1

k3

= −
∑p−1

k=1

(−1)k

k2
Hk +

p−1∑
k=1

(−1)k

k3

≡
1
4

Bp−3 −
1
2

Bp−3 = −
1
4

Bp−3 (mod p).

This concludes the proof. �

P  T 1.5. Using the identity
(

p
k

)
= (p/k)

(
p−1
k−1

)
, the congruence (3.3) from

Lemma 3.2 yields

1
k

(
p
k

)
=

p
k2

(
p − 1
k − 1

)
≡

(−1)k−1

k2
p −

(−1)k−1

k2
p2Hk−1 (mod p3) (3.11)

for each k = 1, 2, . . . , p − 1. Summing (3.11) over k and using the congruences (3.4)
with m = 2, (3.5) and (3.8),

p−1∑
k=1

1
k

(
p
k

)
≡ p

p−1∑
k=1

(−1)k−1

k2
− p2

p−1∑
k=1

(−1)k−1

k2
Hk−1 (mod p3)

= p
( p−1∑

k=1

1
k2
− 2

∑
1≤ j≤p−1

2|k

1
k2

)
− p2

p−1∑
k=1

(−1)k−1

k2
Hk−1

= p
( p−1∑

k=1

1
k2
−

1
2

(p−1)/2∑
k=1

1
k2

)
− p2

p−1∑
k=1

(−1)k−1

k2
Hk−1

≡ p
(2
3

pBp−3 −
1
2
·

7
3

pBp−3

)
+

1
4

p2Bp−3 = −
1
4

p2Bp−3 (mod p3).

(3.12)

Finally, since by (3.4) with m = 1,

Hp−1 =

p−1∑
k=1

1
k
≡ −

1
3

p2Bp−3 (mod p3),
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substituting this and (3.12) into the identity (3.1),

qp(2) ≡−
1
2
·

1
4

p2Bp−3 −
1
2
·

1
3

p2Bp−3 −
1
2

p−1∑
k=1

2k

k

= −
1
2

p−1∑
k=1

2k

k
−

7
24

p2Bp−3 (mod p3).

(3.13)

This proves the first congruence of (1.3).
To prove the second congruence of (1.3), note that the last identity in (1.2) for

n = p − 1 easily reduces to

1
2

p−1∑
k=1

2k

k
= 2p−1Hp−1 −

p−1∑
k=1

2k−1Hk,

whence, setting 2p−1 ≡ 1 (mod p) and Hp−1 ≡ −
1
3 p2Bp−3 (mod p)3,

1
2

p−1∑
k=1

2k

k
≡ −

1
3

p2Bp−3 −

p−1∑
k=1

2k−1Hk (mod p3),

as desired. This concludes the proof. �

P  T 1.7. A simple calculation shows that both congruences in
Theorem 1.7 hold for p = 3. Assume that p ≥ 5. Note that the first identity in (1.2)
for n = p − 1 easily reduces to

2p−1

p
·

p−1∑
k=1

1(
p−1

k

) =
1
2

p−1∑
k=1

2k

k
. (3.14)

Multiplying (3.14) by p · 21−p,

p−1∑
k=1

1(
p−1

k

) =
p · 21−p

2
·

p−1∑
k=1

2k

k
. (3.15)

Further, from the first congruence of (1.3) in Theorem 1.5,

1
2

p−1∑
k=1

2k

k
≡ −qp(2) −

7
24

p2Bp−3 (mod p3).

Substituting this into (3.15),

p−1∑
k=1

1(
p−1

k

) ≡ −p21−p
(
qp(2) +

7
24

p2Bp−3

)
(mod p4),
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whence using the identity p · 21−p · qp(2) = 1 − 21−p and the fact that by Fermat’s Little
Theorem, 2p−1 ≡ 1 (mod p),

p−1∑
k=1

1(
p−1

k

) ≡ −p · 21−p · qp(2) −
7

24 · 2p−1
p3Bp−3 ≡ −1 + 21−p −

7
24

p3Bp−3 (mod p4).

Obviously, the above congruence coincides with the first congruence of Theorem 1.7,
and the proof is completed. �
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