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MODULAR HADAMARD MATRICES 
AND RELATED DESIGNS, II 

O. MARRERO AND A. T. BUTSON 

1. I n t r o d u c t i o n . An h by h matr ix with entries ± 1 is called a modular 
Hadamard matrix if the inner product of any two dis t inct row vectors is a 
mult iple of a fixed (positive) integer n; such a mat r ix is also referred to as 
an liH(n, h) ma t r ix" with parameters n and h. Modular H a d a m a r d matr ices 
and the related combinatorial designs were introduced in [2] ; t h a t paper was 
concerned mainly with two of the related designs, the "pseudo (v, k, X)-
designs" and the " (rn, v, ki, Xi, k2, X2 ,/, X3)-designs" (the reader is referred 
to [2] for the definition of these designs). This paper is concerned with the 
construction and existence of modular H a d a m a r d matrices, and special 
a t ten t ion is given to some part icular classes of these matrices. 

T h e notat ion used in this paper follows t h a t used in [2]. In addit ion, the 
left Kronecker product Crs = Ar ®BS of two matrices Ar = [a^] and Bs is 
the rs by rs mat r ix whose ijth. s by 5 block is given by a^B, 1 ^ i,j ^ r. An 
ordinary H a d a m a r d matr ix (or UH(0, h) ma t r ix" ) is said to be * 'normal ized" 
provided t h a t it has only + T s as entries in both the first row and the first 
column. 

T h e following result [2, Theorem 2.1] will be used several t imes in the sequel, 
a n d is s ta ted here for reference purposes. 

T H E O R E M 1.1. Let Hh be a (1, —1)-matrix having the first row consisting of 
all + l ' s . For each i,j = 2, . . . , h let kt denote the number of + l ' s in the 7th 
row, and let \ t i denote the number of times the ith and jth rows have a + 1 in the 
same column, i ^ j . Then necessary and sufficient conditions that H be an 
H(n,h) matrix are 

2k i = h (mod ri), 
(1.1) 

4Xjj = h (mod n). 

2. Construction and existence theorems for H(n, h) matrices. This 
section contains some results which show how to construct new modular 
H a d a m a r d matrices from given modular H a d a m a r d matrices and ordinary 
H a d a m a r d matrices, from several well-known combinatorial designs, and 
from abelian difference sets. In part icular , it is shown t h a t H(n, h) matr ices 
can always be constructed when n\h or when n\(h — 4 ) . Also, the existence of 
H(n, h) matrices will be completely determined for n = 2, n = 3, and n = 6. 
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It is clear that an H(n, h) matrix is also an H(d, h) matrix for any divisor 
d of n. Thus, it is of interest to find ways of obtaining, from given H(n\, hi) 
and H(n2, h2) matrices, an H(n, h) matrix having n > n\, n2. The left Kro-
necker product of two modular Hadamard matrices, when one of the factors 
is an ordinary Hadamard matrix, is one such construction. 

THEOREM 2.1. Let M be an H(ni, hi) matrix and let N be an H(n2, h2) matrix. 
Then M (g) N is an H(n, hih2) matrix, where n = gcd{hin2, nin2, h2ni}. 

THEOREM 2.2. If M and N are H(0, hi) and H(n2, h2) matrices, respectively, 
then M (g) JV is an H(n2hi, hih2) matrix. 

When n\h or n\(h — A), H(n, h) matrices can be constructed quite easily. 
One observes that Jh is an H(n, h) matrix whenever n\h, and Jh — 2Ih is an 
H(h — A, h) matrix, and hence it is also an H{n, h) matrix when n\(h — 4). 
(When n\h it is sometimes possible to construct an H(n, h) matrix different 
from Jh; and when n\ (h — 4), there are always additional ways of constructing 
an H(n, h) matrix. These additional constructions are simple and are therefore 
omitted.) This proves: 

THEOREM 2.3. If n\h or n\(h — 4), then H(n, h) matrices can be constructed. 

It was observed in [2] that a necessary condition for the existence of an 
H(n, h) matrix with h ^ 3 is that h = \t (mod n) for some t G Z. It is now 
shown that this condition is also sufficient in certain cases. (Note that if 
n = gcd{4^ - 2, 4/ - 2} and h = A.u + U - 2, then h = U (mod »).) 

THEOREM 2.4. Given H (0,4w) and H (0,42) matrices, then an H (n,4:U + At — 2) 
matrix can be constructed, where n = gcd{4^ — 2, At — 2}. 

Let M and N be the matrices obtained from normalized H(0, \u) and 
H(0, 4/) matrices, respectively, by removing from each the first row and the 
first column. Then 

is an H(n, Au + 4£ — 2) matrix, where n = gcd{4^ — 2, At — 2}. 
The special case where M = N is a normalized H(Q, At) matrix yields a 

class of H(n, h) matrices with n = 2 (mod 4). 

COROLLARY 2.1. An H (At — 2, 8t — 2) matrix can be constructed using an 
H(0, At) matrix. 

Certain well-known combinatorial designs can be used to construct modular 
Hadamard matrices, as follows. If M is the matrix obtained from the incidence 
matrix of a (v, k, X)-design [1; 3] by replacing all 0's by — Ts, then M is an 
H(n, v) matrix, where n is a positive divisor of v — A(k — X). Also, 

l-Jv M\ 
is an H(2v — A(k — X), 2v) matrix. This proves: 
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THEOREM 2.5. Given a (v, k, \)-design, then H(y — 4(& — X), v) and 
H(2v — 4(& — \),2v) matrices can be constructed. 

According to Fisher's inequality, a (b, v, r, k, X)-design has b^v [3]. 
If M is the matrix obtained from the transpose of the incidence matrix of a 
(b, v, r, k,\)-design by first replacing all O's by — l's and then adjoining 
b — v rows of + l ' s , then M is an H{n, b) matrix, where n = gcd{b, 2r, 4X}. 
This is stated as: 

THEOREM 2.6. If a (b, v, r, k, X)-design is given, then an H(n, b) matrix can 
be constructed, where n = gcd{b, 2r, 4X}. 

For the PB IB designs [4] and GD designs [1], cases need to be considered 
depending upon whether b > v, b = v, or b < v, but the same technique may 
be applied to the incidence matrices of these designs to obtain modular 
Hadamard matrices. This yields: 

THEOREM 2.7. Given a PB IB design with m associate classes, an H(n, h) 
matrix can be constructed, where 

(1) n = gcdfy — 4(fe — Xi), . . . , v — 4(fe — Xm)} and h = v, if b = v, 
(2) n = gcd{b, 2r, 4Xi, . . . , 4Xm} and h = b, if b > v, or 
(3) n = gcd{v — 4(r — Xi), . . . , v — \{r — \m)} and h = vy if b < v. 

COROLLARY 2.2. Given a GD design, then an H(n, h) matrix can be constructed, 
where 

(1) n = gcd{v — 4(fe — Xi), v — 4(fe — X2)} and h = v, when b = v, 
(2) n = gcd{b, 2r, 4Xi, 4X2} and h = b, when b > v, and 
(3) n = gcd{v — 4(r — Xi), v — 4(r — X2)} and h = v, when b < v. 

THEOREM 2.8. Given two abelian difference sets Di and D2 with parameters 
Vi, ki, Xi and v2, k2, X2, respectively, then an H(n, h) matrix can be constructed, 
where 
n = g c d { ^ 2 — 4(&i&2 — XiX2), ViV2 — ^{kik2 — k{K2), vxv2 — ^(kik2 — &2Xi)} 
and h = V\V2. 

Suppose Di ^ (C7i, + ) , D 2 C (G2, + ) , and consider the direct sum 
G = Gi © G2. Let the (1, — l)-matrix H = [&0] be defined by taking htj = 1 
if gj É (^i ®D2) + gf> and A^ = - 1 if gj g (£>i © X)2) + gt, for each pair 
gz> g; ë G. It then follows that H is an i^(w, V\V2) matrix, where n satisfies 
the hypothesis of the theorem. 

For each of these preceding results there exists a class of parameters of the 
design used in the construction which yields non-trivial (in the sense that 
n ^ 2) H in, h) matrices. 

The preceding Theorem 2.2 and Theorem 2.3 together with Theorem 2.2 
and Corollary 2.1 in [2] may be used to determine completely the existence of 
H(n% h) matrices when n is 2, 3, or 6, as stated in the following theorems. 

https://doi.org/10.4153/CJM-1972-114-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-114-7


MODULAR HADAMARD MATRICES 1103 

T H E O R E M 2.9. A necessary and sufficient condition for the existence of an 
H(2, h) matrix is that h be even. 

T H E O R E M 2.10. A necessary and sufficient condition for the existence of an 
H(3, h) matrix is that h = 0, 1 (mod 3), or h = 2 (mod 12), or h = 0 (mod 4) . 

T H E O R E M 2.11. A necessary and sufficient condition for the existence of an 
H(6, h) matrix is that h be even. 

3. H(4:q + 1, h) a n d # ( 4 g + 3, h) m a t r i c e s . T h e matrices which are 
studied in this section are the H(n, h) matrices for n = 4g + 1 and h = n + 1, 
2w + 1, 3« + 1, and 4/z + 1, and the i7(w, &) matrices for w = 4g + 3 and 
/? = w + 1, 2w + 1, and 3w + 1. The method utilized in s tudying these 
matrices is as follows. A given H(n, h) matr ix is taken to be in s tandard form. 
Then , using the congruences (1.1), one finds the possible values for kt and \tj. 
Next, each —1 in the given H(n, h) matr ix is replaced by 0, and the first row 
of all + l ' s is removed. Thus , one obtains the incidence matr ix of some com
binatorial design having the &/s for possible "row sums" and the A</s for 
possible " row intersections". Finally, by analyzing the combinatorial design 
thus obtained, one gets information about the corresponding H(n, h) matr ix . 
This method is similar to t ha t which establishes a connection between 
H(0, 4/) matrices and (4/ — 1, 2t — 1, t — l)-designs, where t ^ 2. In 
s tudying the H(n, h) matrices considered in this section, one is led to pseudo 
(v, k, X)-designs and (m, v, ki, Xi, ki, A2,/, X3)-designs. Thus , some of the 
results obtained in [2] will find application in the sequel. 

Multiplication of the elements of any row by — 1 preserves the orthogonali ty 
modulo n property of the rows of an H(n, h) matr ix. Consequently, the s tan
dard form of an H(n, h) matr ix may be assumed to have, in addit ion to the 
first row consisting of + l ' s , 2kt ^ h, i = 2, . . . , h. Thus , when considering 
solutions of the congruences (1.1) in the sequel, only those values of kt satisfy
ing 2ki S h will be considered. 

Let n = \.q + 1. When h is n + 1 or 2n + 1, the congruences (1.1) have 
no possible solution. When h = 3n + 1, the congruences (1.1) yield kt = 6g + 2 
and \tjÎ = 3q + 1 for i, j ^ 2, i 9^ j . 

Let n = 4g + 3 and h = n + 1, then solving the congruences (1.1) yields 
ki = 2q + 2 and A -̂ = q + 1. These results are collected in: 

T H E O R E M 3.1. i f(4g + 1, 4g + 2) matrices and H(^q + 1, 8g + 3) matrices 
do not exist. The only H(^q + 1, 12g + 4) matrices are the H(0, 12q + 4) 
matrices, and the only i7(4g + 3, 4g + 4) matrices are the H(0, \.q + 4) 
matrices. 

When n = 4g + 1 and h = ^n + 1, solving the congruences (1.1) yields 
ki = 6q + 2 and X -̂ = Sq + 1 for i, j è 2, i 9^ j . Let ^4i6ff+4,i6ff+5 be the 
matr ix obtained from an H(^q + 1, 16g + 5) matr ix in s tandard form by 
first replacing all — Ts by 0's, and then deleting the first row of all + l ' s . 
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Then 
AJnq+5A = (6g + 2)/i6 f f + 4 f i and 

AAT = (3g + l)/i6 f f +4 + (3(Z + l ) / i 6 ^ „ 

from which it is seen t h a t 4̂ is the incidence mat r ix of a pseudo (16g + 5, 
Qq + 2, 3g + 1)-design. Similarly, when w = 4g + 3 and & = 2n + 1, one is 
led to a (0, 1)-matr ix Z>8(?+6)8(Z+7 which satisfies 

BJsq+1,1 = (2g + 2)/8ff+6.i and 
£ 5 r = ( g + l ) / 8 f f + 6 + ( g + i ) / 8 f f + 6 > 

so t h a t B is the incidence matr ix of a pseudo (8g + 7, 2g + 2, q + 1)-design. 
Thus , in each of these two instances, one is led to a pseudo (v, k, X)-design 
with v 9^ 4 \ and fe = 2X. Consequently, as an application of Theorem 3.4 
in [2], it is possible to s ta te : 

T H E O R E M 3.2. The existence of an H(^q + 1, 16g + 5) matrix is equivalent to 
the existence of a (16g + 5, 4g + 1, q)-design. Also, if 32g2 + 56# + 25 = D2, 
then the existence of an H(^q + 3, 8g + 7) matrix is equivalent to the existence 
of a (Sq + 7, (Sq + 7 - £>)/2, (8g + 7 - D)/2 - q - l)-design. 

W h e n n — 4g + 3 and h = 3n + 1, it will be shown t h a t the associated 
design is an (m, v, ku Xi, k2, X2 ,/ , X3)-design. But first an interesting observa
tion will be made concerning this part icular class of H(n, h) matrices. 

As observed in Section 2, if H is an H(n, h) matr ix, then it is an H(d} h) 
matr ix for any divisor d of n (but the converse does not always hold, for i t is 
a consequence of Theorem 2.10 and Theorem 2.11 t h a t H(3, 9) matr ices exist 
whereas H(Q, 9) matrices do not exis t ) ; in part icular , an H(Sq + 6, I2q + 10) 
matr ix is also an H{^q + 3, 12g + 10) matr ix . I t is an interesting fact t ha t 
for this part icular set of parameters the converse is also t rue. For suppose H 
is an H(4:q + 3, 12g + 10) mat r ix in s tandard form. For these parameters , 
solving the congruences (1.1) one finds t h a t the only kt which satisfy 2k i S h 
are kt = 2q + 2, or 6g + 5, and, therefore, t h a t \tj = q + 1, or hq + 4. 
Consequently, the following result may be s ta ted. 

T H E O R E M 3.3. A (1, —1)-matrix is an H{^q + 3, \2q + 10) matrix if and 
only if it is an H(Sq + 6, 12g + 10) matrix. 

Now let H be an H{^q + 3, I2q + 10) mat r ix in s t andard form, and let 
A be the (0, 1)-matrix obtained from H by first replacing all — l ' s by 0's, and 
then removing the initial row of all + l ' s . After appropr ia te permuta t ions of 
the rows, if necessary, it may be assumed t h a t 

A = ^ / - L 1 2 ^ ^ 1 
L^12(/+10-/,12ç+loJ 

and 

[ MMT (q + 1)7] 
L (q + i)J ssT J ' 
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where 

MMT = (g + l)i7_x + (g + 1 ) / ,_! , 

T 6^ + 5 /Xi2 . . . Hl,12q+10-f 

M21 6q + 5 . . . M2.12Ç+10-/ 

LMi2ç+io-/,i Mi2ç+io-/,2 • • • 6g + 5 J 

IJLrs is either q + 1 or 5g + 4, a n d / is a fixed integer, 1 ^ / ^ 12g + 10. Thus, 
some simplification of this associated incidence matrix is desirable, and this 
will be accomplished presently. In fact, it will be shown that all iirs may be 
assumed to be 5g + 4. Consider 5 as the incidence matrix of a combinatorial 
design consisting of 12g + 10 — / subsets Xi, . . . , X^q+io-f of the set 
X = \xi, . . . , x12q+io}, so that iJLrs = \Xr P Xs\ for r ^ s. For notation, 
~Xr will denote the set complement of Xr. It is first observed that there 
cannot be 3 subsets XT, Xs, Xt satisfying \Xr P Xs\ = \Xr P Xt\ = 
\XS P Xt\ = q + 1. For, if this were so, then 12g + 10 è \Xr VJ XSU Xt\ ^ 
15g + 12, which is not true. If 12g + 10 — / is 0 or 1, then there is no nrs to 
consider. If I2q + 10 — / is 2, and \X12g+ç>-.f C\ X12Q+10-f\ = q + 1, then 
replacing XI2(H-IO-/ by ~Xi2(Z+io-/ gives |Xi2ff+9-/ P ~^I2<H-IO-/ | = 5g + 4. 
Suppose 12g + 10 — / is 3, and suppose there is a pair of subsets Xr, Xs such 
that \XrC\Xs\ = q+ I. If Xt is the third subset, then \XT P X t\ ^ 
\XS P Xt\; for | Z r P Xt\ = \XS H Xt\ = q + 1 is impossible, and, if 
\XT P X, | = \XS P X, | = 5g + 4, then \Xr P ~X* | = | Z , P ~ Z , | = g + 1, 
which is again impossible. Now, it may be assumed that \XT P Xt\ = q + 1 
and |X5 P X*| = 5g + 4. Thus, replacing X r by ~Xr gives | ^ X r P X5 | = 
\~Xr P X, | = \XS P X, | = 5g + 4, as desired. Now let 12g + 10 - / ^ 4, 
and suppose there are 2 subsets X r , Xs such that |X r P Xs\ = q + 1. For a 
third subset, say Xu it may be assumed that \XS P X f | = 5g + 4 and 
|X r P X*| = g + 1. Now consider a fourth subset Xw. It is necessary that 
\Xr P Xu\ 5* \XS P Xw|; say \Xr C\ Xu\ = q + I and |XS P Xw| = 5g + 4. 
Then it follows that \Xt P Xw| = 5g + 4. Now note that \~XS P X r | = 

I— x, P ~x,| = |~x5 p ~xw| = |xr p ~*,| = \xr p — xu\ = \~xt P 
^ X w | = 5g + 4. Therefore, replacing Xs, Xt, and Xu by their complements 
gives a design in which all /xr5 = 5g + 4. This proves: 

THEOREM 3.4. The incidence matrix of the combinatorial design associated 
with an Hi^q + 3, 12g + 10) matrix yields the incidence matrix of an 
(m, v, ki, Xi, k2t X2,/ — 1, \z)-design, where m = 12g + 9, v = 12g + 10, ki = 
2g + 2, \i = q + 1, k2 = 6g + 5, X2 = 5g + 4, X3 = g + 1, and f is some 
fixed integer satisfying 1 S f S 12g + 10. The converse is also valid. 
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4. À par t i cu lar c lass of (m, v, ku Xi, k2, X2 ,/, X3)-designs. T h e par t icular 
class of (m, fl, &i, Xi, &2, X2,/, X3)-designs which is considered in this section is 
t h a t obtained from H(4g + 3, 12q + 10) matrices as s ta ted in Theorem 3.4. 
T h e existence of these designs will be determined for q = 0, q = 1, and 
q — 2 (and as a consequence of Theorem 3.4, it follows t h a t the existence of 
H(4:q + 3, 12q + 10) matrices will be determined for these three values of q). 
I t is simple to show t h a t these designs exist when q = 0 or q = 1, since it is 
not too difficult to exhibit the corresponding H(^q + 3, 12q + 10) matrices. 
One observes t h a t J10 — 2Ii0 is an H(3, 10) matr ix ; and, since Ju — 21n is an 
H(J, 11) matrix, 

(/ii-2/n) ®l J _}] 

is an H(7, 22) matr ix. However, as will be seen in the sequel, the known proof 
t h a t these designs do not exist when q = 2 is not as simple. 

L E M M A 4.1 . The parameter f in Theorem 3.4 must satisfy the following: if 
x = (4g + 3 ) ( / — (&q + 5) ) , then x must be a solution of the Diophantine 
equation x2 + y2 = ((4g + 3)(6g + 5) + 2(q + l ) ) 2 . 

Let A be the incidence matr ix of the design associated with an 
H(*tq + 3, I2q + 10) matrix, as given in Theorem 3.4. Le t B be the (0, 1)-
matr ix obtained from A by adjoining an initial row of + l ' s . Wi th some work, 
it may be determined t h a t 

(4.1) (det B)2 = det(BBT) = (q + l)12*+8a, 

where 

(4.2) a = - / 2 ( 4 g + 3)2 + 2/(4g + 3)2(6ç + 5) 

+ 4 ( g + l ) (24g 2 + 3 9 ? + 16). 

I t follows from Equat ion (4.1) t h a t a mus t be a square, say a = y2. Now, 
from Equat ion (4.2), a may be re-writ ten in the form 

a = ~ ( 4 g + 3 ) 2 ( / - (6g + 5) ) 2 + ((4g + 3) (6g + 5) + 2(g + l ) ) 2 , 

which easily gives the desired result. 
When q = 2, the parameter / can be determined by using L e m m a 4 .1 ; 

indeed, / mus t equal 17. Thus , the following may be s ta ted. 

L E M M A 4.2. / / an (m = 33, v = 34, kx = 6, Xi = 3, k2 = 17, X2 = 1 4 , / -

1 = 16, X3 = 3)-design exists, then there exists a (0, 1)-matrix Mi6,34 satisfying 
MMT = 3/i6 + 3/ie. 

T h e proof t h a t an (33, 34, 6, 3, 17, 14, 16, 3)-design cannot exist will be 
accomplished by showing t h a t such a matr ix M cannot exist. Th is proof will 
be given in several lemmas. If Pie, and Ç34 are permuta t ion matrices, then 

(PMQ)(PMQ)T = PMMTPT = P ( 3 / i e + 3 / 1 6 ) P r = 3 / 1 6 + 3 / 1 6 . 
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Consequently, the rows of M may be permuted and the columns of M may be 
permuted without changing the significant properties of M. This fact will 
be used throughout the subsequent proof, and a particular usage will not 
necessarily be noted explicitly. Let rjr denote the rth row vector of M = [m^]; 
and let r]r

(j) = (wri, . . . , mrj), the j dimensional vector whose entries are 
the first j entries of rjr. Throughout the proof it will be assumed that 

in = 111 111 000 000 . . . 000 and 
772 = 111 000 111 000 . . . 000. 

LEMMA 4.3. The matrix M can have at most three rows which have + l's in the 
same three columns. If M has three such rows, then every remaining row has 
exactly two + l ' s in those three columns. 

It will be sufficient to show that either 77i(3) o 77/3) < 3 for j ^ 3, or 
773(3) = (111) and iji<3> o 77/3> = 2 for i ^ 4. Let 

773 = 111 000 000 111 000 000 000 . . . 000, 

(4.3) 774 = 111 000 000 000 111 000 000 . . . 000, and 

775 = 111 000 000 000 000 111 000 . . . 000. 

For j > 5, suppose first that 77i(3) O T?/3) = 0. Then 771 o 77̂  = 772 o 77̂  = 3 
requires that 77/9) = (000 111 111). However, 773 orjj = 0, instead of 3. Now 
suppose that ?7i(3) o r\^z) = 1. In order that 771 o rjj = 772 o rjj = 773 o 77̂- = 3, 
7j/12) must be essentially (100 110 110 110), which is impossible. By "essen
tially" will be meant to within a permutation of the columns. In this particular 
case, the permutation could interchange the ith, the (i + l)st, and the 
(i + 2)nd columns, where i = 1, 4, 7, 10. Next, supposing that 77!(3) O 77;

(3) = 2, 
a similar argument shows that 77/18) must be essentially (110 100 100 100 100 
100), which is impossible. Consequently, rjj(s) = (111) for all j . In this case, 
M could have at most 10 rows. At this stage, it has been shown that M can 
have at most 4 rows with + l ' s in the same three columns. 

Suppose that M has 4 such rows and let 773 and 774 be as in (4.3). In the above 
argument 775 was used only in the proof that 77i(3) O rj/s) ^ 2. Consequently, 
in this case, 771

(3) O 77/3) = 2 for j ^ 5. In order that 771 o 77̂  = 772 o 77;- = 
773 o rjj = 774 o 77̂  = 3, it is necessary that rjj be essentially (110 100 100 100 
100 000 . . . 000), forj ^ 5. Thus, M must have the form 

M — [Su, 15 016,19]» 

where SST = 3/i6 + 3/i6 and every entry in 6 is 0. But such a matrix 5 
cannot exist. Therefore, M has at most 3 rows with + l ' s in the same three 
columns. The preceding argument has also shown that if M has three such 
rows, then 77i(3) O 77/3) ^ 0, 1 for j ^ 4. Hence 77i(3) O 77/3) = 2 for j ^ 4, and 
the lemma is established. 

LEMMA 4.4. If the matrix M has three rows with + l's in the same three columns, 
then M must have three rows iqTy rjs, and y\t such that r)r

(6) = r}s
(6) = 77/6). 
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Let 773 be as described in (4.3). Since (by L e m m a 4.3) r?i(3) o ?|/3) = 2 for 
j ^ 4, and since 771 o 77 ;- = 3, it follows t h a t r;/6) is essentially (110 100). Here, 
the permuta t ion can interchange the ith, (i + l ) s t , and (i + 2)nd columns 
for i = 1,4; and hence there are exactly nine possibilities for ri/^. T h e y are 

0"! = (110 100), (T2 = (110 010), CT3 = (HO 001), 

(74 = (101 100), (75 = (101 010), (76 = (101 001), 

(77 = (011 100), (78 = (011 010), and <r9 = (011 001). 

If the above permuta t ion is not trivial for i = 1 and also for i = 4, then the 
resulting <Tj satisfies ai o aj = 1. Clearly, for each <rt there are exactly four o-; 

such t h a t <jto <Tj = 1. Since 77/6) is essentially a± for 7 §; 4, clearly M mus t 
contain two rows 77r and r)s such t h a t ?7r

(6) = ?7S
(6). Let r;r

(6) = 77s
(6) = at1 and 

suppose t h a t T7M
(6) = o^ and t h a t ato aw = 1. Then , essentially, 

Vr = 110 100 100 110 000 000 . . . 000, 

7}S = 110 100 010 001 100 000 . . . 000, and 

Vu^ = 101 010. 

Because 772 o 77̂  = 3, rju mus t have only one + 1 in the 7th, 8th, and 9th 
columns. Assume t h a t this + 1 occurs in the 7th column. Then , since 
Vu o r]r = 3, there is only one + 1 in the 9th and 10th columns. So far, five of 
the columns containing + l ' s in t\u have been determined; and, a t this stage, 
77s and rju have only one + 1 in common, so t h a t rjs o rju ^ 2. Similar a rguments 
will resolve the cases when the + 1 in rju is assumed to occur first in the 8th 
column and then in the 9th column. Consequently, since M has two rows 
77r and 77s satisfying 77r

(6) = 77s
(6) = <TU every other row 77̂  (excluding 771 and 772) 

must have 77M
(6) = aw, where at o aw 9^ 1. This means t h a t a t most five cr/s 

can occur in the first six columns of M\ and, since M has thir teen rows 77i with 
*7;(6) = <7i essentially, the lemma has been proven. 

L E M M A 4.5. The matrix M cannot have three rows which have + l ' s in the same 
three columns. 

If M has three such rows, by L e m m a 4.4, M also has rows 7jr, r]s and 771 s u c h 
t h a t 77r

(6) = 775
(6) = 77/6) . E s s e n t i a l l y , 77r

(6) = en, a n d 771, 77,., 77,,, 771 are four rows 
with + l ' s in the 1st, 2nd, and 4th columns. This contradicts the result in 
L e m m a 4.3. 

If 77j, j ^ 3, is a row with exactly one + 1 in the first three columns, then, 
since 771 o 77̂  = 3, 77/6) mus t be essentially (100 110). Since the permuta t ion 
here can interchange the i th , (i + l ) s t , and (i + 2)nd columns for i = 1,4, 
there are exactly nine possibilities. T h e y are 

{1 = (001 011), £2 = (001 101), £3 = (001 110), 

£4 = (010 011), £5 = (010 101), £6 = (010 110), 

£7 = (100 011), £8 = (100 101), and £9 = (100 110). 
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LEMMA 4.6. For each i, 1 ^ i ^ 9, not both £* and at can be initial segments 
of rows in the matrix M. 

Let 7]r be a row which has a{ as its initial segment, and let rjs be a row which 
has £; as its initial segment. Then, essentially, rjr = (110 100 100 110 000 . . . 
000), and rjs^ = (001 Oil). Because 772 o yr = 3, it follows that VrOVs ^ 2, 
a contradiction. 

It is now possible to show that such a matrix M cannot exist. From 
Lemma 4.5, rç/3) ^ (111) for 7 ^ 3. Clearly, there can be at most one row 
7]r in M such that rçr

(3) = (000); and so, every remaining row 77̂  must have 
î?i(3) o 7] /3) = 1 or 2. There cannot be two rows 77a, r]b in M which have the 
same 0̂  as their initial segment; for otherwise, rows 771, r}a, and 7)h are three 
rows having + l ' s in the same three columns, which contradicts Lemma 4.5. 
Similarly, there cannot be two rows in M having the same £u as their initial 
segment. Now, because of Lemma 4.6, there can be at most 12 rows in M. 
This concludes the proof of 

THEOREM 4.1. The combinatorial designs associated with H^4g + 3, I2q + 10) 
matrices (as given in Theorem 3.4) exist for q = 0 and q = 1, and they do not 
exist for q = 2. 
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