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Auslander–Reiten Theory of Finite-Dimensional
Algebras

Raquel Coelho Simões

Introduction

Representation theory is the study of algebraic structures such as groups and
rings via their actions on simpler algebraic structures such as vector spaces.
In this survey chapter, which served as a basis for a lecture series at the LMS
Autumn Algebra School in October 2020, we consider representation theory of
finite-dimensional algebras. Quivers provide a useful concrete way to visualise
algebras. Given a quiver, i.e. a directed graph, one can associate an algebra,
called a path algebra, generated by the paths of the quiver. From the point of
view of representation theory, the study of finite-dimensional algebras reduces
to the study of quotients of path algebras.

A central aim in representation theory of finite-dimensional algebras is to
classify all their modules and the morphisms between them. Due to the Krull–
Schmidt theorem, the classification of modules can be reduced to the classi-
fication of indecomposable modules. That is, in some sense, indecomposable
modules are the building blocks of all modules. It is then natural to ask when
is a finite-dimensional algebra of finite representation type, i.e. when does
it have finitely many indecomposable modules up to isomorphism? Gabriel’s
theorem [22] gives an elegant answer for path algebras of quivers without ori-
ented cycles, also called hereditary algebras. This theorem is an example of
an ADE classification, i.e. in terms of simply laced Dynkin diagrams. There
are many other examples of objects classified by these diagrams, including
representation-finite selfinjective algebras [35], irreducible root systems and
semisimple Lie algebras (see e.g. [28]) and cluster algebras of finite type [20].

Auslander–Reiten theory gives us a way to visualise the representation the-
ory of a finite-dimensional algebra using a quiver, called the Auslander–Reiten
quiver. The vertices of this quiver correspond to the indecomposable modules
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and the arrows correspond to irreducible morphisms, which are the correspond-
ing building blocks for the morphisms.

The aim of this survey chapter is to give a brief introduction to Auslander–
Reiten theory and to provide methods for constructing Auslander–Reiten quiv-
ers. We present two methods to construct these quivers for some special classes
of algebras. The first method is the knitting algorithm, which works for instance
for hereditary algebras of finite representation type. The second method is a ge-
ometric model associated to (partial) triangulations of surfaces. This method,
which has its origins in cluster-tilting theory [15], encodes the representation
theory of an important class of algebras, called gentle algebras and more gener-
ally skew-gentle algebras, which have been the subject of intensive study since
the 1980s due to the fact that they remain one of the relatively few classes of
algebras for which the representation theory is computationally tractable.

The prerequisites are a basic knowledge of linear algebra and rings and mod-
ules. Knowledge of the basic concepts of category theory is beneficial, but not
essential. The list of references is not exhaustive, but it includes some of the
main references for this subject. We refer the reader to [5, 6, 9, 38] for further
study on quiver representations and Auslander–Reiten theory. The language of
categories used in these theories is also nicely explained in [6, 38].

Conventions: Throughout this chapter, we consider vector spaces, linear
maps and algebras over an algebraically closed field k. Every algebra will be a
finite-dimensional associative algebra with unit and every module is considered
to be a finite-dimensional right module. For a treatment of infinite-dimensional
modules, see Chapter 4.

1.1 Bound Path Algebras

In this section we will associate algebras to quivers, i.e. directed graphs. From
a representation-theoretic point of view, we will see that it is enough to study
algebras associated to quivers.

Definition 1.1 A quiver Q = (Q0,Q1,s, t) consists of the following data:

1 a set Q0 of vertices,

2 a set Q1 of arrows between vertices,

3 two maps s, t : Q1→ Q0, called source and target, respectively, such that,
for each arrow α : i→ j ∈ Q1, i = s(α) and j = t(α).
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A quiver is finite if Q0 and Q1 are finite sets. Throughout these notes, we
will only consider finite and connected quivers.

Definition 1.2 Let Q be a quiver.

1 A path in Q of length ` is a sequence p = α1α2 · · ·α`, with αi ∈ Q1 such
that s(αi) = t(αi−1) for each i = 2, . . . , `. In particular, p has length 1 if and
only if p ∈ Q1.

2 We associate a path εi of length 0 to each vertex i of Q, which is called the
stationary path at i.

3 If s(α1) = t(α`), then p is said to be an oriented cycle. An oriented cycle
of length 1 is called a loop. An acyclic quiver is a quiver with no oriented
cycles.

Sometimes we denote a path from i to j by i; j.
Throughout k denotes an algebraically closed field.

Definition 1.3 The path algebra kQ of Q is an algebra whose underlying
vector space has all the paths of Q as basis and with multiplication defined
on two basis elements given by concatenation of paths, i.e. given two paths
p = α1 · · ·α`, p′ = α ′1 · · ·α ′m,

pp′ =

{
α1 · · ·α`α

′
1 · · ·α ′m if t(α`) = s(α ′1)

0 otherwise.

Example 1.4 1 Let Q be the quiver:

1

α

kQ has basis given by {α t | t > 0}, where α0 denotes the stationary path ε1.
The multiplication is given by αsα t = αs+t . The algebra kQ is isomorphic
to the algebra k[x] of polynomials with one indeterminate.

2 Let Q be the quiver

1 2 · · · n
α1 α2 αn−1

kQ is generated by the paths εi(16 i6 n),αi(16 i6 n),αi · · ·α j(16 i <
j 6 n), and it is isomorphic to the algebra of upper triangular n×n matrices.

Remark The path algebra kQ satisfies the following properties:

1 kQ has an identity 1 = ∑i∈Q0
εi if and only if Q0 is finite.

https://doi.org/10.1017/9781009093750.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009093750.003


8 Raquel Coelho Simões

2 kQ is an associative algebra.

3 kQ is finite dimensional if and only if Q is finite and acyclic.

Definition 1.5 Let Q be a finite quiver.

1 The arrow ideal RQ is the two-sided ideal of kQ generated by all arrows
in Q.

2 An admissible ideal I is a two-sided ideal of kQ such that there is m> 2 for
which Rm

Q ⊆ I ⊆ R2
Q.

3 Given an admissible ideal I, the quotient algebra kQ/I is said to be a bound
path algebra.

The bound path algebra kQ/I is finite dimensional, since Rm
Q ⊆ I and it is

connected (i.e. it is not the direct product of two algebras) because Q is con-
nected and I ⊆ R2

Q.
A relation ρ is a linear combination ρ = ∑p λp p of paths, all with length at

least two, and with same start and same endpoints. It is easy to check that any
admissible ideal can be generated by a set of relations.

Example 1.6 Let Q be the quiver

2

1 3

4

α2

α3

α1

α6

α5α4

The ideal I1 = 〈α1α2−α5α4,α6α3,α2α3,α
4
3 〉 is admissible since R5

Q ⊆ I ⊆R2
Q.

The ideal I2 = 〈α1α2−α5α4,α6α3,α2α3〉 is not admissible because αm
3 6∈ I2

for all m> 2.
The ideal I3 = 〈α1α2−α6〉 is not admissible as α1α2−α6 6∈ R2

Q.

The following theorem is due to [22].

Theorem 1.7 Any finite-dimensional algebra A is Morita equivalent to a bound
path algebra kQ/I, i.e. mod(A)'mod(kQ/I).

For a proof, see [6, I.6.10, II.3.7].
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1 Auslander–Reiten Theory of Finite-Dimensional Algebras 9

1.2 Representations of a Bound Path Algebra

In the previous section we saw that quivers provide a nice way to visualise
finite-dimensional algebras. Now, we will explain how quivers can be used to
visualise also modules and morphisms between modules.

Throughout this section Q denotes a finite, connected quiver and I an admis-
sible ideal. Note that if I = 0 is admissible, then Q must be acyclic.

Definition 1.8 A representation M = (Mi,ϕα)i∈Q0,α∈Q1 of Q is given by:

• k-vector spaces Mi for all i ∈ Q0, and
• linear maps ϕα : Ms(α)→Mt(α) for all α ∈ Q1.

Let p = α1 · · ·α` be a path in Q and M = (Mi,ϕα)i∈Q0,α∈Q1 be a represen-
tation of Q. We denote by ϕp the composition of linear maps ϕp = ϕα`

· · ·ϕα1 .
Given a relation ρ = ∑p λp p in I, we have ϕρ = ∑p λpϕp.

Definition 1.9 A representation M =(Mi,ϕα)i∈Q0,α∈Q1 of Q is said to be bound
by I, or to be a representation of (Q, I), if ϕρ = 0 for all ρ ∈ I.

A representation M is finite dimensional if Mi is finite dimensional for all
i ∈ Q0. The dimension vector of M is the vector dimM = (dimMi)i∈Q0 .

Example 1.10 Consider the quiver Q:

2

1 3

α2

α3

α1

bound by I = 〈α1α2,α2α3,α3α1〉. The representation:

k2

k3 k2

ï
1 0
0 0
0 0

ò
î

0 1 0
0 0 0

ó
î

0 0
0 1

ó
is bound by I. However, the representation given by

k

k k2

1 î
0
1

ó [1 0]

is not bound by I.
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Definition 1.11 Let M = (Mi,ϕα),N = (Ni,ψα) be representations of (Q, I).

1 A morphism of representations f : M→ N is a collection ( fi)i∈Q0 of linear
maps, fi : Mi→ Ni, such that for each α : i→ j ∈Q1, the following diagram
commutes:

Mi M j

Ni N j.

ϕα

fi f j

ψα

2 The morphism f = ( fi)i∈Q0 is an isomorphism if each fi is bijective.

Example 1.12 Let Q be the quiver

1

α

The following represents a morphism of representations:

k2 k2î
2 0
0 3

ó î
0 1
1 1

ó î
3 0
1 2

ó
This morphism is bijective with inverse given by

k2 k2î
2 0
0 3

ó î
−1 1
1 0

ó
î

3 0
1 2

ó

We obtain the category rep(Q, I) of finite-dimensional bound quiver repre-
sentations of (Q, I), whose objects are finite-dimensional bound quiver repre-
sentations and maps are given by morphisms of bound quiver representations.

Given a finite-dimensional algebra A, we denote by mod(A) the category of
finite-dimensional right A-modules. Note that we are adopting the same con-
vention as [6] of taking right A-modules and reading paths in a quiver from left
to right. Other sources may have the opposite convention.

Theorem 1.13 There is an equivalence of categories mod(kQ/I)' rep(Q, I).

Proof Denote the algebra kQ/I by A and write ei = εi + I. We begin by con-
structing a functor F : mod(A)→ rep(Q, I).
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1 Auslander–Reiten Theory of Finite-Dimensional Algebras 11

Given M ∈ mod(A), we define F(M) to be the representation (Mi,ϕα),
where Mi = Mei, and ϕα : Ms(α)→Mt(α) is the map mes(α) 7→mᾱ := m(α + I).

Note that each ϕα is a k-linear map since M is an A-module.
In order to check that F(M)∈ rep(Q, I), we need to show that F(M) is bound

by I. Given a relation ρ = ∑p:i; j λp p in I, we have

ϕρ(mei) = ∑
p:i; j

λpϕp(mei)

= ∑
p:i; j

λpm(p+ I)

= m ∑
p:i; j

λp(p+ I)

= m(ρ + I) = m0 = 0.

This defines F on the objects. Now, let f : M→N be a morphism in mod(A),
and let F(M) = (Mi,ϕα),F(N) = (Ni,ψα). We define F( f ) = ( fi)i∈Q0 by
fi(mei) := f (m)ei.

We need to check that f jϕα = ψα fi for each α : i→ j ∈ Q1. Indeed, given
mei ∈Mi, we have

f jϕα(mei) = f j(mᾱ) = f (mᾱ)e j

= f (m)ᾱe j = ψα( f (m)ei)

= ψα( fi(mei)) = ψα fi(mei).

Therefore, F( f ) is a morphism of representations.
It is easy to check that F( f ) is indeed a (covariant) functor, i.e. that

F(1M) = 1F(M) for any A-module M, and F(g f ) = F(g)F( f ) for f : L→M,g :
M→ N ∈mod(A).

The next step is to construct a functor G : rep(Q, I) → mod(A). Given
(Mi,ϕα) ∈ rep(Q, I), we define G(Mi,ϕα) = M as follows. The underlying
vector space of M is ⊕i∈Q0Mi. It is enough to define the right A-action on paths
in Q. Let p be a path in Q and m = (mi)i∈Q0 be an element of M. If p = εi for
some i, let mp := mi, and if p has length > 1, we define mp to be the following
element in M:

(mp)k :=

{
0 if k 6= t(p)

ϕp(ms(p)) if k = t(p).

In order to check that the A-action is well defined, we need to show that if
ρ = ∑p:i; j λp p ∈ I, then mρ = 0. Indeed, we have that mρ is the element
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in M whose only possible non-zero coordinate is (mρ) j = ∑λpϕp(mi). But
∑λpϕp(mi) = 0 since (Mi,ϕα) is bound by I.

The definition of G on morphisms is as follows: given f = ( fi) : (Mi,ϕα)→
(Niψα), we have G( f ) : M→ N defined by G( f )(m) := ( fi(mi))i∈Q0 .

Clearly G( f ) is linear as each fi is linear. In order to show that G( f ) is a
module homomorphism, it is enough to check G( f )(ma) = G( f )(m)a for all
m = mi ∈Mi and a = p+ I ∈ A, where p is a path from i to j.

On the one hand, we have (ma)k = 0 for k 6= j and (ma) j = ϕp(mi), and so

(G( f )(ma))k =

{
0 if k 6= j

f jϕp(mi) = ψp fi(mi) if k = j.

On the other hand, (G( f )(m))k = 0 for k 6= i, and (G( f )(m))i = fi(mi), and so
according to the definition of A-action,

(G( f )(m)a)k =

{
0 if k 6= j

ψp( fi(mi)) if k = j.

It is easy to check that G is indeed a functor and that FG ' 1rep(Q,I) and
GF ' 1mod(A), thus giving the required equivalence of categories.

1.3 Representation Finite Hereditary Algebras

The Krull–Schmidt theorem states that every module over an algebra can be
written as a direct sum of indecomposable modules in a unique way (up to
isomorphism and changing the order). Therefore, in order to classify all the
modules over an algebra, it is sufficient to classify the indecomposable ones.

In this section we discuss representation types of algebras, and discuss the
simplest case one can hope for, which is when there are finitely many indecom-
posable modules.

Definition 1.14

1 Given two representations M = (Mi,ϕα), N = (Ni,ψα) of Q, we can
construct a new representation

M⊕N :=

Ç
Mi⊕Ni,

ñ
ϕα 0
0 ψα

ôå
,

called the direct sum of M and N.
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2 A representation M is indecomposable if M 6= 0 and it cannot be written as
a direct sum of two non-zero representations.

Example 1.15

1 Let Q be the quiver 1 2 3. The representation

M = k k2 k

1

0

 [
0 1

]

is not indecomposable since M ∼= ( k 1 // k // 0 )

⊕ ( 0 // k 1 // k ).

2 Let Q be the quiver 1 2. We have

k k2

1

2


2

4


∼= ( k k

1

2
)⊕ ( 0 k ).

Definition 1.16 A connected algebra A is:

1 of finite representation type if, up to isomorphism, there are only finitely
many indecomposable objects in mod(A).

2 hereditary if A∼= kQ for some finite, connected and acyclic quiver Q.

Representation finite hereditary algebras have been classified by Gabriel.

Theorem 1.17 (Gabriel’s theorem) An hereditary algebra kQ is of finite rep-
resentation type if and only if Q is an orientation of an ADE diagram, i.e. the
underlying graph of Q is of one of the following forms:
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An : 1 2 3 · · · n−1 n ,n> 1

Dn : 1 2 3 · · · n−2 n−1

n

,n> 4

E6 : 1 2 3 4 5

6

E7 : 1 2 3 4 5 6

7

E8 : 1 2 3 4 5 6 7

8

There are two different proofs of this theorem in [6, 38] worth studying. The
proof in [6] uses reflection functors, which are at the origin of tilting theory,
where one studies an algebra by comparing its representation theory with that
of a simpler algebra. The proof in [38] uses algebraic geometry, namely by
studying the space of representations of a quiver with a given dimension vector,
which is an algebraic variety.

There are two subtypes of infinite-representation algebras (Drozd’s tame-
wild dichotomy, 1977):

• tame type: infinitely many indecomposable finite-dimensional
representations (up to isomorphism), but which are possible to parametrise.

• wild type: infinitely many indecomposable finite-dimensional
representations (up to isomorphism) which cannot be parametrised.

Precise definitions of tame and wild algebras can be found for example in
[40, Definition XIX.1.3, Definition XIX.3.3]

Hereditary algebras of tame type correspond to acyclic orientations of the
Euclidean quivers:
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Ãn : n+1

1 2 3 · · · n−1 n,n> 1

D̃n : 1 3 4 · · · n−1 n,n> 4

2 n+1

Ẽ6 : 1 2 3 6 7

5

4

Ẽ7 : 1 2 3 4 6 7 8

5

Ẽ8 : 1 2 3 5 6 7 8 9

4

Example 1.18 Let Q be the quiver 1 2. The indecomposable repre-
sentations over kQ are of the following form:

kn kn1

Jn,λ

, kn kn
Jn,0

1
, kn+1 kn

[1 0]

[0 1]
, kn kn+1

î
1
0

óî
0
1

ó ,

where n > 0, and Jn,λ denotes the nilpotent n× n Jordan block corresponding
to the eigenvalue λ ∈ k.

Example 1.19 The path algebra kQ associated to the quiver:

• 1 2 is of finite type.

• 1 2 is of tame type.

• 1 2 is of wild type.
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1.4 Auslander–Reiten Theory

In this section we give a brief overview of Auslander–Reiten (AR) theory, giv-
ing the basic concepts and main results in order to define the AR-quiver and
describe the knitting algorithm, which provides a method to construct the AR-
quiver of the representation-finite hereditary algebras.

1.4.1 (Short) Exact Sequences and Extensions

Definition 1.20 Let A be a finite-dimensional algebra.
A sequence of objects and morphisms in mod(A) of the form

· · · // M1
f1 // M2

f2 // M3
f3 // · · ·

is exact if im fi = ker fi+1 for all i.
A short exact sequence (s.e.s. for short) is an exact sequence of the form

0 // L
f // M

g // N // 0 .

In other words, f is injective, g is surjective and im f = kerg. This is also called
an extension of N by L.

Note that, in an exact sequence, we have fi+1 fi = 0 for all i.

Example 1.21 1 Given a morphism f : M→ N of A-modules, the sequence

0 ker f M N coker f 0i f p
,

where i is the inclusion and p is the projection, is exact, and

0 ker f M M/ker f 0i q

is short exact.
2 Let Q be the quiver 1 // 2 , and consider the representations

S(2) := 0 // k , M := k 1 // k and S(1) := k // 0 . Then

0 S(2) M S(1) 0
(0,1) (1,0)

and

0 S(2) S(1)⊕S(2) S(1) 0
(0,1) (1,0)

are short exact sequences, where each component of the pairs (0,1) and
(1,0) denotes a linear map between the vector spaces at the corresponding
vertex of Q.
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The following lemma, known as the splitting lemma, holds for any abelian
category (see [6, Definition A.1.5] for the definition of abelian category).

Lemma 1.22 Given a s.e.s. 0 // L
f // M

g // N // 0 in mod(A),
the following statements are equivalent:

1 f is a split monomorphism (also called a section), i.e. there exists
h : M→ L such that h f = 1L.

2 g is a split epimorphism (also called a retraction), i.e. there exists
h′ : N→M such that gh′ = 1N .

3 The sequence is equivalent to the s.e.s.

0 L L⊕N N 0i p
, i.e. there is a commutative

diagram:

0 L M N 0

0 L L⊕N N 0.

f

∼=

g

i p

In this case, the s.e.s. is said to split.

The set of equivalence classes Ext1(N,L) of extensions of N by L, with the
equivalence relation defined in Lemma 1.22 (3), is an abelian group, whose zero
element is the class of the split extension. For more details, see for instance [37,
Section 7.2].

Example 1.23 Let Q be the quiver 1 2 , which is known as the Kro-
necker quiver. The sequences

0 S(2) E S(1) 0 and

0 S(2) E ′ S(1) 0 ,

where S(1) = k 0 ,S(2) = 0 k ,E = k k
1

0
and

E ′ = k k
0

1
are non-equivalent short exact sequences.

1.4.2 Simple, Projective and Injective Representations

Let A = kQ/I, with Q a finite, connected quiver, and I an admissible ideal.
A simple A-module is a non-zero module that has no proper submodules. A

simple representation of (Q, I) is a representation that corresponds to a simple
A-module under the equivalence in Theorem 1.13.
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Proposition 1.24 The simple representations of (Q, I) are, up to isomorphism,
of the form S(i) = (S(i) j,ϕα) for each i ∈ Q0, where ϕα = 0 for all
α ∈ Q1 and

S(i) j =

{
k if i = j

0 if i 6= j
.

An A-module P is projective if any s.e.s. ending at P splits, i.e.
Ext1(P,−) = 0. An A-module I is injective if any s.e.s. starting at I splits, i.e.
Ext1(−, I) = 0. The reader can find the definition and basic results on Hom and
Ext functors in both [6] and [38].

Remark

1 P is projective if and only if for every epimorphism f : M→ N and every
morphism g : P→ N, there is g′ : P→M such that g = f g′. In other words,
Hom(P,−) maps surjective morphisms to surjective morphisms.

2 I is injective if and only if for every monomorphism u : L→M and every
morphism g : L→ I, there is g′ : M→ I such that g = g′u. In other words,
Hom(−, I) maps injective morphisms to surjective morphisms.

Proposition 1.25 The projective representations of (Q, I) are, up to isomor-
phism, of the form P(i) = (P(i) j,ϕα) for each i ∈ Q0, where:

• P(i) j is the vector space generated by {p+ I | p path from i to j }.
• Given an arrow α : j→ `, ϕα : P(i) j→ P(i)` is the linear map defined on

the basis by composing the paths from i to j with the arrow α .

Similarly, the injective representations of (Q, I) are, up to isomorphism, of the
form I(i) = (I(i) j,ϕα) for each i ∈ Q0, where:

• I(i) j is the vector space generated by {p+ I | p path from j to i }.
• Given an arrow α : j→ `, ϕα : P(i) j→ P(i)` is the linear map defined on

the basis by deleting the arrow α from the paths from j to i that start with α

and sending to zero the remaining paths.

Example 1.26 Consider the algebra given by the quiver

2

1 3

4

a d

b

c

subject to the relations ca = 0 = ab.
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The projective and injective representations are as follows:

P(1) = I(3) =

k

k k

k

0 1

1

1 P(2) =

k

k k

0

1 1

0

0

P(3) = S(3) =

0

0 k

0

0 0

0

0 P(4) =

k

0 k

k

0 1

0

1

I(1) =

k

k 0

0

1 0

0

0 I(2) =

k

k 0

k

0 0

1

1

I(4) =

0

k 0

k

0 0

1

0

Notation: We will simplify the notation of an indecomposable representa-
tion, by encoding their composition series whenever possible. For instance, the
projective module P(1) in the example above can be denoted by

P(1) =
1
4
2
3
,

meaning P(1)i = k for all i ∈ Q0, and there is an identity map from top to
bottom, i.e.

(P(1))1 (P(1))4 (P(1))2 (P(1))3
1 1 1 .

https://doi.org/10.1017/9781009093750.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009093750.003


20 Raquel Coelho Simões

This module has a unique composition series given by:

0 3 2
3

4
2
3

1
4
2
3

3 2 4 1

Theorem 1.27 Given a representation M = (Mi,ϕα) in rep(Q, I), we have for
all i ∈ Q0,

Hom(P(i),M)'Mi ' Hom(M, I(i)).

For a proof, see for instance [6, Lemma III.2.11]. Recall the definition of
dimension vector in Definition 1.9.

Corollary 1.28 If 0 // L
f // M

g // N // 0 is a s.e.s. in
rep(Q, I), then

dimM = dimL+dimN.

1.4.3 Irreducible Morphisms and AR-sequences

We now introduce the definition of irreducible morphisms, which are in some
sense the building blocks for the morphisms between modules, and we define
an important class of short exact sequences, called AR-sequences, which can
be defined in terms of irreducible morphisms and indecomposable modules.

Definition 1.29 A morphism f : M→ N is irreducible if:

• f is not a split monomorphism,
• f is not a split epimorphism and
• if f = gh, then h is a split monomorphism or g is a split epimorphism.

We note that an irreducible morphism is either injective or surjective, but not
both. Moreover, the third condition says that an irreducible morphism admits
no nontrivial factorisation.

Example 1.30 Let Q be the quiver 1 // 2 // 3. The map

S(3)
(0,0,1) // P(2) is irreducible. But the map S(3)

(0,0,1) // P(1) is not irre-
ducible as it factors nontrivially through P(2).

Given two indecomposable A-modules M and N, the set Irr(M,N) of irre-
ducible morphisms from M to N is a vector space. In fact, Irr(M,N) is given by
the quotient radA(M,N)/rad2

A(M,N). For a definition of the (mth power of the)
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radical of mod(A), and a proof of this fact, we refer the reader to [6, Section
IV.1, Appendix A.3].

Definition 1.31 An s.e.s. 0 // L
f // M

g // N // 0 is an AR-
sequence if the following conditions hold:

1 L,N are indecomposable;
2 f ,g are irreducible morphisms.

Remark An AR-sequence is also known as an almost-split sequence, in the
sense that any map u : L→U that is not a split monomorphism (resp. any map
v : V → N that is not split epimorphism) factors through f (resp. g).

Remark

1 An AR-sequence never splits. Therefore, no AR-sequence starts with an
injective module or ends with a projective module.

2 An AR-sequence is uniquely determined, up to isomorphism, by each of its
end terms.

Theorem 1.32 (Auslander–Reiten theorem) Let M be an indecomposable A-
module.

1 If M is non-projective, there is an AR-sequence

0 // τM
f // E

g // M // 0 ending at M.
2 If M is non-injective, there is an AR-sequence

0 // M
f // E ′

g // τ−1M // 0 starting at M.

The module τM is called the AR-translate of M, and τ−1M is the inverse
AR-translate of M. We note that if M is non-projective indecomposable (resp.
non-injective indecomposable) then τM (resp. τ−1M) is non-injective indecom-
posable (resp. non-projective indecomposable).

We recommend [6, Section IV] for a proof of Theorem 1.32. Key tools
in this proof are the AR-formulas, which describe the relationship between
morphisms and extensions. Namely, for any pair of modules M,N ∈ mod(A),
we have:

Ext1(M,N)∼= DHom(τ−1N,M)∼= DHom(N,τM).

Here, D is the standard k-duality Homk(−,k), τ−1I = 0 for all injective mod-
ule I, τP = 0 for all projective module P, and the underlining (resp. overlin-
ing) means we are considering morphisms that do not factor through projective
(resp. injective) modules.
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When A is an hereditary algebra, the AR-formulas can be simplified to

Ext1(M,N)∼= DHom(τ−1N,M)∼= DHom(N,τM).

1.4.4 The AR-quiver and the Knitting Algorithm

Given a finite-dimensional algebra A, we can record the information about
mod(A) in a quiver, called the AR-quiver. In the case when A is of finite repre-
sentation type, this quiver gives a complete picture of the representation theory
of A.

Definition 1.33 The AR-quiver Γ(mod(A)) of mod(A) is defined by:

• the vertices of Γ(mod(A)) are the isomorphism classes of indecomposable
A-modules,

• the arrows correspond to basis elements of the vector space of irreducible
morphisms between indecomposable modules.

Note that there are no loops in Γ(mod(A)). This follows from the fact that we
are dealing with finite-dimensional modules and that any irreducible morphism
is either a monomorphism or an epimorphism, but not both. Moreover, in the
case when A is representation-finite, the AR-quiver has no multiple arrows, i.e.
all the vector spaces of irreducible morphisms between two indecomposable
modules have dimension 6 1 (cf. [6, Proposition IV.4.9]).

Each AR-sequence 0 // τM // L1⊕·· ·⊕Lr // M // 0 is
represented in the AR-quiver by a mesh:

L1

��

L2

  
τM

FF

==

!!

M

Lr

>>

The AR-quiver is a translation quiver, i.e. for each arrow M→ L, for which
τ−1M 6= 0 (resp. τL 6= 0), there is an arrow L→ τ−1M (resp. τL→M).

Theorem 1.34 (Auslander’s Theorem) [8] If the AR-quiver Γ of a connected
finite-dimensional algebra A has a connected component C such that the lengths
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of the modules in C are bounded, then A is of finite representation type,
and Γ = C.

In particular, the AR-quiver of a representation-finite algebra consists of one
finite component. Moreover, in this case the AR-quiver completely describes
mod(A), in the sense that every module is a direct sum of finite-dimensional
indecomposable modules and every nonzero non-isomorphism between inde-
composable modules is a sum of compositions of irreducible morphisms.

The knitting algorithm is an algorithm that allows us to construct, in some
special cases, the AR-quiver (or part thereof). One of these special cases is
when A = kQ, where the underlying graph of Q is ADE. It owes its name to the
fact that it recursively constructs one mesh after the other, from left to right.

What follows is a description of this algorithm. We start by computing all
the projective modules and their radicals.

The radical rad(M) of a module M is the intersection of all maximal sub-
modules of M. The representation (P(i)′j,ϕ

′
α) corresponding to the radical

rad(P(i)) of the projective P(i) = (P(i) j,ϕα) at i is such that P(i)′j = P(i) j

if i 6= j,P(i)i is the vector space spanned by all nonconstant paths from i to i,
and ϕ ′α is the restriction of ϕα to P(i)s(α).

Proposition 1.35 Every direct predecessor of P(i) in Γ(mod(A)), i.e. every in-
decomposable module X for which there is an irreducible morphism
X → P(i) is a direct summand of rad(P(i)). In the case when A is hereditary,
all predecessors of projective modules are projective modules.

Base step:

1 Draw a vertex for each simple projective P(i).
2 If P(i) is a summand of rad(P) for some projective P, then add a vertex

corresponding to P and arrows from P(i) to P (the number of arrows equals
the multiplicity of P(i) in rad(P)).

3 Add vertices associated to remaining summands R of rad(P) and arrows
R→ P (the number of arrows equals the multiplicity of R in rad(P)).

4 Repeat previous steps for each simple projective.

At this point we get a quiver ∆0.
Induction ∆n from ∆n−1:
If X ∈ ∆n−1 and all its direct predecessors are in ∆n−1, then:

1 if X is a direct summand of rad(Q) for some projective Q not in ∆n−1, add a
vertex associated to Q and arrows X → Q (the number of arrows equals the
multiplicity of X in rad(Q)).
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2 if X is not injective, add a vertex corresponding to τ−1X and for each arrow
X → Y , add Y → τ−1X .

If A is hereditary of finite representation type, it is known that each indecom-
posable A-module is uniquely determined by its dimension vector. Therefore,
in order to calculate τ−1X in the knitting algorithm, one can simply use the
formula dimτ−1X = ∑X→Y dimY −dimX , by Corollary 1.28.

Note that there is a dual version of the knitting algorithm where one starts
by computing injective modules, and considering the dual of Proposition 1.35
which states that every direct successor of I(i) in Γ(mod(A)) is a direct sum-
mand of I(i)/S(i), and if A is hereditary then all successors of injective modules
are injective modules.

Let A be a hereditary algebra. If A is of finite representation type, then the al-
gorithm terminates when we have reached all the injective modules. If A is not
of finite type, then the algorithm does not terminate, and what the algorithm
produces is the postprojective component of the AR-quiver (cf. [6, Corollary
VIII.2.3]). For the definition of postprojective component, see e.g. [6, Defini-
tion VIII.2.2]. Note that some authors refer to postprojective components as
preprojective components.

Example 1.36 Let Q be the quiver 1 // 2 // 3 oo 4 // 5 of
type A5. The AR-quiver of kQ is given by:

1
2
3

��

4
5

��
2
3

BB

��

1
2 4
3 5

BB

��

4

3

CC

��

2 4
3 5

AA

��

1
2 4
3

CC

��
4

3 5

AA

��

2 4
3

AA

��

1
2

��
5

AA

4
3

??

2

AA

1

Example 1.37 Let Q be the following quiver of type D4:

1 // 2 //

��

3

4
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The AR-quiver of kQ is given by:

1
2

3 4

��

2

��

1

2
3 4

BB

��

��

1
2 2

3 4

BB

��

��

1
2

DD

3

CC

2
4

AA

1
2
3

DD

4

II

2
3

HH

1
2
4

JJ

Here we have: 1
2 2

3 4
=

k k2 k

k

1

1

 [
1 0

]
[
0 1

]

1.5 Geometric Models

The knitting algorithm might not work when we start with a non-simple pro-
jective module.

For instance, consider the quiver Q

1 4

3

2 5

α1

α2α3

α4

α5

α6

together with the admissible ideal I = 〈α1α2,α2α3,α3α1,α4α5,α5α6,α6α4〉,
and let A= kQ/I.

Suppose we start the knitting algorithm with P(5), whose radical is
m(P(5)) = 3

1. This module is not the summand of the radical of any other pro-
jective module, and so according to the algorithm, we would knit the follow-
ing mesh:
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5
3
1

��
3
1

CC

5.

However, this mesh is not correct; the algorithm did not compute the irreducible
morphism 5

3
1→ 3.

This section is devoted to a different way of computing the AR-quiver of cer-
tain classes of algebras, using the geometry of Riemann surfaces with boundary.

1.5.1 Geometric Model of Type An

We start by illustrating how to construct the AR-quiver of a hereditary algebra
of type An, with the example

Q = 1 // 2 // 3 oo 4 // 5 .

Consider a disc with 8(= n+ 3) marked points on its boundary, together with
the triangulation T, i.e. maximal set of non-crossing diagonals, given in
Figure 1.1.

Before associating an algebra to these data, we need to introduce some ter-
minology and notation, which follows that of [21]. For further study on the
background of combinatorial topology of surfaces we refer the reader to [29].

A boundary segment in the marked disc S (or any marked surface) is a seg-
ment of a boundary component between two marked points. A curve is a con-
tinuous map γ : [0,1]→ S. We always consider curves up to homotopy relative
to their endpoints. A curve γ is said to be an arc if it satisfies the following
properties:

• The endpoints of γ are marked points on the boundary.
• γ intersects the boundary of the surface only in its endpoints.

Figure 1.1 A triangulation of an octagon.
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• γ is not homotopic to a point or a boundary segment.

Figure 1.2 illustrates all these concepts.
Given a marked point p, let m′,m′′ be two points in the same boundary com-

ponent of p such that m′,m′′ are not marked points and p is the only marked
point lying in the boundary segment δ between m′ and m′′. Draw a curve c
homotopic to δ but lying in the interior of the disc except for its endpoints m′

and m′′. The complete fan at p is the sequence of diagonals in T that c crosses
in the clockwise order.

We can now associate a quiver QT to this triangulation, in the
following way:

• Vertices of QT are in one-to-one correspondence with diagonals of T. We
will use the same notation for both.

• Given two vertices i and j, there is an arrow i→ j if and only if i and j
share a marked point p and j is the immediate successor of i in the complete
fan at p.

Note that we can associate a marked point to each arrow of QT. Namely,
using the notation above, the marked point associated to the arrow i→ j is p.

The quiver QT in Figure 1.3 is indeed Q, and in fact one can obtain any
orientation of a Dynkin graph of type An from a triangulation of a disc with

γ1

γ2

γ3

γ4

Figure 1.2 The arcs γ1 and γ2 are homotopic to each other. The curve γ3 is homotopic to a
point. The curve γ4 is homotopic to a boundary segment.

1

2
34

5

Figure 1.3 The quiver QT of the triangulation.
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n+ 3 marked points on the boundary whose triangles are outer-triangles, i.e.
triangles with at least one side on the boundary of the disc.

We will now describe how to obtain the AR-quiver of kQ from this
triangulation.

We will always consider arcs up to homotopy relative to their endpoints.
Given an arc γ distinct from any diagonal of T, we define a representation
Mγ = (Mi,ϕα) of kQT, as follows:

Mi =

{
k if γ crosses diagonal i

0 otherwise,
ϕα =

{
1 if Ms(α) = Mt(α) = k

0 otherwise.

Irreducible morphisms correspond to pivoting one of the endpoints of an arc
to its counterclockwise neighbour (pivoting elementary move). Given an arc
γ , we define its translate τ(γ) to be the arc obtained from γ by rotating both
endpoints to their counterclockwise neighbour. In particular, Mγ = P(i) (resp.
Mγ = I( j)) if and only if τγ = i (resp. τ−1 = j).

A presentation of the AR-quiver of mod(kQT) in terms of these combina-
torics is presented in Figure 1.4.

Extensions have a nice description in terms of arcs. Indeed, there is an ex-
tension from N to M if and only if the corresponding arcs γN and γM cross each
other as in Figure 1.5.

The summands of the middle term of the extension correspond to the dashed
arcs in Figure 1.5.

1.5.2 Geometric Model for Cluster-tilted Algebras of Type An

Cluster-tilted algebras arise in the context of cluster-tilting theory. We refer the
reader to [4] for a nice survey on this class of algebras.

Cluster-tilted algebras of type An are precisely the algebras associated to an
arbitrary triangulation of the (n+3)-gon.

An arbitrary triangulation T may include inner triangles, i.e. triangles whose
three boundaries are all diagonals of T. The quiver QT is defined as above, but
now we include relations αβ , if s(α), t(α) = s(β ), t(β ) are the boundaries of
an inner triangle.

The algebra A at the start of this section is a cluster-tilted algebra of type A,
which can be obtained from the triangulation in Figure 1.6.

Using the same rule for arcs, pivot elementary moves and translates, we are
now able to compute the AR-quiver of mod(A) in terms of the geometric model
(see Figure 1.7).

Note that when we have inner triangles, we can get a new type of crossing,
see Figure 1.8.
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Figure 1.4 The geometric model of the AR-quiver of mod(kQT).

γM
γN

γE2

γE1

γE

γM γN

Figure 1.5 Extensions of N by M as crossings of γN and γM .

However, this type of crossing does not give rise to an extension, and so
all extensions are described in the same way as we have seen above. For more
details see [16].
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Figure 1.6 The triangulation associated to A.

Figure 1.7 The geometric model of the AR-quiver of mod(A).

1.5.3 Geometric Model for Gentle Algebras

We will now consider two possible generalisations of this combinatorial con-
struction: on the one hand we can consider partial triangulations instead (i.e.
any set of non-crossing diagonals), and on the other hand we can consider other
surfaces.
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γM

γN

Figure 1.8 Crossing associated to an inner triangle.

Figure 1.9 The partial triangulation of the algebra C.

Let C be the bound path algebra given by 1
α // 2

β // 3 bound by
αβ . This algebra can be obtained from the partial triangulation of a disc in
Figure 1.9.

The quiver is obtained in the same way as before. The relations are given by
composition of two arrows in the same region. Note that this rule applied to an
arbitrary triangulation of the disc gives rise to the same rule described in the
previous subsection.

For partial triangulations, not every arc gives rise to an indecomposable
module and two different arcs may give rise to the same indecomposable mod-
ule. Therefore, we need to define permissible arcs and equivalence of arcs (this
is not the same as homotopy).

An arc is permissible if each consecutive crossing corresponds to an arrow
in the quiver. See Figure 1.10 for a counter-example.

Two arcs are isomorphic if they intersect the same diagonals of the partial
triangulation (see Figure 1.11).

Indecomposable modules are therefore in bijection with equivalence classes
of permissible arcs.

If we perform a pivot elementary move as described in the previous subsec-
tions, we may get an isomorphic arc. Hence, an irreducible morphism corre-
sponds to a sequence of pivot elementary moves until one gets a non-
equivalent arc.
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Figure 1.10 An arc that is not permissible.

˜

Figure 1.11 Isomorphic permissible arcs.

Figure 1.12 The geometric model of the AR-quiver of mod(C).

The AR-quiver of mod(C) is given in Figure 1.12.
Now, let us consider an example coming from an annulus (see Figure 1.13).
The quiver of the algebra D associated to this partial triangulation is defined
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a

bcd

1

2

3 4

Figure 1.13 A partial triangulation in an annulus and corresponding quiver.

as previously. But we refine the definition of relations as follows: the composi-
tion of two arrows with different marked points is zero and if α is a loop, i.e.
its start and endpoints correspond to a loop arc of the partial triangulation, then
α2 = 0.

The algebra D is then the algebra considered in Example 1.26, given by the
quiver

2

1 3

4

a d

b

c

bound by the relations ca = 0 = ab. By refining the notions of permissible arcs,
equivalence of arcs and pivot elementary moves, we get the AR-quiver of D as
in Figure 1.14.

An algebra associated to an unpunctured surface with a finite set of marked
points on the boundary is called a tilting algebra. It turns out that these algebras
are precisely gentle algebras.

Definition 1.38 A finite-dimensional algebra A is gentle if it admits a
presentation A = kQ/I satisfying the following conditions:

1 Each vertex of Q is the source of at most two arrows and the target of at
most two arrows.

2 For each arrow α in Q, there is at most one arrow β in Q such that αβ 6∈ I,
and there is at most one arrow γ such that γα 6∈ I.

3 For each arrow α in Q, there is at most one arrow δ in Q such that αδ ∈ I,
and there is at most one arrow µ such that µα ∈ I.

4 I is generated by paths of length 2.
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Figure 1.14 The geometric model of the AR-quiver of mod(D).

Gentle algebras first appeared in the context of tilting theory [5] (see also
[6, Section IX]), where iterated tilted algebras of types A and Ã were observed
to satisfy the properties above. Gentle algebras, which are tame, remain one
of the relatively few classes of algebras for which the representation theory is
computationally tractable. Partly due to this reason, there has been widespread
interest in this class of algebras in many different contexts, such as Fukaya
categories [25], dimer models [12], enveloping algebras of Lie algebras [27]
and cluster theory [7, 23, 30]. The geometric model for the module category of
gentle algebras presented above is given in [10]. Derived categories of gentle
algebras have also been described geometrically [33] and an important appli-
cation is a geometric description of derived equivalences of gentle algebras [3].
We refer the reader to [13, 16, 17, 34] for further examples of recent develop-
ments in this area.

Ribbon graphs are the bridge between gentle algebras and unpunctured sur-
faces (cf. [39]). A ribbon graph is an undirected finite graph with a cyclic or-
dering of the half edges at each vertex. Let A = kQ/I be a gentle algebra, and
M the set of maximal paths in Q avoiding relations together with the stationary
paths ev, for each vertex v of valency 1 or valency 2 such that v is the middle
vertex of path of length 2 not in I. Note that each vertex in Q0 appears twice in
the paths in M.

The vertices of the ribbon graph Γ corresponding to A are in one-to-one
correspondence with the elements in M. The edges in Γ are in one-to-one corre-
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spondence with the vertices of Q. More precisely, given v∈Q0, the correspond-
ing edge connects the two elements in M containing v. The cyclic ordering of
the half edges at each vertex in Γ is determined by the paths in M.

Example 1.39 Let Q be the quiver

1
a
((

b

66 2
c // 3 ddd

Let I = 〈ac,d2〉, and A = kQ/I. Then M = {bcd,a} and the corresponding
ribbon graph is given in Figure 1.15. Here, the arrows correspond to the path of
the corresponding vertex of the ribbon graph.

By replacing edges with oriented strips, vertices with oriented discs and glu-
ing these according to the orientation along the faces of Γ, we get an oriented
surface S in such a way that the faces of Γ correspond to the boundary com-
ponents of S (cf. [32]). The embedding of Γ in the surface defines the partial
triangulation. Note that we may have to add marked points to avoid having arcs
homotopic to boundary segments. Figure 1.16 shows the surface associated to
the gentle algebra in Example 1.39.

1.5.4 Geometric Model for Skew-gentle Algebras

The geometric model given in Subsection 1.5.3 has been recently extended to
a wider class of algebras, called skew-gentle algebras, by considering punc-
tured surfaces (see [26]). A skew-gentle algebra can be obtained from a gentle
algebra by replacing some relations of the form ε2, where ε is a loop, by ε2−ε .

Definition 1.40 Let Q be a quiver, I a set of paths in Q, and Sp a subset of Q0

such that kQsp/Isp is a gentle algebra, where Qsp is obtained from Q by adding
a loop εi at each vertex i in Sp, and Isp = I ∪{ε2

i | i ∈ Sp}. The vertices in Sp
are called special vertices and the εi are the special loops.

bcd

a

1 2

3

Figure 1.15 The ribbon graph of A.
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bcd

a

1

2

3

Figure 1.16 The surface and the ribbon graph of A as a partial triangulation.

A finite-dimensional algebra is skew-gentle if it admits a presentation of the
form kQsp/Isg, where Qsp comes from a triple (Q, I,Sp) as above and Isg =

I∪{ε2
i − ε | i ∈ Sp}.

Note that the presentation Isg is not admissible. However there is an isomor-
phism kQsp/Isg ' kQ̂/Î, with Î admissible, where Qsp and Isg are defined as
follows.

• Q̂0 is obtained from Q0 by splitting each special vertex i into two vertices i+

and i−;

• Q̂1 is obtained from Q1 by splitting an arrow a for which s(a) 6∈ Sp and
t(a) ∈ Sp (resp. s(a) ∈ Sp and t(a) 6∈ Sp) into two arrows a+ with
t(a+) = t(a)+ and a− with t(a−) = t(a)− (resp. a+ with s(a+) = s(a)+ and
a− with s(a−) = s(a)−);

• given ab ∈ I, if t(a) 6∈ Sp, then all resulting paths in Q1 of length 2 lie in Î,
and if t(a) ∈ Sp, then a+b+−a−b− ∈ Î. All relations in Î are obtained
this way.

Remark 1 Any gentle algebra is skew-gentle; take Sp =∅.

2 The linearly oriented quivers of type D and D̃ are hereditary skew-gentle
algebras. Indeed, let Q = 1 // 2 // · · · // n and I =∅. If we
set Sp = {n} (resp. Sp = {1,n}), then the corresponding skew-gentle
algebra is isomorphic to the hereditary algebra of type Dn+1 (resp. D̃n+1)
with linear orientation.

Consider the following triangulation of a punctured disc:
We can define a quiver Q associated to this triangulation in the same manner

as above, giving us

Q = 1 // 2 // 3 ε3dd .
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Figure 1.17 A triangulation of a punctured disc.

Figure 1.18 Permissible arcs in punctured surfaces do not satisfy these local configurations.

The vertex 3 associated to the loop arc delimiting a monogon with a puncture
in its interior is considered to be a special vertex and so the algebra E corre-
sponding to the triangulation in Figure 1.17 is the bound path algebra defined
by Q and the relation ε2

3 − ε3. By Remark 1.5.4 (2), this algebra is isomorphic
to the hereditary path algebra of the quiver:

1 // 2 //

��

3

4

We consider tagged permissible arcs in the punctured disc, i.e. pairs (γ,σ),
where γ is an arc whose endpoints are marked points in the boundary or the
puncture, γ is not an arc in the triangulation and it does not cut out a once-
punctured monogon by its self-intersection (see Figure 1.18), and

σ : {t | γ(t) is a puncture}→ {0,1}

is a map. If σ(t) = 1, we put a tag on the arc γ near the puncture.
In what follows, we describe E-modules via representations of the quiver of

type D4. There is a one-to-one correspondence between permissible tagged arcs
and the indecomposable E-modules, which is again described via crossings.
Given a permissible tagged arc (γ,σ), the corresponding indecomposable E-
module M(γ,σ) is uniquely determined by its support. The support at vertex i
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is given by the number of times γ crosses the diagonal indexed by i, if i is not a
special vertex. If i is a special vertex, and γ crosses i but is not incident with the
puncture, then (M(γ,σ)) j = k, where j = 3,4. If i is a special vertex, γ crosses
i and it is incident with the puncture, then

(M(γ,σ)) j =

{
0 if σ = 0, j = 4 or σ = 1, j = 3

k if σ = 0, j = 3 or σ = 1, j = 4.

The pivot elementary moves are described in the same manner as in the
gentle case, except for the following cases.

Case 1: If (γ,σ) is an arc incident with the puncture, then the pivot elemen-
tary move consists of replacing γ by a loop arc around the puncture and ending
at the other endpoint of γ and pivoting one step in the anticlockwise direction
the endpoint which does not create a self-crossing.

Case 2: Given a permissible arc γ which is not incident with the puncture,
if one obtains a loop arc around the puncture after performing a pivot elemen-
tary move, then this move corresponds to two irreducible maps, whose targets
correspond to the tagged and untagged arcs incident with the puncture and the
endpoint of the loop arc.

The AR-translate is described by clockwise rotation of the endpoints which
are marked points in the boundary, and by changing the tag at the puncture.

A geometric model of the AR-quiver of mod(E) is thus described in
Figure 1.19.

One can associate an algebra to a partial triangulation of a punctured sur-
face containing a loop arc around each puncture. These algebras are called
skew-tilting algebras, and they coincide with the skew-gentle algebras. The
definition of permissible arcs and equivalence classes of arcs passes across to
the punctured case, permissible arcs incident with punctures can be tagged or
untagged and we also allow permissible arcs whose both endpoints are punc-
tures; these will correspond to four non-isomorphic indecomposable modules,
determined by their tags at each endpoint. The case where there are tagged
permissible arcs whose both endpoints are punctures only show up in the case
when the algebra is not of finite representation type.

The following gives an example of a skew-gentle algebra of finite-
representation type coming from a partial triangulation of a punctured disc.
Consider the path algebra F of the quiver

1
a // 2

ε2

�� b // 3
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Figure 1.19 The geometric model of the AR quiver of mod(E).

bound by the relations ε2
2 − ε2 = 0 and ab = 0. This algebra, which is isomor-

phic to the bound path algebra of the quiver

2
b

��
1

a
@@

c
��

4

3
d

@@

bound by the relation ab = cd, is associated to the partial triangulation of the
punctured disc in Figure 1.20.

The AR-quiver of F is given in Figure 1.21.
For recent developments of the study of derived categories of skew-gentle

algebras via geometric models, see [2, 31].
We note that the geometric models of (skew-)gentle algebras described above

are based on the description of the AR theory coming from deep results classi-
fying indecomposable representations of classes of algebras of tame represen-
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1

2

3

Figure 1.20 The partial triangulation associated to F.

Figure 1.21 The geometric model of the AR-quiver of mod(F).

tation type (cf. [11, 14, 18, 19, 24]). The indecomposable modules are split into
two classes: string modules and band modules. All the examples we considered
in Section 1.5 are representation-finite, in which case we only have string mod-
ules. These correspond to the (tagged) permissible arcs for which at least one
endpoint is a marked point. Band modules lying in homogeneous tubes cor-
respond to certain closed curves in the surface and band modules lying in the
bottom of tubes of rank 2 correspond to tagged permissible arcs whose both
endpoints are punctures. In any case, the set of (tagged) permissible arcs de-
scribe in particular τ-rigid modules, which leads us to the final subsection of
this chapter.
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1.5.5 An Application: τ-tilting Theory

Classical tilting theory compares the representation theory of two algebras, one
of which is the endomorphism algebra of a tilting module over the other alge-
bra. In 2012, Adachi, Iyama and Reiten introduced τ-tilting theory, which can
be seen as a “mutation closure” of tilting theory [1]. For more on τ-tilting the-
ory, see Chapter 2. In this subsection we use the geometric models described
above to give a classification of support τ-tilting modules, the main objects of
study in τ-tilting theory. This classification was obtained in [26].

Definition 1.41 Let A be an algebra and M an A-module. Denote by |A| the
number of simple A-modules, and by |M| the number of indecomposable sum-
mands of M.

1 M is τ-rigid if HomA(M,τM) = 0.
2 M is τ-tilting if M is τ-rigid and |M|= |A|.
3 M is support τ-tilting if there is an idempotent e ∈ A such that M is a

τ-tilting (A/〈e〉)-module.

Proposition 1.42 [1, Proposition 2.3] M is support τ-tilting if and only if M
is τ-rigid and there is a projective module P such that HomA(P,M) = 0 and
|M|+ |P|= |A|.

Let A be a skew-gentle algebra, S the associated punctured surface and P

the associated partial triangulation of S. Given a tagged permissible arc γ , we
represent by [γ] the arc that is equivalent to γ such that the starting/ending
segments have the form represented in Figure 1.22.

A generalised permissible arc in S is either [γ], where γ is a permissible
arc, or an arc whose completion is in P, where the completion γ̃ of an arc γ is
described in Figure 1.23.

Besides the natural definition of crossing of arcs in the interior of the sur-
face, we also need to consider crossings at a puncture. Two tagged generalised

Figure 1.22 Starting/ending segment of [γ].
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γ̃

γ̃ γ̃γ
γ γ

Figure 1.23 Completion of a diagonal in P.

Figure 1.24 τ-tilting C-modules.

permissible arcs cross at a puncture p if p is an endpoint of both arcs, they have
different tags at p and if the arcs are homotopic, then the other endpoint of both
arcs is also a puncture p′ and the tags also differ at p′.

The geometric description of support τ-tilting modules over a skew-gentle
algebra is given as follows.

Theorem 1.43 [26, Corollary 5.9] There is a one-to-one correspondence be-
tween the set of maximal collections of noncrossing tagged generalised permis-
sible arcs in S and the set of support τ-tilting A-modules. Moreover, a collection
of noncrossing tagged generalised permissible arcs is maximal if and only if its
cardinality is |A|.

Example 1.44 Recall the gentle algebra C from the start of Subsection 1.5.3.
The τ-tilting modules over C are given by the collection of thick arcs in Fig-
ure 1.24. The support τ-tilting C-modules with two summands are given by
the collection of thick arcs in Figure 1.25. Here, the thin arc represents the
projective module associated to the support τ-tilting C-module. The remaining
support τ-tilting C-modules and corresponding projective modules are given by
the collection of thick and thin arcs respectively in Figure 1.26.
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Figure 1.25 Support τ-tilting C-modules with two summands.

Figure 1.26 The remaining support τ-tilting C-modules.
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