
https://doi.org/10.1017/9781009401968 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968


https://doi.org/10.1017/9781009401968 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968


FINITE-TEMPERATURE FIELD THEORY
Principles and Applications

This book develops the basic formalism and theoretical techniques for study-
ing relativistic quantum field theory at high temperature and density. Specific
physical theories treated include QED, QCD, electroweak theory, and effective
nuclear field theories of hadronic and nuclear matter. Topics include functional
integral representation of the partition function, diagrammatic expansions, lin-
ear response theory, screening and plasma oscillations, spontaneous symmetry
breaking, the Goldstone theorem, resummation and hard thermal loops, lattice
gauge theory, phase transitions, nucleation theory, quark–gluon plasma, and color
superconductivity. Applications to astrophysics and cosmology include white
dwarf and neutron stars, neutrino emissivity, baryon number violation in the
early universe, and cosmological phase transitions. Applications to relativistic
nucleus–nucleus collisions are also included.

JOSEPH I. KAPUSTA is Professor of Physics at the School of Physics and Astron-
omy, University of Minnesota, Minneapolis. He received his Ph.D. from the Uni-
versity of California, Berkeley, in 1978 and has been a faculty member at the
University of Minnesota since 1982. He has authored over 150 articles in refereed
journals and conference proceedings. Since 1997 he has been an associate editor
for Physical Review C. He is a Fellow of the American Physical Society and of
the American Association for the Advancement of Science. The first edition of
Finite-Temperature Field Theory was published by Cambridge University Press
in 1989; a paperback edition followed in 1994.

CHARLES GALE is James McGill Professor at the Department of Physics, McGill
University, Montreal. He received his Ph.D. from McGill University in 1986 and
joined the faculty there in 1989. He has authored over 100 articles in refereed
journals and conference proceedings. Since 2005 he has been the Chair of the
Department of Physics at McGill University. He is a Fellow of the American
Physical Society.

                   This title, first published in 2007, has 
been reissued as an Open  Access publication on Cambridge Core.

FINITE-TEMPERATURE FIELD THEORY
Principles and Applications

This book develops the basic formalism and theoretical techniques for study-
ing relativistic quantum field theory at high temperature and density. Specific
physical theories treated include QED, QCD, electroweak theory, and effective
nuclear field theories of hadronic and nuclear matter. Topics include functional
integral representation of the partition function, diagrammatic expansions, lin-
ear response theory, screening and plasma oscillations, spontaneous symmetry
breaking, the Goldstone theorem, resummation and hard thermal loops, lattice
gauge theory, phase transitions, nucleation theory, quark–gluon plasma, and color
superconductivity. Applications to astrophysics and cosmology include white
dwarf and neutron stars, neutrino emissivity, baryon number violation in the
early universe, and cosmological phase transitions. Applications to relativistic
nucleus–nucleus collisions are also included.

JOSEPH I. KAPUSTA is Professor of Physics at the School of Physics and Astron-
omy, University of Minnesota, Minneapolis. He received his Ph.D. from the Uni-
versity of California, Berkeley, in 1978 and has been a faculty member at the
University of Minnesota since 1982. He has authored over 150 articles in refereed
journals and conference proceedings. Since 1997 he has been an associate editor
for Physical Review C. He is a Fellow of the American Physical Society and of
the American Association for the Advancement of Science. The first edition of
Finite-Temperature Field Theory was published by Cambridge University Press
in 1989; a paperback edition followed in 1994.

CHARLES GALE is James McGill Professor at the Department of Physics, McGill
University, Montreal. He received his Ph.D. from McGill University in 1986 and
joined the faculty there in 1989. He has authored over 100 articles in refereed
journals and conference proceedings. Since 2005 he has been the Chair of the
Department of Physics at McGill University. He is a Fellow of the American
Physical Society.

Contents

Preface page ix

1 Review of quantum statistical mechanics 1
1.1 Ensembles 1
1.2 One bosonic degree of freedom 3
1.3 One fermionic degree of freedom 5
1.4 Noninteracting gases 6
1.5 Exercises 10

Bibliography 11

2 Functional integral representation of the partition
function 12

2.1 Transition amplitude for bosons 12
2.2 Partition function for bosons 15
2.3 Neutral scalar field 16
2.4 Bose–Einstein condensation 19
2.5 Fermions 23
2.6 Remarks on functional integrals 30
2.7 Exercises 31

Reference 31
Bibliography 31

3 Interactions and diagrammatic techniques 33
3.1 Perturbation expansion 33
3.2 Diagrammatic rules for λφ4 theory 34
3.3 Propagators 38
3.4 First-order corrections to Π and lnZ 41
3.5 Summation of infrared divergences 45
3.6 Yukawa theory 47

v

https://doi.org/10.1017/9781009401968 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968


CAMBRIDGE MONOGRAPHS ON MATHEMATICAL PHYSICS

General editors: P. V. Landshoff, D. R. Nelson, S. Weinberg

S. Carlip Quantum Gravity in 2 + 1 Dimensions†
J. C. Collins Renormalization†
M. Creutz Quarks, Gluons and Lattices†
P. D. D’ Eath Supersymmetric Quantum Cosmology†
F. de Felice and C. J. S. Clarke Relativity on Curved Manifolds†
B. S. De Witt Supermanifolds, second edition†
P. G. O. Freund Introduction to Supersymmetry†
J. Fuches Affine Lie Algebras and Quantum Groups†
J. Fuchs and C. Schweigert Symmetries, Lie Algebras and Representations: A Graduate
Course for Physicists†
Y. Fujii and K. Maeda The Scalar–Tensor Theory of Gravitation
A. S. Galperin, E. A. Ivanov, V. I. Orievetsky and E. S. Sokatchev Harmonic Superspace†
R. Gambini and J. Pullin Loops, Knots, Gauge Theories and Quantum Gravity†
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Preface

What happens when ordinary matter is so greatly compressed that the
electrons form a relativistic degenerate gas, as in a white dwarf star? What
happens when the matter is compressed even further so that atomic nuclei
overlap to form superdense nuclear matter, as in a neutron star? What
happens when nuclear matter is heated to such great temperatures that
the nucleons and pions melt into quarks and gluons, as in high-energy
nuclear collisions? What happened in the spontaneous symmetry break-
ing of the unified theory of the weak and electromagnetic interactions
during the big bang? Questions like these have fascinated us for a long
time. The purpose of this book is to develop the fundamental principles
and mathematical techniques that enable the formulation of answers to
these mind-boggling questions. The study of matter under extreme con-
ditions has blossomed into a field of intense interdisciplinary activity and
global extent. The analysis of the collective behavior of interacting rela-
tivistic systems spans a rich palette of physical phenomena. One of the
ultimate goals of the whole program is to map out the phase diagram of
the standard model and its extensions.

This text assumes that the reader has completed graduate level courses
in thermal and statistical physics and in relativistic quantum field theory.
Our aims are to convey a coherent picture of the field and to prepare the
reader to read and understand the original and current literature. The
book is not, however, a compendium of all known results; this would have
made it prohibitively long. We start from the basic principles of quantum
field theory, thermodynamics, and statistical mechanics. This develop-
ment is most elegantly accomplished by means of Feynman’s functional
integral formalism. Having a functional integral expression for the parti-
tion function allows a straightforward derivation of diagrammatic rules for
interacting field theories. It also provides a framework for defining gauge
theories on finite lattices, which then enables integration by Monte Carlo

xi
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xii Preface

techniques. The formal aspects are illustrated with applications drawn
from fields of research that are close to the authors’ own experience. Each
chapter carries its own exercises, reference list, and select bibliography.

The book is based on Finite-Temperature Field Theory, written by one
of us (JK) and published in 1989. Although the fundamental principles
have not changed, there have been many important developments since
then, necessitating a new book.

We would like to acknowledge the assistance of Frithjof Karsch and
Steven Gottlieb in transmitting some of their results of lattice computa-
tions, presented in Chapter 10, and Andrew Steiner for performing the
numerical calculations used to prepare many of the figures in Chapter
11. We are grateful to a number of friends, colleagues, and students for
their helpful comments and suggestions and for their careful reading of the
manuscript, especially Peter Arnold, Eric Braaten, Paul Ellis, Philippe de
Forcrand, Bengt Friman, Edmond Iancu, Sangyong Jeon, Keijo Kajantie,
Frithjof Karsch, Mikko Laine, Stefan Leupold, Guy Moore, Ulrich Mosel,
Robert Pisarski, Brian Serot, Andrew Steiner, and Laurence Yaffe.
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1
Review of quantum statistical mechanics

Thermodynamics is used to describe the bulk properties of matter in or
near equilibrium. Many scientists, notably Boyle, Carnot, Clausius, Gay-
Lussac, Gibbs, Joule, Kelvin, and Rumford, contributed to the develop-
ment of the field over three centuries. Quantities such as mass, pressure,
energy, and so on are readily defined and measured. Classical statistical
mechanics attempts to understand thermodynamics by the application of
classical mechanics to the microscopic particles making up the system.
Great progress in this field was made by physicists like Boltzmann and
Maxwell. Temperature, entropy, particle number, and chemical potential
are thus understandable in terms of the microscopic nature of matter.
Classical mechanics is inadequate in many circumstances however, and
ultimately must be replaced by quantum mechanics. In fact, the ultravio-
let catastrophe encountered by the application of classical mechanics and
electromagnetism to blackbody radiation was one of the problems that
led to the development of quantum theory. The development of quan-
tum statistical mechanics was achieved by a number of twentieth century
physicists, most notably Planck, Einstein, Fermi, and Bose. The purpose
of this chapter is to give a mini-review of the basic concepts of quantum
statistical mechanics as applied to noninteracting systems of particles.
This will set the stage for the functional integral representation of the
partition function, which is a cornerstone of modern relativistic quantum
field theory and the quantum statistical mechanics of interacting particles
and fields.

1.1 Ensembles

One normally encounters three types of ensemble in equilibrium statistical
mechanics. The microcanonical ensemble is used to describe an isolated
system that has a fixed energy E, a fixed particle number N , and a fixed

1
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2 Review of quantum statistical mechanics

volume V . The canonical ensemble is used to describe a system in contact
with a heat reservoir at temperature T . The system can freely exchange
energy with the reservoir, but the particle number and volume are fixed.
In the grand canonical ensemble the system can exchange particles as well
as energy with a reservoir. In this ensemble the temperature, volume, and
chemical potential μ are fixed quantities. The standard thermodynamic
relations are summarized in appendix section A1.1.

In the canonical and grand canonical ensembles, T−1 = β may be
thought of as a Lagrange multiplier that determines the mean energy
of the system. Similarly, μ may be thought of as a Lagrange multiplier
that determines the mean number of particles in the system. In a rela-
tivistic quantum system, where particles can be created and destroyed,
it is most straightforward to compute observables in the grand canonical
ensemble. For that reason we use the grand canonical ensemble through-
out this book. There is no loss of generality in doing so because one
may pass over to either of the other ensembles by performing an inverse
Laplace transform on the variable μ and/or the variable β. See appendix
section A1.2.

Consider a system described by a Hamiltonian H and a set of con-
served number operators N̂ i. (A hat or caret is used to denote an opera-
tor for emphasis or whenever there is the possibility of an ambiguity.) In
QED, for example, the number of electrons minus the number of positrons
is a conserved quantity, not the number of electrons or positrons sepa-
rately, because of reactions like e+e− → e+e+e−e−. These number oper-
ators must be Hermitian and must commute with H as well as with each
other. They must also be extensive (scale with the volume of the system)
in order that the usual macroscopic thermodynamic limit can be taken.
The statistical density matrix ρ̂ is the fundamental object in equilibrium
statistical mechanics:

ρ̂ = exp
[
−β
(
H − μiN̂ i

)]
(1.1)

Here and throughout the book a repeated index is assumed to be summed
over. In QED the sum would run over two conserved number operators if
one allowed for both electrons and muons. The statistical density matrix
is used to compute the ensemble average of any desired observable, rep-
resented by the operator Â, via

A = 〈Â〉 =
Tr Âρ̂
Tr ρ̂

(1.2)

where Tr denotes the trace operation.
The grand canonical partition function

Z = Z(V, T, μ1, μ2, . . .) = Tr ρ̂ (1.3)
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1.2 One bosonic degree of freedom 3

is the single most important function in thermodynamics. From it all the
thermodynamic properties may be determined. For example, the pressure,
particle number, entropy, and energy are, in the infinite-volume limit,
given by

P =
∂(T lnZ)

∂V

Ni =
∂(T lnZ)

∂μi
(1.4)

S =
∂(T lnZ)

∂T
E = −PV + TS + μiNi

1.2 One bosonic degree of freedom

As a simple example consider a time-independent single-particle quantum
mechanical mode that may be occupied by bosons. Each boson in that
mode has the same energy ω. There may be 0, 1, 2, or any number of
bosons occupying that mode. There are no interactions between the par-
ticles. This system may be thought of as a set of noninteracting quantized
simple harmonic oscillators. It will serve as a prototype of the relativistic
quantum field theory systems to be introduced in later chapters. We are
interested in computing the mean particle number, energy, and entropy.
Since the system has no volume there is no physical pressure.

Denote the state of the system by |n〉, which means that there are n
bosons in the system. The state |0〉 is called the vacuum. The properties
of these states are

〈n|n′〉 = δnn′ orthogonality (1.5)
∞∑
n=0

|n〉〈n| = 1 completeness (1.6)

One may think of the bras 〈n| and kets |n〉 as row and column vectors,
respectively, in an infinite-dimensional vector space. These vectors form a
complete set. The operation in (1.5) is an inner product and the number
1 in (1.6) stands for the infinite-dimensional unit matrix.

It is convenient to introduce creation and annihilation operators, a†
and a, respectively. The creation operator creates one boson and puts it
in the mode under consideration. Its action on a number eigenstate is

a†|n〉 =
√
n + 1|n + 1〉 (1.7)

Similarly, the annihilation operator annihilates or removes one boson,

a|n〉 =
√
n|n− 1〉 (1.8)
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4 Review of quantum statistical mechanics

unless n = 0, in which case it annihilates the vacuum,

a|0〉 = 0 (1.9)

Apart from an irrelevant phase, the coefficients appearing in (1.7) and
(1.8) follow from the requirements that a† and a be Hermitian conjugates
and that a†a be the number operator N̂ . That is,

N̂ |n〉 = a†a|n〉 = n|n〉 (1.10)

As a consequence the commutator of a with a† is

[a, a†] = aa† − a†a = 1 (1.11)

We can build all states from the vacuum by repeated application of the
creation operator:

|n〉 =
1√
n!

(a†)n|0〉 (1.12)

Next we need a Hamiltonian. Up to an additive constant, it must be
ω times the number operator. Starting with a wave equation in nonrela-
tivistic or relativistic quantum mechanics the additive constant emerges
naturally. One finds that

H = 1
2ω
(
aa† + a†a

)
= ω

(
a†a + 1

2

)
= ω

(
N̂ + 1

2

)
(1.13)

The additive term 1
2ω is the zero-point energy. Usually this term can

be ignored. Exceptions arise when the vacuum changes owing to a back-
ground field, such as the gravitational field or an electric field, as in the
Casimir effect. We shall drop this term in the rest of the chapter and leave
it as an exercise to repeat the following analysis with the inclusion of the
zero-point energy.

The states |n〉 are simultaneous eigenstates of energy and particle num-
ber. We can assign a chemical potential to the particles. This is possible
because there are no interactions to change the particle number. The
partition function is easily computed:

Z = Tr e−β(H−μN̂) = Tr e−β(ω−μ)N̂

=
∞∑
n=0

〈n|e−β(ω−μ)N̂ |n〉 =
∞∑
n=0

e−β(ω−μ)n (1.14)

=
1

1 − e−β(ω−μ)

The mean number of particles is found from (1.4) to be

N =
1

eβ(ω−μ) − 1
(1.15)
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1.3 One fermionic degree of freedom 5

and the mean energy E is ωN . Note that N ranges continuously from zero
to infinity as μ ranges from −∞ to ω. Values of the chemical potential, in
this system, are restricted to be less than ω on account of the positivity
of the particle number or, equivalently, the Hermiticity of the number
operator.

There are two interesting limits. One is the classical limit, where the
occupancy is small, N � 1. This occurs when T � ω − μ. In this limit
the exponential in (1.15) is large and so

N = e−β(ω−μ) classical limit (1.16)

The other is the quantum limit, where the occupancy is large, N � 1.
This occurs when T � ω − μ.

1.3 One fermionic degree of freedom

Now consider the same problem as in the previous section but for fermions
instead of bosons. This is a prototype for a Fermi gas, and later on will
help us to formulate the functional integral expression for the partition
function involving fermions. These could be electrons and positrons in
QED, neutrons and protons in nuclei and nuclear matter, or quarks in
QCD.

The Pauli exclusion principle forbids the occupation of a single-particle
mode by more than one fermion. Thus there are only two states of the
system, |0〉 and |1〉. The action of the fermion creation and annihilation
operators on these states is as follows:

α†|0〉 = |1〉
α|1〉 = |0〉

(1.17)
α†|1〉 = 0
α|0〉 = 0

Therefore, these operators have the property that their square is zero
when acting on any of the states,

αα = α†α† = 0 (1.18)

Up to an arbitrary phase factor, the coefficients in (1.17) are chosen so
that α and α† are Hermitian conjugates and α†α is the number operator
N̂ :

N̂ |n〉 = n|n〉 (1.19)
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It follows that the creation and annihilation operators satisfy the anti-
commutation relation

{α, α†} = αα† + α†α = 1 (1.20)

The Hamiltonian is taken to be

H = 1
2ω
(
α†α− αα†) = ω

(
N̂ − 1

2

)
(1.21)

This form follows from the Dirac equation. Notice that the zero-point
energy is equal in magnitude but opposite in sign to the bosonic zero-
point energy. In this chapter we drop this term for fermions, as we have
for bosons.

The partition function is computed as in (1.14) except that the sum
terminates at n = 1 on account of the Pauli exclusion principle:

Z = Tr e−β(H−μN̂) = Tr e−β(ω−μ)N̂

=
1∑

n=0

〈n|e−β(ω−μ)N̂ |n〉 =
1∑

n=0

e−β(ω−μ)n (1.22)

= 1 + e−β(ω−μ)

The mean number of particles is found from (1.4) to be

N =
1

eβ(ω−μ) + 1
(1.23)

and the mean energy E is ωN . Note that N ranges continuously from zero
to unity as μ ranges from −∞ to ∞. Unlike bosons, for fermions there is
no restriction on the chemical potential.

As with bosons, there are two interesting limits. One is the classical
limit, where the occupancy is small, N � 1. This occurs when T � ω − μ:

N = e−β(ω−μ) classical limit (1.24)

which is the same limit as for bosons. The other is the quantum limit.
When T → 0 one obtains N → 0 if ω > μ and N → 1 if ω < μ.

1.4 Noninteracting gases

Now let us put particles, either bosons or fermions, into a box with sides of
length L. We neglect their mutual interactions, although in principle they
must interact in order to come to thermal equilibrium. One can imagine
including interactions, waiting until the particles come to equilibrium,
and then slowly turning off the interactions. Such a noninteracting gas
is often a good description of the atmosphere around us, electrons in a
metal or white dwarf star, blackbody photons in a heated cavity or in
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the cosmic microwave background radiation, phonons in low-temperature
materials, neutrons in a neutron star, and many other situations.

In the macroscopic limit the boundary condition imposed on the surface
of the box is unimportant. For definiteness we impose the condition that
the wave function vanishes at the surface of the box. (Also frequently used
are periodic boundary conditions.) The vanishing of the wave function on
the surface means that an integral number of half-wavelengths must fit in
the distance L:

λx = 2L/jx λy = 2L/jy λz = 2L/jz (1.25)

where jx, jy, jz are all positive integers. The magnitude of the x com-
ponent of the momentum is |px| = 2π/λx = πjx/L, and similarly for the
y and z components. Amazingly, quantum mechanics tells us that these
relations hold for both nonrelativistic and relativistic motion, for both
bosons and fermions.

The full Hamiltonian is the sum of the Hamiltonians for each mode on
account of the assumption that the particles do not interact. We use a
shorthand notation in which j represents the triplet of numbers (jx, jy, jz)
that uniquely specifies each mode. Thus the Hamiltonian and number
operator are

H =
∑
j

Hj

(1.26)
N̂ =

∑
j

N̂ j

Then the partition function is the product of the partition functions for
each mode:

Z = Tr e−β(H−μN̂) =
∏
j

Tr e−β(Hj−μN̂j) =
∏
j

Zj (1.27)

Each mode corresponds to the single bosonic or fermionic degree of free-
dom discussed previously.

According to (1.4) it is lnZ that is of fundamental interest. From (1.27),

lnZ =
∞∑

jx=1

∞∑
j1=1

∞∑
jz=1

lnZjx,jy,jz (1.28)

In the macroscopic limit, L → ∞, it is permissible to replace the sum
from jx = 1 to ∞ with an integral from jx = 1 to ∞. (The correction to
this approximation is proportional to the surface area L2 and the relative
contribution is therefore of order 1/L.) We can then use djx = Ld|px|/π
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to write

lnZ =
L3

π3

∫ ∞

0
d|px|

∫ ∞

0
d|py|

∫ ∞

0
d|pz| lnZ(p) (1.29)

In all cases to be dealt with in this book the mode partition function
depends only on the magnitude of the momentum components. Then the
integration over px may be extended from −∞ to ∞ if we divide by 2:

lnZ = V

∫
d3p

(2π)3
lnZ(p) (1.30)

Note the natural appearance of the phase-space integral
∫
d3xd3p/(2π)3

in this expression.
Recalling the mode partition function from the previous sections we

have

lnZ = V

∫
d3p

(2π)3
ln
(
1 ± e−β(ω−μ)

)±1
(1.31)

where the upper sign (+) refers to fermions and the lower sign (−) refers
to bosons. From (1.4) and (1.31) we obtain the pressure, particle number,
and energy:

P =
T

V
lnZ

N = V

∫
d3p

(2π)3
1

eβ(ω−μ) ± 1
(1.32)

E = V

∫
d3p

(2π)3
ω

eβ(ω−μ) ± 1

These formulæ for N and E have the simple interpretation of phase-
space integrals over the mean particle number and energy of each mode,
respectively.

The dispersion relation ω = ω(p) determines the energy for a given
momentum. For relativistic particles ω =

√
p2 + m2, where m is the mass.

The nonrelativistic limit is ω = m + p2/2m. For phonons the dispersion
relation is ω = csp, where cs is the speed of sound in the medium.

There are a number of interesting and physically relevant limits. Con-
sider the dispersion relation ω =

√
p2 + m2. The classical limit corre-

sponds to low occupancy of the modes and is the same for bosons (1.16)
and fermions (1.24). The momentum integral for the pressure can be per-
formed and written as

P =
m2T 2

2π2
eμ/TK2

(m
T

)
classical limit (1.33)
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1.4 Noninteracting gases 9

where K2 is the modified Bessel function. The nonrelativistic limit of this
is

P = T

(
mT

2π

)3/2

e(μ−m)/T classical nonrelativistic limit (1.34)

Knowing the pressure as a function of temperature and chemical potential
we can obtain all other thermodynamic functions by differentiation or by
using thermodynamic identities.

The zero-temperature limit for fermions requires that μ > m, other-
wise the vacuum state is approached. In this limit all states up to the
Fermi momentum pF =

√
μ2 −m2 and energy EF = μ are occupied and

all states above are empty. The pressure, energy density ε = E/V , and
number density n = N/V are given by

P =
1

16π2

[
2μ3pF −m2μpF −m4 ln

(
μ + pF

m

)]
ε =

1
16π2

[
2
3
μp3

F −m2μpF + m4 ln
(
μ + pF

m

)]
(1.35)

n =
p3
F

6π2

In the nonrelativistic limit,

P =
p5
F

30π2m
(1.36)

ε = mn +
3
2
P nonrelativistic limit

Electrons and nucleons have spin 1/2 and these expressions need to be
multiplied by 2 to take account of that! The low-temperature limit for
bosons will be discussed in the next chapter.

Massless bosons with zero chemical potential have pressure

P =
π2

90
T 4 (1.37)

This is one of the most famous formulae in the thermodynamics of radi-
ation fields.

If time reversal is a good symmetry, a detailed balance must occur
among all possible reactions in equilibrium. For example, if the reac-
tion A + B → C + D can occur then not only must the reverse reac-
tion, C + D → A + B, occur but it must happen at the same rate.
Detailed balance implies relationships between the chemical potentials. It
is shown in standard textbooks that, for the reactions just mentioned, the
chemical potentials obey μA + μB = μC + μD. For a long-lived resonance
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that decays according to X → A + B, the formation process A + B → X
must happen at the same rate. The chemical potentials are related by
μX = μA + μB. Generally any reactions that are allowed by the conserva-
tion laws can and will occur. These conservation laws restrict the number
of linearly independent chemical potentials. Consider, for example, a sys-
tem whose only relevant conservation laws are for baryon number and
electric charge. There are only two independent chemical potentials, one
for baryon number (μB) and one for electric charge (μQ). Any particle
in the system has a chemical potential which is a linear combination of
these:

μi = biμB + qiμQ (1.38)

Here bi is the baryon number and qi the electric charge of the particle
of type i. These chemical potentials are all measured with respect to the
total particle energy including mass. (The chemical potential μNR

i , as cus-
tomarily defined in nonrelativistic many-body theory, is related to ours by
μNR
i = μi −mi.) Bosons that carry no conserved quantum number, such

as photons and π0 mesons, have zero chemical potential. Antiparticles
have a chemical potential opposite in sign to particles.

The electrically charged mesons π+ and π− have electric charges of
+1 and −1 and therefore equal and opposite chemical potentials, μQ and
−μQ, respectively. The total conserved charge is the number of π+ mesons
minus the number of π− mesons:

Q = V

∫
d3p

(2π)3

(
1

eβ(ω−μQ) − 1
− 1

eβ(ω+μQ) − 1

)
(1.39)

and the total energy is

E = V

∫
d3p

(2π)3

(
ω

eβ(ω−μQ) − 1
+

ω

eβ(ω+μQ) − 1

)
(1.40)

If the bosons have nonzero spin s, then the phase-space integrals must be
multiplied by the spin degeneracy factor 2s + 1. An analogous discussion
can be given for fermions.

1.5 Exercises

1.1 Prove that the state |n〉 given in (1.12) is normalized to unity.
1.2 Referring to (1.17), let |0〉 and |1〉 be represented by the basis vectors

in a two-dimensional vector space. Find an explicit 2 × 2 matrix
representation of the abstract operators α and α† in this vector space.

1.3 Calculate the partition function for noninteracting bosons, including
the zero-point energy. From it calculate the mean energy, particle
number, and entropy. Repeat the calculation for fermions.
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1.4 Calculate the average energy per particle of a noninteracting gas of
massless bosons with no chemical potential. Repeat the calculation
for massless fermions.

1.5 Derive an expression like (1.39) or (1.40) for the entropy. Repeat the
calculation for fermions.
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2
Functional integral representation of the

partition function

The customary approach to nonrelativistic many-body theory is to pro-
ceed with the method of second quantization begun in the first chap-
ter. There is another approach, the method of functional integrals, which
we shall follow here. Of course, what can be done in one formalism can
always be done in another. Nevertheless, functional integrals seem to be
the method of choice for most elementary particle theorists these days,
and they seem to lend themselves more readily to nonperturbative phe-
nomena such as tunneling, instantons, lattice gauge theory, etc. For gauge
theories they are practically indispensable. However, there is a certain
amount of formalism that must be developed before we can start to dis-
cuss physical applications. In this chapter, we shall derive the functional
integral representation of the partition function for interacting relativistic
non-gauge field theories. As a check on the formalism, as well as to obtain
some feeling for how functional integrals work, we shall then rederive some
well-known results on relativistic ideal gases for bosons and fermions.

2.1 Transition amplitude for bosons

Let φ̂(x, 0) be a Schrödinger-picture field operator at time t = 0 and let
π̂(x, 0) be its conjugate momentum operator. The eigenstates of the field
operator are labeled |φ〉 and satisfy

φ̂(x, 0)|φ〉 = φ(x)|φ〉 (2.1)

where φ(x) is the eigenvalue, as indicated, a function of x. We also have
the usual completeness and orthogonality conditions,∫

dφ(x)|φ〉〈φ| = 1 (2.2)

12
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2.1 Transition amplitude for bosons 13

〈φa|φb〉 =
∏
x

δ(φa(x) − φb(x)) (2.3)

Similarly, the eigenstates of the conjugate momentum field operator
satisfy

π̂(x, 0)|π〉 = π(x)|π〉 (2.4)

The completeness and orthogonality conditions are∫
dπ(x)

2π
|π〉〈π| = 1 (2.5)

〈πa|πb〉 =
∏
x

δ(πa(x) − πb(x)) (2.6)

The practical meaning of the formal expressions (2.2), (2.3), (2.5), and
(2.6) is elucidated in Section 2.6.

Just as in quantum mechanics one may work in coordinate space or in
momentum space, one may work here in the field space or in the conjugate
momentum space. In quantum mechanics, one goes from one to the other
by using

〈x|p〉 = eipx (2.7)

In field theory one has the overlap

〈φ|π〉 = exp
(
i

∫
d3xπ(x)φ(x)

)
(2.8)

In a natural generalization one goes from a denumerably finite number
of degrees of freedom N in quantum mechanics to a continuously infi-
nite number of degrees of freedom in quantum field theory:

∑N
i=1 pixi →∫

d3xπ(x)φ(x).
For the dynamics one requires a Hamiltonian, which is now a functional

of the field and of its conjugate momentum:

H =
∫

d3xH(π̂, φ̂) (2.9)

Now suppose that a system is in a state |φa〉 at a time t = 0. After a
time tf it evolves into e−iHtf |φa〉, assuming that the Hamiltonian has no
explicit time dependence. The transition amplitude for going from a state
|φa〉 to a state |φb〉 after a time tf is thus 〈φb|e−iHtf |φa〉.

For statistical mechanical purposes we will be interested in cases where
the system returns to its original state after the time tf . To obtain a
practical definition of the transition amplitude we use the following pre-
scription: we divide the time interval (0, tf) into N equal steps of duration
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14 Functional integral representation of the partition function

Δt = tf/N . Then, at each time interval we insert a complete set of states,
alternating between (2.2) and (2.5):

〈φa|e−iHtf |φa〉 = lim
N→∞

∫ ( N∏
i=1

dπi dφi/2π

)
× 〈φa|πN 〉 〈πN |e−iHΔt|φN 〉 〈φN |πN−1〉
× 〈πN−1|e−iHΔt|φN−1〉 · · ·
× 〈φ2|π1〉 〈π1|e−iHΔt|φ1〉 〈φ1|φa〉 (2.10)

We know that

〈φ1|φa〉 = δ(φ1 − φa) (2.11)

(as a shorthand for (2.3)) and that

〈φi+1|πi〉 = exp
(
i

∫
d3xπi(x)φi+1(x)

)
(2.12)

Since Δt → 0, we can expand as follows, keeping terms up to first order:

〈πi|e−iHiΔt|φi〉 ≈ 〈πi| (1 − iHiΔt) |φi〉
= 〈πi|φi〉 (1 − iHiΔt)

= (1 − iHiΔt) exp
(
−i

∫
d3xπi(x)φi(x)

)
(2.13)

where

Hi =
∫

d3xH (πi(x), φi(x)) (2.14)

Putting it all together we get

〈φa|e−iHtf |φa〉= lim
N→∞

∫ ( N∏
i=1

dπi dφi/2π

)
δ(φ1 − φa)

× exp

⎧⎨⎩−iΔt
N∑
j=1

∫
d3x [H(πj , φj) − πj(φj+1 − φj)/Δt]

⎫⎬⎭
(2.15)

where φN+1 = φa = φ1. The advantage of alternating between π and φ for
the insertion of a complete set of states is that the Hamiltonian in (2.13)
and (2.15) is evaluated at a single point in time.
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2.2 Partition function for bosons 15

Taking the continuum limit of (2.15), we finally arrive at the important
result

〈φa|e−iHtf |φa〉

=
∫

[dπ]
∫ φ(x,tf)=φa(x)

φ(x,0)=φa(x)
[dφ]

× exp
[
i

∫ tf

0
dt

∫
d3x

(
π(x, t)

∂φ(x, t)
∂t

−H (π(x, t), φ(x, t))
)]

(2.16)

The symbols [dπ] and [dφ] denote functional integration as defined in
(2.15). The integration over π(x, t) is unrestricted, but the integration
over φ(x, t) is such that the field starts at φa(x) at t = 0 and ends at
φa(x) at t = tf . Note that all references to operators have gone.

2.2 Partition function for bosons

Recall that

Z = Tr e−β(H−μiN̂ i) =
∑
a

∫
dφa 〈φa|e−β(H−μiN̂ i)|φa〉 (2.17)

where the sum runs over all states. This expression is very similar to that
for the transition amplitude defined in the previous section. In fact we
can express Z as an integral over fields and their conjugate momenta by
making use of (2.16). In order to make that connection, we switch to
an imaginary time variable τ = it. The trace operator in (2.17) simply
means that we must integrate over all φa. Finally, if the system admits a
conserved charge then we must make the replacement

H(π, φ) → H(π, φ) − μN (π, φ) (2.18)

where N (π, φ) is the conserved charge density. We finally arrive at the
fundamental formula

Z =
∫

[dπ]
∫

periodic
[dφ]

× exp
[∫ β

0
dτ

∫
d3x

(
iπ

∂φ

∂τ
−H(π, φ) + μN (π, φ)

)]
(2.19)

The term “periodic” means that the integration over the field is con-
strained in such a way that φ(x, 0) = φ(x, β). This follows from the trace
operation, setting φa(x) = φ(x, 0) = φ(x, β). There is no restriction over
the π integration. The expression for the partition function (2.19) can
readily be generalized to an arbitrary number of fields and conserved
charges.
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2.3 Neutral scalar field

The most general renormalizable Lagrangian for a neutral scalar field φ
is

L = 1
2∂μφ∂μφ− 1

2m
2φ2 − U(φ) (2.20)

where the potential is

U(φ) = gφ3 + λφ4 (2.21)

and λ ≥ 0 for the stability of the vacuum. The momentum conjugate to
this field is

π =
∂L

∂(∂0φ)
=

∂φ

∂t
(2.22)

and the Hamiltonian is obtained through the usual Legendre transforma-
tion

H = π
∂φ

∂t
− L = 1

2π
2 + 1

2(∇φ)2 + 1
2m

2φ2 + U(φ) (2.23)

There is no conserved charge.
We shall evaluate the partition function by returning to the discretized

version:

Z = lim
N→∞

(
N∏
i=1

∫ ∞

−∞
dπi
2π

∫
periodic

dφi

)

× exp

(
N∑
j=1

∫
d3x
{
iπj(φj+1 − φj)

−Δτ
[

1
2π

2
j + 1

2(∇φj)2 + 1
2m

2φ2
j + U(φ)

] })
(2.24)

The momentum integrals can be evaluated immediately since they are
simply products of Gaussian integrals. We divide position space into M3

small cubes with V = L3, L = aM , a → 0, M → ∞, M being an integer.
For convenience and to make sure that Z remains explicitly dimensionless
at each stage of the calculation, we write πj = Aj/(a3Δτ)1/2 and integrate
Aj from −∞ to ∞. We get∫ ∞

−∞

dAj

2π
exp

[
−1

2A
2
j + i

(
a3

Δτ

)1/2

(φj+1 − φj)Aj

]

= (2π)−1/2 exp
(−a3(φj+1 − φj)2

2Δτ

)
(2.25)
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for each cube. Thus far we have

Z = lim
M,N→∞

(2π)−M3N/2

∫ ( N∏
i=1

dφi

)

× exp

{
Δτ

N∑
j=1

∫
d3x
[
− 1

2

(
φj+1 − φj

Δτ

)2

− 1
2
(∇φj)2 − 1

2
m2φ2

j − U(φj)
]}

(2.26)

Taking the continuum limit, we obtain

Z = N ′
∫

periodic
[dφ] exp

(∫ β

0
dτ

∫
d3L

)
(2.27)

The Lagrangian is expressed as a functional of φ and of its first derivatives.
The formula (2.27) expresses the partition function Z as a functional
integral over φ of the exponential of the action in imaginary time. The
overall normalization constant N ′ is irrelevant, since multiplication of Z
by any constant will not change the thermodynamics.

Next, we turn to the case of noninteracting fields by letting U(φ) = 0.
Interactions will be discussed in a later chapter. We define

S =
∫ β

0
dτ

∫
d3xL = −1

2

∫ β

0
dτ

∫
d3x

[(
∂φ

∂τ

)2

+ (∇φ)2 + m2φ2

]
(2.28)

Integrating by parts, and using the periodicity of φ, we obtain

S = −1
2

∫ β

0
dτ

∫
d3xφ

(
− ∂2

∂τ2
−∇2 + m2

)
φ (2.29)

The field admits a Fourier expansion:

φ(x, τ) =

√
β

V

∞∑
n=−∞

∑
p

ei(p·x+ωnτ)φn(p) (2.30)

where ωn = 2πnT , owing to the constraint of periodicity that φ(x, β) =
φ(x, 0) for all x. The normalization in (2.30) is chosen such that each
Fourier amplitude is dimensionless. Substituting (2.30) into (2.29) and
recalling that the field is real, we find that

S = −1
2β

2
∑
n

∑
p

(ω2
n + ω2)φn(p)φ∗

n(p) (2.31)
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with ω =
√

p2 + m2. The integrand depends only on the magnitude of
the field, An(p) = |φn(p)|. Integrating out the phases, we get

Z = N ′∏
n

∏
p

{∫ ∞

−∞
dAn(p) exp

[−1
2β

2(ω2
n + ω2)A2

n(p)
]}

= N ′∏
n

∏
p

(2π)1/2
[
β2(ω2

n + ω2)
]−1/2 (2.32)

From the treatment above, we know that a factor of (2π)−1/2 appears
for each momentum integration. Thus, ignoring an overall factor that is
independent of volume and temperature,

Z =
∏
n

∏
p

[
β2(ω2

n + ω2)
]−1/2 (2.33)

The partition function can be formally written as

Z = N ′
∫

[dφ] exp
[−1

2(φ,Dφ)
]

= N ′′(detD)−1/2 (2.34)

where N ′′ is a constant. Here D equalsβ2(−∂2/∂τ2 − ∇2 + m2) in (x, τ)
space and β2(ω2

n + ω2) in (p, ωn) space, and (φ,Dφ) is the inner product
on the function space. The expression (2.34) follows from the formula for
Riemann integrals with a constant matrix D:∫ ∞

−∞
dx1 · · · dxn e−xiDijxj = πn/2 (detD)−1/2 (2.35)

One may also derive (2.33) using (2.34).
We now have

lnZ = −1
2

∑
n

∑
p

ln
[
β2(ω2

n + ω2)
]

(2.36)

Using the following identities,

ln
[
(2πn)2 + β2ω2

]
=
∫ β2ω2

1

dθ2

θ2 + (2πn)2
+ ln

[
1 + (2πn)2

]
(2.37)

and
∞∑

n=−∞

1
n2 + (θ/2π)2

=
2π2

θ

(
1 +

2
eθ − 1

)
(2.38)

and dropping a temperature-independent term, we can write

lnZ = −
∑
p

∫ βω

1
dθ

(
1
2

+
1

eθ − 1

)
(2.39)
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2.4 Bose–Einstein condensation 19

Carrying out the integral and dropping terms that are independent of
temperature and volume, we finally get

lnZ = V

∫
d3p

(2π)3
[
−1

2βω − ln(1 − e−βω)
]

(2.40)

This expression is identical to the bosonic version of (1.31) with μ = 0,
except that (2.40) includes the zero-point energy. Both

E0 = − ∂

∂β
lnZ0 =

1
2
V

∫
d3p

(2π)3
ω (2.41)

and

P0 = T
∂

∂V
lnZ0 = −E0

V
(2.42)

should be subtracted, since the vacuum is a state with zero energy and
pressure.

2.4 Bose–Einstein condensation

An interesting system is obtained by considering a theory with a charged
scalar field Φ. The field Φ is then complex and describes bosons of pos-
itive and negative charge, i.e., they are each other’s antiparticle. The
Lagrangian density in this case is

L = ∂μΦ∗∂μΦ −m2Φ∗Φ − λ(Φ∗Φ)2 (2.43)

This expression has an obvious U(1) symmetry:

Φ → Φ′ = Φe−iα (2.44)

where α is a real constant. This is a global symmetry since the multiplying
phase factor is independent of spacetime location.

By Noether’s theorem, there is a conserved current associated with
each continuous symmetry of the Lagrangian. We can find this current
by letting the phase factor α depend on the spacetime coordinate for a
moment. In this case the U(1) transformation is

L → L′ = ∂μ(Φ∗eiα(x))∂μ(Φe−iα(x)) −m2Φ∗Φ − λ(Φ∗Φ)2

= L + Φ∗Φ∂μα∂μα + i∂μα(Φ∗∂μΦ − Φ∂μΦ∗) (2.45)

The equation of motion for the “field” α(x) is

∂μ ∂L′

∂(∂μα)
=

∂L′

∂α
(2.46)

Since ∂L′/∂α = 0, it follows that the “current” ∂L′/∂(∂μα) = Φ∗Φ∂μα +
iΦ∗∂μΦ − iΦ∂μΦ∗ is conserved. We recover our original theory by letting
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20 Functional integral representation of the partition function

α(x) = constant. The conserved current density is then

jμ = i(Φ∗∂μΦ − Φ∂μΦ∗) (2.47)

with ∂μjμ = 0. The conservation law may be verified independently using
the equation of motion for Φ. The full current and density are Jμ =∫
d3x jμ(x) and Q =

∫
d3x j0(x).

It is convenient to decompose Φ into real and imaginary parts using
the real fields φ1 and φ2, Φ = (φ1 + iφ2)/

√
2. In terms of the conjugate

momenta π1 = ∂φ1/∂t, π2 = ∂φ2/∂t, the Hamiltonian density and charge
are

H = 1
2

[
π2

1 + π2
2 + (∇φ1)2 + (∇φ2)2 + m2φ2

1 + m2φ2
2

]
+ 1

4λ(φ2
1 + φ2

2)
2

(2.48)

and

Q =
∫

d3x(φ2π1 − φ1π2) (2.49)

The partition function is

Z =
∫

[dπ1][dπ2]
∫

periodic
[dφ1][dφ2] × exp

[∫ β

0
dτ

∫
d3x

×
(
iπ1

∂φ

∂τ
+ iπ2

∂φ2

∂τ
−H(π1, π2, φ1, φ2) + μ(φ2π1 − φ1π2

)]
(2.50)

where we have used a chemical potential associated with the conserved
charge Q. Integrating out the conjugate momenta, we get

Z = (N ′)2
∫

periodic
[dφ1][dφ2]

× exp

{∫ β

0
dτ

∫
d3x

[
−1

2

(
∂φ1

∂τ
− iμφ2

)2

− 1
2

(
∂φ2

∂τ
+ iμφ1

)2

− 1
2(∇φ1)2 − 1

2(∇φ2)2 − 1
2m

2φ2
1 − 1

2m
2φ2

2 − 1
4λ(φ2

1 + φ2
2)

2

]}
(2.51)

where N ′ is the same divergent normalization factor as before. Notice
that the argument of the exponential in (2.51) differs from one’s naive
expectation of

L(φ1, φ2, ∂μφ1, ∂μφ2;μ = 0) + μj0(φ1, φ2, i∂φ1/∂τ, i∂φ2/∂τ)

by an amount μ2Φ∗Φ, owing to the momentum dependence of j0.
The expression (2.51) cannot be evaluated in closed form unless λ = 0.

In this case, the functional integral becomes Gaussian and can then be
worked out analogously to that for the free scalar field.
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2.4 Bose–Einstein condensation 21

The components of Φ can be Fourier-expanded:

φ1 =
√

2ζ cos θ +

√
β

V

∑
n

∑
p

ei(p·x+ωnτ)φ1;n(p)

(2.52)

φ2 =
√

2ζ sin θ +

√
β

V

∑
n

∑
p

ei(p·x+ωnτ)φ2;n(p)

Here ζ and θ are independent of (x, τ) and determine the full infrared
behavior of the field; that is, φ1;0(p = 0) = φ2;0(p = 0) = 0. This allows
for the possibility of condensation of the bosons into the zero-momentum
state. Condensation means that in the infinite-volume limit a finite frac-
tion of the particles resides in the n = 0, p = 0 state.

Setting λ = 0 and substituting (2.52) into (2.51) after an integration
by parts, see (2.29), we find

Z = (N ′)2
(∏

n

∏
p

∫
dφ1;n(p) dφ2;n(p)

)
eS (2.53)

where

S = βV (μ2 −m2)ζ2 − 1
2

∑
n

∑
p

(
φ1;−n(−p), φ2;−n(−p)

)
D

(
φ1;n(p)
φ2;n(p)

)

and

D = β2

(
ω2
n + ω2 − μ2 −2μωn

2μωn ω2
n + ω2 − μ2

)
Carrying out the integrations,

lnZ = βV (μ2 −m2)ζ2 + ln(detD)−1/2 (2.54)

The second term can be handled as follows:

ln detD = ln

{∏
n

∏
p

β4
[
(ω2

n + ω2 − μ2)2 + 4μ2ω2
n

]}

= ln

{∏
n

∏
p

β2
[
ω2
n + (ω−μ)2

]}
+ ln

{∏
n

∏
p

β2
[
ω2
n + (ω +μ)2

]}
(2.55)
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22 Functional integral representation of the partition function

Putting all this together,

lnZ = βV (μ2 −m2)ζ2 − 1
2

∑
n

∑
p

ln
{
β2
[
ω2
n + (ω − μ)2

]}
− 1

2

∑
n

∑
p

ln
{
β2
[
ω2
n + (ω + μ)2

]}
(2.56)

The last two terms in (2.56) are precisely of the form (2.36). All we
need to do is recall (2.40) and make the substitutions ω → ω − μ and
ω → ω + μ, respectively, for the two terms in (2.56). We obtain

lnZ = βV (μ2 −m2)ζ2 − V

∫
d3p

(2π)3

×
[
βω + ln

(
1 − e−β(ω−μ)

)
+ ln

(
1 − e−β(ω+μ)

)]
(2.57)

There are several observations we can make about (2.57). The momentum
integral is convergent only if |μ| ≤ m. The parameter ζ appears in the final
expression but θ does not, as expected from the U(1) symmetry of the
Lagrangian. In this context, since the parameter ζ is not determined a
priori, it should be treated as a variational parameter that is related to
the charge carried by the condensed particles. At fixed β and μ, lnZ is
an extremum with respect to variations of such a free parameter. Thus

∂ lnZ

∂ζ
= 2βV (μ2 −m2)ζ = 0 (2.58)

which implies that ζ = 0 unless |μ| = m, in which case ζ is undetermined
by this variational condition. When |μ| < m we simply recover the results
obtained in Chapter 1, namely (1.31).

To determine ζ when |μ| = m, note that the charge density ρ = Q/V
is given by

ρ =
T

V

(
∂ lnZ

∂μ

)
μ=m

= 2mζ2 + ρ∗(β, μ = m) (2.59)

where

ρ∗ =
∫

d3p

(2π)3

(
1

eβ(ω−m) − 1
− 1

eβ(ω+m) − 1

)
(The case μ = −m is handled analogously.) Here the separate contribu-
tions from the condensate (the zero-momentum mode) and the thermal
excitations are manifest. If the density ρ is kept fixed and the tempera-
ture is lowered, μ will decrease until the point μ = m is reached. If the
temperature is lowered even further then ρ∗(β, μ = m) will be less than
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2.5 Fermions 23

ρ. Therefore ζ is given by

ζ2 =
ρ− ρ∗(β, μ = m)

2m
(2.60)

when μ = m and T < Tc. The critical temperature is determined implic-
itly by the equation

ρ = ρ∗(βc, μ = m) (2.61)

In the nonrelativistic limit, one obtains

Tc =
2π
m

(
ρ

ζ(3/2)

)2/3

ρ � m3 (2.62)

In the ultrarelativistic limit, one finds

Tc =
(

3ρ
m

)1/2

ρ � m3 (2.63)

In the limit m → 0, we have |μ| → 0 and Tc → ∞. When m = 0, all the
charge resides in the condensate, at all temperatures, and none is carried
by the thermal excitations.

There is a second-order phase transition at Tc. This can be shown rig-
orously by a careful examination of the behavior of the chemical potential
μ(ρ, T ) as a function of T near Tc with ρ fixed. This analysis is left as
an exercise. A more intuitive way to see this involves the general Landau
theory of phase transitions [1]. The order parameter ζ drops continuously
to zero as Tc is approached from below and remains zero above Tc. Phys-
ically, the reason for a phase transition is the following. At T = 0, all the
conserved charge can reside in the zero-momentum mode on account of
the bosonic character of the particles. (This would not be the case for
fermions.) As the temperature is raised, some of the charge is excited out
of the condensate. Eventually, the temperature becomes great enough to
completely melt, or thermally disorder, the condensate. There is no rea-
son for ζ to drop to zero discontinuously; hence the transition is second
order.

2.5 Fermions

We now turn our attention to (Dirac) fermions. In relativistic quantum
mechanics, we know that electrons or muons are described by a four-
component spinor ψ. The components are identified as ψα, with α run-
ning from 1 to 4. The motion of a free electron is characterized by a
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24 Functional integral representation of the partition function

wavefunction

ψ(x, t) =
1√
V

∑
p

∑
s

√
M

E

[
b(p, s)u(p, s) e−ip·x + d∗(p, s)v(p, s) eip·x

]
(2.64)

Here u and v are positive- and negative-energy plane-wave spinors, respec-
tively. The sum on s runs over the two possible spin orientations for a
spin-1/2 Dirac fermion. The expansion coefficients b(p, s) and d∗(p, s) are
complex functions in relativistic quantum mechanics but become opera-
tors in a field theory. As usual, p · x = pμxμ = Et− p · x. Equation (2.64)
is normalized as∫

d3xψ†(x, t)ψ(x, t) =
∑
p

∑
s

[|b(p, s)|2 + |d(p, s)|2] = 1 (2.65)

In the absence of interactions, the Lagrangian density is

L = ψ̄(i∂ −m)ψ (2.66)

The Dirac matrices γμ, which are defined by the anticommutators
{γμ, γν} = 2gμν , are in the standard convention

γ0 =
(

1 0
0 −1

)
(2.67)

γ =
(

0 σ
−σ 0

)
Each of these is a 4 × 4 matrix: “1” denotes the unit 2 × 2 matrix and σ
denotes the triplet of Pauli matrices. In (2.66), ψ̄ = ψ†γ0 and ∂ ≡ γμ∂μ =
γμ∂/∂xμ. Written out explicitly,

L = ψ†γ0

(
iγ0 ∂

∂t
+ iγ · ∇ −m

)
ψ (2.68)

The Lagrangian has a global U(1) symmetry, so that ψ → ψe−iα and
ψ† → ψ†eiα. Following Noether’s theorem, there is a conserved current
associated with this symmetry. To find it, we proceed in the same way
as we did for the charged scalar field theory. We allow α to depend on
x, treating it as an independent field. Under the above phase transforma-
tion, L → L + ψ̄ [∂α(x)]ψ. Using the equation of motion for α(x), namely
∂μ(∂L/∂[∂μα(x)]) − ∂L/∂α(x) = 0, we find the conservation law

∂μj
μ = 0
jμ = ψ̄γμψ (2.69)
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Now we set α = constant to recover our original theory. The total con-
served charge is

Q =
∫

d3x j0 =
∫

d3xψ†ψ (2.70)

For relativistic quantum mechanics in the absence of interactions this is
a trivial result because of (2.65).

In the field theory we treat ψ as a basic field. The momentum conjugate
to this field is, from (2.68),

Π =
∂L

∂(∂ψ/∂t)
= iψ† (2.71)

because γ0γ0 = 1. Thus, somewhat paradoxically, ψ and ψ† must be
treated independently in the Hamiltonian formalism. The Hamiltonian
density is found using the standard procedure:

H = Π
∂ψ

∂t
− L = ψ†

(
i
∂

∂t

)
ψ − L = ψ̄(−iγ · ∇ + m)ψ (2.72)

The partition function is

Z = Tr†e−β(H−μQ̂) (2.73)

Apart from two differences, which could be lost in the formalism if we are
not careful, we can follow the steps leading up to (2.19) and write

Z =
∫

[idψ†][dψ] exp
[∫ β

0
dτ

∫
d3x ψ̄

(
−γ0 ∂

∂τ
+ iγ ·∇ −m + μγ0

)
ψ

]
(2.74)

Recall that ψ and ψ† are independent fields, which must be integrated
independently. In contrast with boson fields, there is no advantage in
attempting to integrate the conjugate momentum separately from the
field. The two differences mentioned above have to do with the periodicity
of the field in imaginary time τ and with the nature of the “classical” (in
the path-integral formulation) fields ψ(x, τ) and ψ†(x, τ) over which we
integrate.

The canonical commutation relations for bosons are[
φ̂(x, t), π̂(y, t)

]
= i�δ(x − y)

(2.75)[
φ̂(x, t), φ̂(y, t)

]
= [π̂(x, t), π̂(y, t)] = 0

and for fermions{
ψ̂α(x, t), ψ̂†

β(y, t)
}

= �δαβδ(x − y) (2.76){
ψ̂α(x, t), ψ̂β(y, t)

}
=
{
ψ̂†
α(x, t), ψ̂†

β(y, t)
}

= 0
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These commutation relations are the only ones allowed by the fundamen-
tal spin-statistics theorem in relativistic quantum field theory. In the limit
� → 0 the field operators are replaced by their eigenvalues. For the case of
bosons, those eigenvalues are actually c-number functions, as illustrated
in (2.1). We have expressed the partition function as a functional inte-
gral over these c-number functions, or “classical fields”. For the case of
fermions, the � → 0 limit is rather peculiar since the eigenvalues replac-
ing the field operators anticommute with each other! This is of course
connected with the Pauli exclusion principle and with the famous spin-
statistics theorem. Note that (2.74) instructs us to integrate over these
“classical” but anticommuting functions. The mathematics necessary to
handle this situation was studied by Grassmann. There are Grassmann
variables, Grassmann algebra, and Grassmann calculus.

For a single Grassmann variable η, there is only one anticommutator
to define the algebra,

{η, η} = 0 (2.77)

Because of this, the most general function of η is (using a Taylor series
expansion) f(η) = a + bη, where a and b are c-numbers. Integration is
defined by ∫

dη = 0
(2.78)∫

dη η = 1

The first of these says that the integral is invariant under the shift η →
η + a, and the second is just a convenient normalization.

In a more general setting, we may have a set of Grassmann variables
ηi, i = 1, 2, . . . N , and a paired set η†i . The algebra is defined by

{ηi, ηj} = {ηi, η†j} = {η†i , η†j} = 0 (2.79)

The most general function of these variables may be written as

f = a +
∑
i

aiηi +
∑
i

biη
†
i +

∑
i,j

aijηiηj +
∑
i,j

bijη
†
i η

†
j

+
∑
i,j

cijη
†
i ηj + · · · + dη†1η1η

†
2η2 · · · η†NηN (2.80)

Integration over all variables of (2.80) is defined by∫
dη†1dη1 · · · dη†NdηN f = d (2.81)

Integrals over Grassmann variables were introduced for the explicit pur-
pose of dealing with path integrals over fermionic coordinates. The
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bibliography at the end of this chapter refers the interested reader to
more detailed treatments.

For our purposes, the only integral we need is∫
dη†1dη1 · · · dη†NdηN eη

†Dη = detD (2.82)

where D is an N ×N matrix. This formula is simple to prove if N = 1 or
2. The general case is left as an exercise for the reader.

As with bosons, it is most convenient to work in (p, ωn) space instead
of (x, τ) space. In imaginary time we can write

ψα(x, τ) =
1√
V

∑
n

∑
p

ei(p·x+ωnτ)ψ̃α;n(p) (2.83)

where both n and p run over negative and positive values. For an arbitrary
function defined over the interval 0 ≤ τ ≤ β, the discrete frequency ωn

can take on the values nπT . For bosons we argued that we must take
ωn = 2πnT in order that φ(x, τ) be periodic, which followed from the trace
operation in the partition function. This can be verified by examining the
properties of the thermal Green’s function for bosons defined by

GB(x,y; τ1, τ2) = Z−1 Tr
{
ρ̂Tτ

[
φ̂(x, τ1)φ̂(y, τ2)

]}
(2.84)

Here Tτ is the imaginary time ordering operator, which for bosons acts
as follows:

Tτ

[
φ̂(x, τ1)φ̂(y, τ2)

]
= φ̂(τ1)φ̂(τ2)θ(τ1 − τ2) + φ̂(τ2)φ̂(τ1)θ(τ2 − τ1) (2.85)

where θ is the step-function. Using the fact that Tτ commutes with ρ̂ =
e−βK , where K ≡ H − μQ̂, and the cyclic property of the trace we find
that

GB(x,y; τ, 0) = Z−1 Tr
[
e−βK φ̂(x, τ)φ̂(y, 0)

]
= Z−1 Tr

[
φ̂(y, 0) e−βK φ̂(x, τ)

]
= Z−1 Tr

[
e−βKeβK φ̂(y, 0) e−βK φ̂(x, τ)

]
= Z−1 Tr

[
e−βK φ̂(y, β)φ̂(x, τ)

]
= Z−1 Tr

{
ρ̂Tτ

[
φ̂(x, τ)φ̂(y, β)

]}
= GB(x,y; τ, β) (2.86)

(Notice that φ̂(y, β) = eβK φ̂(y, 0) e−βK , in analogy with the real time
Heisenberg time-evolution expression φ̂(y, t) = eiHtφ̂(y, 0) e−iHt.) The
result (2.86) implies that φ(y, 0) = φ(y, β) and hence ωn = 2πnT .
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For fermions, however, instead of (2.85) one has (in direct analogy with
the real time Green’s functions)

Tτ

[
ψ̂(τ1)ψ̂(τ2)

]
= ψ̂(τ1)ψ̂(τ2)θ(τ1 − τ2) − ψ̂(τ2)ψ̂(τ1)θ(τ2 − τ1) (2.87)

Following the same steps as in (2.86), one is led to

GF(x,y; τ, 0) = −GF(x,y; τ, β) (2.88)

This implies that

ψ(x, 0) = −ψ(x, β) (2.89)

and hence

ωn = (2n + 1)πT (2.90)

This antiperiodicity required of fermion fields is in no way inconsistent
with the trace operation in the partition function. The trace only means
that the system returns to its original state after a “time” β. Since the sign
of ψ is just an overall phase and hence is not observable, the right-hand
side of (2.89) describes the same physical state as the left-hand side.

Now we are ready to evaluate (2.74). Inserting (2.83) and using (2.82)
we get

Z =

[∏
n

∏
p

∏
α

∫
idψ̃†

α;n(p)dψ̃α;n(p)

]
eS (2.91)

where

S =
∑
n

∑
p

iψ̃†
α;n(p)Dαρψ̃ρ;n(p)

D = −iβ
[
(−iωn + μ) − γ0γ · p −mγ0

]
and so

Z = detD (2.92)

In (2.92) the determinantal operation is carried out over both Dirac
indices (thus with 4 × 4 matrices) and in frequency–momentum space.
Using

ln detD = Tr lnD (2.93)

and (2.67), one finds that

lnZ = 2
∑
n

∑
p

ln
{
β2
[
(ωn + iμ)2 + ω2

]}
(2.94)
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Since the summation is over both negative and positive frequencies (2.94)
can be put into a form analogous to (2.55),

lnZ =
∑
n

∑
p

{
ln
[
β2(ω2

n(ω − μ)2)
]
+ ln

[
β2(ω2

n(ω + μ)2)
] }

(2.95)

Following (2.37), we write

ln
[
(2n + 1)2π2 + β2(ω ± μ)2

]
=
∫ β2(ω±μ)2

1

dθ2

θ2 + (2n + 1)2π2

+ ln
[
1 + (2n + 1)2π2

]
(2.96)

The sum over n may be carried out by using the summation formula
∞∑

n=−∞

1
(n− x)(n− y)

=
π(cotπx− cotπy)

y − x
(2.97)

This gives
∞∑

n=−∞

1
(2n + 1)2π2 + θ2

=
1
θ

(
1
2
− 1

eθ + 1

)
(2.98)

Integrating over θ and dropping terms that are independent of β and μ,
we finally obtain

lnZ = 2V
∫

d3p

(2π)3
[
βω + ln

(
1 + e−β(ω−μ)

)
+ ln

(
1 + e−β(ω+μ)

)]
(2.99)

This result agrees with that derived in Chapter 1 using completely differ-
ent methods.

Notice the factor 2 in (2.99). This factor comes out automatically and
owes its existence to the spin-1/2 nature of the fermions. Separate con-
tributions from particles (μ) and antiparticles (−μ) are evident. Finally,
this formula also contains a contribution from the zero-point energy.

To recapitulate, the difference between fermions and bosons in the func-
tional integral approach to the partition function is essentially twofold.
First, for fermions we must integrate over Grassmann variables instead
of c-number variables. Contrast the result (2.92), Z = detD, for fermions
with the result (2.34), Z = (detD)−1/2, for bosons. Integration over c-
number variables would have led to a factor −1 in (2.99) instead of the
factor 2. Second, and this is related to the first, is the fact that the
fermion fields are actually antiperiodic in imaginary time, with period
β, instead of periodic as is the case for bosons. The consequence is that
ωn = (2n + 1)πT for fermions whereas ωn = 2πnT for bosons. These two
points account for the difference between (2.57) (with ζ = 0, of course)
and (2.99).
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2.6 Remarks on functional integrals

The notation used for functional integration (and differentiation!) is
deceptively simple. It must be kept simple, for if we think back on the
tremendous progress made in mechanics and electromagnetism in the
nineteenth century, it was certainly made easier by the introduction of
compact notation for differentiation, integration, and vectors. This also
seems to be the case with functional methods in modern quantum physics.
However, it is also clear that the mathematical symbols we are using rep-
resent rather exotic entities. For example, (2.6) uses a Dirac delta function
whose argument is a difference between two functions. A less formal and
compact, but more practical, way to view these objects is to start with
a complete orthonormal set of real functions for the physical problem
of interest. Call this set wn(x), with n any positive integer. Then any
function may be written as

a(x) =
∞∑
n=1

anwn(x) (2.100)

Another function may be expressed as

b(x) =
∞∑
n=1

bnwn(x) (2.101)

Then

δ (a(x) − b(x)) =
∞∏
n=1

δ(an − bn) (2.102)

and ∫
[da(x)] =

∞∏
n=1

∫ ∞

−∞
dan (2.103)

and so on. Most physical problems are defined on the space of a continu-
ous variable, such as position. For such problems it is intuitively obvious
that the functional integral ought to be divergent in general since the pos-
sible functional configurations form an uncountably infinite set. Indeed,
it seems that the extent to which mathematical rigor can be applied to
functional integrals is still uncertain. This should be no surprise since they
are just a means of phrasing the physical content of relativistic quantum
field theory. The extent to which mathematical rigor can be applied in
the operator formalism is probably no more certain, because of the highly
singular nature of the products of field operators at a point. For physi-
cal problems defined on a space of discrete variables, some mathematical
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rigor can be applied. This is one reason why certain spacetime theories
are defined on a spacetime lattice. This will be studied in Chapter 10.

2.7 Exercises

2.1 For the charged scalar field show, by direct application of the equa-
tion of motion for Φ, that jμ = i(Φ∗∂μΦ − Φ∂μΦ∗) is conserved.

2.2 If jμ is conserved show that

Q̇ =
d

dt

∫
d3x j0(x, t) = 0

2.3 Obtain (2.62) and (2.63), starting from (2.59) to (2.61).
2.4 For Bose–Einstein condensation, consider μ as a function of ρ and

T . If ρ is held fixed, show that μ and ∂μ/∂T are continuous but
∂2μ/∂T 2 is discontinuous at Tc.

2.5 Prove (2.82).
2.6 Fill in the steps leading from (2.91)–(2.93) to (2.94).
2.7 When m = 0 show that (2.99) can be evaluated in closed form, lead-

ing to P = T lnZ/V = μ4/12π2 + μ2T 2/6 + 7π2T 4/180.
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3
Interactions and diagrammatic

techniques

Unfortunately it is not possible to carry out the functional integration
in closed form when the Lagrangian contains terms that are more than
quadratic in the fields. The reader is invited to verify this. Thus, it is
important to develop approximation techniques. An approximation that
is expected to be useful when the interactions are weak is found by expand-
ing the partition function in powers of the interaction. The convergence
properties of these perturbation expansions have not been established
with any degree of mathematical rigor, however. An alternative approach
is to evaluate the partition function containing a given Lagrangian on a
spacetime lattice using numerical Monte Carlo methods. This approach
is described in Chapter 10.

3.1 Perturbation expansion

Consider a single scalar field φ. Other, more physical, theories such as
QED, QCD, the Glashow–Weinberg–Salam model, and effective nuclear
models will be considered in later chapters. The reader must be prepared
now to learn some basic techniques before tackling more complicated but
physically relevant theories.

The partition function is

Z = N ′
∫

[dφ]eS (3.1)

The action can be decomposed as

S = S0 + SI (3.2)

where S0 is at most quadratic in the field and SI, the part due to inter-
actions, is of higher order. We may expand (3.1) in a power series in

33
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34 Interactions and diagrammatic techniques

the part due to interaction, SI:

Z = N ′
∫

[dφ]eS0

∞∑
l=0

1
l!
Sl

I (3.3)

Taking the logarithm on both sides we get

lnZ = ln
(
N ′
∫

[dφ]eS0

)
+ ln

(
1 +

∞∑
l=1

1
l!

∫
[dφ]eS0Sl

I∫
[dφ]eS0

)
= lnZ0 + lnZI (3.4)

This explicitly separates the interaction contributions from the ideal gas
contribution, which we have evaluated already. The relevant quantity that
we actually need to compute is

〈Sl
I〉0 =

∫
[dφ]eS0Sl

I∫
[dφ]eS0

(3.5)

which is the value of SI raised to an arbitrary positive integral power
and averaged over the unperturbed ensemble, represented by S0. The
normalization of the functional integration is now irrelevant, as it cancels
in the expression (3.5).

3.2 Diagrammatic rules for λφ4 theory

The task of actually evaluating (3.4) and (3.5) is significantly more dif-
ficult than our compact notation would suggest. It is in fact useful to
associate diagrams with the mathematical expressions in the expansion.
Diagrams are a common language in particle physics, nuclear physics, sta-
tistical physics and condensed matter physics and allow for the exchange
of ideas and concepts among these different disciplines.

Consider the lowest-order correction to lnZ0 in λφ4 theory. It is

lnZ1 =
−λ
∫
dτ
∫
d3x

∫
[dφ]eS0φ4(x, τ)∫

[dφ]eS0
(3.6)

If we express φ(x, τ) as a Fourier series as in (2.30), and insert this into
(3.6) we get

lnZ1 = −λ

∫
dτ

∫
d3x

∑
n1,...,n4

∑
p1,...,p4

β2

V 2

× exp[i(p1 + · · · + p4) · x] exp [i(ωn1 + · · · + ωn4)τ ]
A

B
(3.7)
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where

A =
∏
l

∏
q

∫
dφ̃l(q) exp

[− 1
2β

2(ωl
2 + q2 + m2)φ̃l(q)φ̃−l(−q)

]
× φ̃n1(p1)φ̃n2(p2)φ̃n3(p3)φ̃n4(p4)

and

B =
∏
l

∏
q

∫
dφ̃l(q) exp

[− 1
2β

2(ω2
l + q2 + m2)φ̃l(q)φ̃−l(−q)

]
The integrations over x and τ yield a factor βV δn1+···+n4,0 δp1+···+p4,0 .
The numerator of the whole expression for ln Z1 will be zero by symmet-
ric integration unless n3 = −n1, p3 = −p1 and n4 = −n2, p4 = −p2, or
the other two permutations thereof. This will satisfy the constraints of
the Kronecker deltas and the integrals will factorize. The integrals in the
numerator are canceled by those in the denominator except for the two
corresponding to l = n1, q = p1 and l = n2, q = p2, and the other two
permutations. Using ∫∞

−∞ dx x2e−ax2/2∫∞
−∞ dx e−ax2/2

=
1
a

(3.8)

we obtain

lnZ1 = −3λβV

(
T
∑
n

∫
d3p

(2π)3
D0(ωn,p)

)2

(3.9)

Here we have defined the propagator in frequency–momentum space as

D0(ωn,p) =
1

ω2
n + p2 + m2

(3.10)

The expression (3.9) can be associated with a diagram in the following
way. Remember that we are calculating lnZ1 to first order in λ. With
φ4(x, τ) we associate a cross with four arms (because of the fourth power
of φ), with the vertex located at (x, τ):

φ4(x, τ) : (x, τ)

After expressing each field φ(x, τ) as a Fourier series we draw the figure

(p2, ωn2) (p3, ωn3)

(p1, ωn1) (p4, ωn4)
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36 Interactions and diagrammatic techniques

The directions of the arrows reflect the signs of the momenta and fre-
quencies. By convention, we draw them pointing towards the vertex, but
we could have chosen a convention in which they all point away. The
functional integration vanishes unless n3 = −n1, p3 = −p1 and n4 = −n2,
p4 = −p2, etc. Thus we connect the ends in pairs. There are three possible
pairings. We then have

lnZ1 = 3 (3.11)
(p1, ωn1)(p2, ωn2)

With each closed loop we associate a factor

T
∑
n

∫
d3p

(2π)3
D0(ωn,p)

With the vertex we associate a factor −λ (coming from LI = −λφ4) and
a factor

βδωin,ωoutV δpin,pout → βδωin,ωout(2π)3δ(pin − pout)

Since the arguments of the frequency–momentum-conserving deltas are
zero we simply get an overall factor βV . The factor V makes lnZ1 a
properly extensive quantity. Pictorially, (3.11) corresponds precisely with
(3.9).

Next we look at order λ2 in lnZI. From (3.4) it is

lnZ2 = −1
2

(∫
[dφ]eS0SI∫
[dφ]eS0

)2

+ 1
2

∫
[dφ]eS0S2

I∫
[dφ]eS0

(3.12)

The first term in (3.12) is simply

−1
2(lnZ1)2 = −1

2

(
3 ⊗ 3

)
(3.13)

The second term in (3.12) may be analyzed algebraically using func-
tional integrals or it may be analyzed diagrammatically. Choosing the lat-
ter approach, we draw two crosses corresponding to the factors φ4(x, τ)
and φ4(x′, τ ′) contained in 1

2〈S2
I 〉0:
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We then pair the lines as before. Counting in the factor one-half and all
the possible pairings, we obtain

1
2
× 3 ⊗ 3 +

6 × 6 × 2
2

+
4 × 3 × 2

2
(3.14)

Combining (3.13) and (3.14), we observe that all the disconnected dia-
grams cancel. We are thus left with

lnZ2 = 36 + 12 (3.15)

What is needed at some arbitrary order N in the perturbative expansion
of lnZI should now be clear. We formally expand in powers of λ:

lnZI =
∞∑

N=1

lnZN (3.16)

where lnZN is proportional to λN . The “finite-temperature Feynman
rules” at order N are:

1 Draw all connected diagrams.
2 Determine the combinatoric factor for each diagram.
3 Include a factor T

∑
n

∫
[d3p/(2π)3]D0(ωn,p) for each line.

4 Include a factor −λ for each vertex.
5 Include a factor (2π)3δ(pin − pout)βδωin,ωout for each vertex, correspond-

ing to energy(frequency)–momentum conservation. There will be one
factor β(2π)3δ(0) = βV left over.

We now understand why D is called a propagator: it propagates a
particle (or field) from one vertex to the next. We have illustrated the
cancellation mechanism only at second order. However, it is clear why
disconnected diagrams cancel. If, at some order, there existed a contribu-
tion that was the product of K connected diagrams then this contribution
would be proportional to V K . If we have done our job correctly, then lnZI

is an extensive quantity proportional to V and thus no such contribution
can arise.

The formal proof that in lnZI the disconnected diagrams cancel goes
as follows. From (3.3) and (3.5) we have

ZI =
∞∑
l=0

1
l!
〈Sl

I〉0 (3.17)

In general, 〈Sl
I〉0 can be written as a sum of terms, each of which is a

product of connected parts (see (3.14)). Denoting a connected part by a
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subscript c, we may write

〈Sl
I〉0 =

∞∑
a1,a2,...=0

l!
a1!a2!(2!)a2a3!(3!)a3 · · · 〈SI〉a1

0c〈S2
I 〉a2

0c · · · δa1+2a2+3a3+··· ,l

(3.18)

The combinatoric factor takes into account indistinguishability, and the
Kronecker delta picks out the contribution of order λl. Substituting (3.18)
into (3.17) and summing over l eliminates the Kronecker delta:

ZI =
∞∑

a1,a2,...=0

〈SI〉a1
0c

a1!
〈S2

I 〉a2
0c

a2!(2!)a2
· · · = exp

( ∞∑
n=1

1
n!
〈Sn

I 〉0c
)

(3.19)

Hence lnZ1 is simply the sum of the connected diagrams.
As an example, let us apply these rules to the second diagram of (3.15).

We get

= βV (−λ2)T
∑
n1

∫
d3p1

(2π)3
· · ·T

∑
n4

∫
d3p4

(2π)3

× D0(ωn1 ,p1) · · · D0(ωn4 ,p4)(2π)3δ(p1 + · · · + p4)βδn1+···+n4,0

(3.20)

The evaluation of expressions such as (3.20) is not simple and will be
discussed in detail in Section 3.4. The diagrammatic technique is a conve-
nient means for keeping track of the combinatoric factors and the order of
the coupling constant in a perturbative expansion of the partition func-
tion. It circumvents much of the tedious algebra associated with the direct
evaluation of functional integrals.

3.3 Propagators

We shall define a finite-temperature propagator in position space by

D(x1, τ1;x2, τ2) = 〈φ(x1, τ1)φ(x2, τ2)〉 (3.21)

where the angle brackets denote an ensemble average. Owing to trans-
lation invariance, D depends only on x1 − x2 and τ1 − τ2. The Fourier
transform is, with x1 = x, x2 = 0, τ1 = τ , τ2 = 0,

D(ωn,p) =
∫ β

0
dτ

∫
d3x e−i(p·x+ωnτ)D(x, τ)

=
∑
n1,n2

∑
p1,p2

β

V
〈φ̃n1(p1) φ̃n2(p2)〉

∫ β

0
dτ

∫
d3x

× exp[i(p1 − p) · x] exp[i(ωn1 − ωn)τ ] (3.22)
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The ensemble average vanishes by symmetric integration unless n1 = −n2,
p1 = −p2. Then

D(ωn,p) = β2〈φ̃n(p)φ̃−n(−p)〉 (3.23)

We remind the reader at this point of the concept of a functional deriva-
tive. Consider the integral

I = I[f ] =
∫

dxf(x)w(x)

where w(x) is some weight function and I is a functional of f(x), i.e., it
depends on the function f(x). The functional derivative of I with respect
to f(y) is

δI

δf(y)
= w(y)

The generalization to more complicated functionals of f(x) is immediate.
Recalling (3.3), (2.31), and (3.10), we discover that D(ωn,p) can be

expressed as a functional derivative of lnZ with respect to D0(ωn,p).
Then

D(ωn,p) = β2

∫
[dφ]eSφ̃n(p)φ̃−n(−p)∫

[dφ]eS

= −2
δ lnZ

δD−1
0

= 2D2
0

δ lnZ

δD0
(3.24)

Unless otherwise indicated, the symbol D will from now on refer to the
propagator in frequency–momentum space.

We define the self-energy Π(ωn,p) by

D(ωn,p) =
[
ω2
n + p2 + m2 + Π(ωn,p)

]−1

= (1 + D0Π)−1 D0 (3.25)

We shall see shortly that, in the absence of interactions, Π = 0 and D =
D0, the free-particle propagator. Using (3.25) and (3.24),

(1 + D0Π)−1 = 2D0
δ lnZ

δD0
(3.26)

Recall from (2.33) that

lnZ0 = 1
2

∑
n

∑
q

ln
[D0(ωn,q)β−2

]
(3.27)

Thus
δ lnZ0

δD0(ωn,p)
= 1

2D−1
0 (ωn,p) (3.28)
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and so (3.26) becomes

(1 + D0Π)−1 = 1 + 2D0
δ lnZI

δD0
(3.29)

It is useful to consider the formal expansion of Π in a power series in λ:

Π =
∞∑
l=1

Πl (3.30)

Here Πl is ostensibly of order l in the coupling constant. Let us see how
(3.29) works at the first few orders. Expanding to first order, we obtain

1 −D0Π1 = 1 + 2D0
δ lnZ1

δD0

= 1 + 2D0
δ

δD0

(
3

)
= 1 + 12D0 (3.31)

Thus, differentiating lnZ1 with respect to D0 is equivalent to cutting
each line in the diagram, as inspection of (3.9) shows. A factor 2 appears
because we can choose either of the two lines in the “figure 8”. Thus

Π1 = −12 (3.32)

Continuing in this way, we seek the second-order contribution to Π.
Again differentiating (3.29) and keeping terms of order λ2, we obtain

−D0Π2 + D0Π1D0Π1 = 2D0
δ lnZ2

δD0

= 2D0
δ

δD0

(
36 + 12

)

= 144D0 + 96D0

+144D0 (3.33)

The term D0Π1D0Π1 on the left-hand side simply cancels the last diagram
on the right-hand side. Thus

Π2 = −144 − 96 (3.34)

The last diagram in (3.33) is one-particle reducible; that is, by cutting one
line we can break the diagram into two disconnected parts. The first two

https://doi.org/10.1017/9781009401968 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968
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diagrams in (3.33) are not of that form, they are one-particle irreducible
(1PI). It is apparent that the one-particle reducible diagrams arise from
the iteration of D0Π in the denominator of (3.29),

Π = −2
(
δ lnZI

δD0

)
1PI

(3.35)

where by 1PI we mean that only the 1PI diagrams contribute to Π. The
procedure is then as follows. First draw all diagrams which contribute
to lnZI up to a given order, then differentiate with respect to D0, and,
lastly, throw away the one-particle reducible diagrams. This yields the
diagrammatic expansion of Π.

3.4 First-order corrections to Π and lnZ

Let us evaluate the one-loop diagram in (3.32). It yields the expression

Π1 = 12λT
∑
n

∫
d3p

(2π)3
1

ω2
n + ω2

(3.36)

where ω2 = p2 + m2. We could do the frequency sum using (2.97), but
there is a more elegant method, which we sketch below.

Suppose we want to evaluate a frequency sum of the form

T

∞∑
n=−∞

f(p0 = iωn = 2πnTi) (3.37)

Here we think of p0 as the fourth component of a Minkowski four-vector.
We may express (3.37) as a contour integral,

T

2πi

∮
c
dp0f(p0)

1
2
β coth

(
1
2
βp0

)
(3.38)

where the contour C is as shown in the following figure:

p
0

C
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The function 1
2β coth(1

2βp0) has poles at p0 = 2πnTi and is everywhere
else bounded and analytic. The contour can be deformed into

p
0

Then, with a suitable rearrangement of the exponentials in the hyperbolic
cotangent, we get

1
2πi

∫ −i∞−ε

i∞−ε
dp0f(p0)

(
−1

2
− 1

e−βp0 − 1

)
+

1
2πi

∫ i∞+ε

−i∞+ε
dp0f(p0)

(
1
2

+
1

eβp0 − 1

)
(3.39)

Setting p0 → −p0 in the first integral,

T

∞∑
n=−∞

f(p0 = iωn) =
1

2πi

∫ i∞

−i∞
dp0

1
2

[f(p0) + f(−p0)]

+
1

2πi

∫ i∞+ε

−i∞+ε
dp0 [f(p0) + f(−p0)]

1
eβp0 − 1

(3.40)

This expression is correct as long as f(p0) has no singularities along the
imaginary p0 axis. The frequency sum then naturally separates into a
temperature-independent part (the vacuum part) and a part contain-
ing the Bose–Einstein distribution (the matter part). In some sense, the
replacement of frequency sums by contour integrals, as in (3.40), is equiv-
alent to switching from imaginary time (discrete frequencies in Euclidean
space) to real time (continuous energies in Minkowski space). However
this is only a matter of mathematical convenience and involves no new
physics.

Using (3.40), Π1 can now be evaluated. With f(p0) = −1/(p2
0 − ω2) we

obtain

Π1 = Πvac
1 + Πmat

1 (3.41)
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3.4 First-order corrections to Π and lnZ 43

where

Πvac
1 = 12λ

∫
d4p

(2π)4
1

p2
4 + p2 + m2

Πmat
1 = 12λ

∫
d3p

(2π)3
1
ω

1
eβω − 1

For Πvac
1 we have simply defined p4 = ip0 and d4p = dp4d

3p, with p4 inte-
grated from −∞ to ∞. This is the standard result of T = 0 field theory in
four Euclidean dimensions. For Πmat

1 , we have closed the contour about
the only pole in the right-hand half-plane, located at p0 = ω. There is
no surface contribution since the integrand falls off sufficiently rapidly as
|p0| → ∞.

The vacuum contribution to Π is actually divergent. This divergence
needs to be regulated. The most straightforward way of doing this is to
place a high-momentum cutoff, Λc, on p ≡

√
p2
4 + p2. Since the solid angle

subtended by a hypersphere in n dimensions is Ωn = 2πn/2[Γ(n/2)]−1, we
get

Πvac
1 =

3λ
2π2

∫ Λc

0

p3dp

p2 + m2
=

3λ
4π2

[
Λ2

c −m2 ln
(

Λ2
c + m2

m2

)]
→ 3λ

4π2

[
Λ2

c −m2 ln
(

Λ2
c

m2

)]
(3.42)

where the arrow indicates that terms that vanish as Λc → ∞ have been
dropped. At T = 0, the inverse propagator to first order in λ is

D−1(p4,p) = p2
4 + p2 + m2 + Πvac

1 (3.43)

In order to avoid a divergent mass we add a counterterm −1
2δm

2φ2 to the
Lagrangian. Treating this as an additional interaction, we see from (3.4)
and (3.5) that to lowest order this counterterm contributes to lnZI as

−1
2δm

2〈φ2〉0 = −1
2 (3.44)

The cross represents δm2. The corresponding contribution to the self-
energy is, from (3.35),

= δm2 (3.45)

Adding (3.45) to (3.42) we obtain the renormalized self-energy. We choose
the counterterm so that

Πvac,ren
1 =

3λ
4π2

[
Λ2

c −m2 ln
(

Λ2
c

m2

)]
+ δm2 = 0 (3.46)
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44 Interactions and diagrammatic techniques

Then m remains as the physical mass of the particle. More generally, we
expand δm2 in a power series in λ:

δm2 =
∞∑
n=1

cn(Λc)λn (3.47)

and determine coefficients such that Πvac,ren(p2 = M2) = 0 at each order
in perturbation theory, at some arbitrary subtraction point M . This is
part of the renormalization program, which is outside the scope of this
book. The relevance of the renormalization group at finite temperature
and chemical potential is discussed briefly in Chapter 4.

The complete renormalized self-energy at T > 0 at first order in λ is
then

Πren
1 = 12λ

∫
d3p

(2π)3
1
ω

1
eβω − 1

→ λT 2 (3.48)

where the arrow indicates its value as m → 0. Notice that Πren
1 is finite

and vanishes when T = 0. It is also momentum independent, but this is
not generally true for higher-order diagrams.

Next we calculate the lowest-order correction to lnZ. It is

3 − 1
2 = −3λβV

(
T
∑
n

∫
d3p

(2π)3
D0(ωn,p)

)2

− 1
2βV δm2T

∑
n

∫
d3p

(2π)3
D0(ωn,p)

= −3λβV
(∫

d3p

(2π)3
1
ω

1
eβω − 1

)2

+
3λβV
256π4

Λ4
c

[
1 −

(
m2

Λ2
c

)
ln
(

Λ2
c

m2

)]2

(3.49)

The last term is a (divergent) contribution to the zero-point energy and
pressure of the vacuum (at T = 0, P = lnZ/βV = −E/V ). Since only
pressure and energy differences are physically measurable, this term does
not contribute to the finite-temperature pressure. If we agree to normalize
the vacuum pressure and energy density to zero then the physical pressure
contribution at order λ is

P1 = −3λ
(∫

d3p

(2π)3
1
ω

1
eβω − 1

)2

(3.50)
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When m = 0 and λ � 1 then, from (2.40) and (3.50),

P = T 4

(
π2

90
− λ

48
+ · · ·

)
(3.51)

The pressure should be proportional to T 4 by dimensional analysis.
In these calculations, no new ultraviolet (high-momentum or short-

distance) divergences appear at finite temperature. All such divergences
are already present at T = 0; whatever regulation and renormalization is
necessary at T = 0 is sufficient at T > 0 as well. This can be understood
in three alternative ways. (i) We construct a complete set of states that
are eigenstates of the Hamiltonian with energies ES . In practice, for an
interacting field theory this is usually impossible, but let us imagine it
has been done. Then the partition function is obtained directly as

Z =
∑
S

e−βES (3.52)

and no new T > 0 divergences can arise. (ii) We go back to the transition
amplitude (2.16) and compute this quantity as a function of tf . To obtain
the thermodynamic partition function we simply analytically continue
from real to imaginary time. (iii) We recall that in the diagrammatic
expansions each internal loop involves a frequency sum. The frequency
sum can be expressed as a sum of contour integrals, one corresponding
to T = 0 and the other to T > 0; see (3.40). The vacuum integral can
give rise to quadratic or logarithmic ultraviolet divergences. The finite-
temperature integral is cut off exponentially in the ultraviolet region by
the Bose–Einstein distribution. That is to say, the very-short-distance
behavior of the theory is unaffected by finite temperature.

3.5 Summation of infrared divergences

The next-order contribution to lnZ when m = 0 is actually of order λ3/2

and not λ2 because of a finite-temperature infrared divergence in the per-
turbative expansion. To see this, consider the second diagram in (3.15).
To study its infrared structure, let n1 = n2 = n3 = n4 = 0 and p1 ∼ p2 ∼
p3 ∼ p4 ∼ p. In the limit p → 0 this diagram behaves like βV λ2T 3dp,
which is infrared convergent. The first diagram in (3.15) has an entirely
different structure. Each of the two end loops is proportional to Π1. Set-
ting n = 0 in the middle loop and letting p denote the three-momentum
flowing in that loop, we find that the behavior is βV Π2

1Tdp p
−2. This is

infrared (small-p) divergent. This divergence is unrelated to the ultra-
violet divergences of the field theory at T = 0. This new divergence at
T > 0, when m = 0, is due to the fact that Π1 = 0. The boson develops
a dynamically generated mass-squared, m2

eff = Πren
1 = λT 2. However, we
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46 Interactions and diagrammatic techniques

are expanding perturbatively with a propagator that has zero mass. The
dynamically generated mass should then damp the infrared divergence.

At order λN it is easy to see that the dominant infrared divergent
diagram is

(2 × 3!)N

2N
(N loops) ∼ βV ΠN

1 Tdp p−2(N−1) (3.53)

The combinatoric factor arises as follows: a factor 3! for two connecting
lines at each vertex; a factor 2 for the connection of the remaining two
lines at each vertex to the adjacent vertices; a factor (N − 1)!/2 giving
the number of ways to order the vertices in a circle; and a factor 1/N !
coming from SN

I /N !. We see that the divergence becomes more and more
severe at each successive order. Because of the similarity in structure, it
is possible to sum this infinite series of diagrams. Summing from N = 2
to ∞ we get

1
2βV T

∑
n

∫
d3p

(2π)3

∞∑
N=2

1
N

[−Π1(ωn,p)D0(ωn,p)]N

= 1
2

⎡⎣1
2 − 1

3
+ · · ·

⎤⎦
= −1

2βV T
∑
n

∫
d3p

(2π)3
[ln(1 + Π1D0) − Π1D0] (3.54)

This set of diagrams is sometimes called the set of ring, correlation, or
plasmon diagrams in the literature (Gell-Mann and Brueckner) [1]. A
more complete summation of the sub-dominant infrared divergent dia-
grams actually yields the full self-energy in (3.54) instead of the self-energy
calculated to first order.

In obtaining (3.54) we summed only the diagrams from (3.53). In addi-
tion, there will be diagrams like (3.53) except that any number of the
exterior loops are replaced by crosses corresponding to the mass counter-
term δm2. Including those as well (this is left as an exercise), the factor
Π1 in (3.54) is replaced by Πren

1 = λT 2:

−1
2βV T

∑
n

∫
d3p

(2π)3

[
ln
(

1 +
λT 2

ω2
n + p2

)
− λT 2

ω2
n + p2

]
=

βV

12π
λ3/2T 4 + · · ·

(3.55)

The λ3/2 term arises solely from the n = 0 mode, which yields the domi-
nant infrared divergence. The n = 0 modes produce higher-order correc-
tions in λ. The origin of this nonanalyticity in λ is the fact that the boson
acquires a mass proportional to λ1/2T . The weak coupling expansion for
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the pressure is thus

P =
π2

90
T 4

[
1 − 15

8

(
λ

π2

)
+

15
2

(
λ

π2

)3/2

+ · · ·
]

(3.56)

A nonanalyticity in the couplings of this type is also found in QED and
QCD. It is good to see how this happens in a simpler theory such as λφ4

first.
The same nonanalyticity should also be expected in Π because of the

close relationship between Π and ZI, as expressed in (3.35). The dominant
infrared contribution at order λN comes from the diagram

−(2 × 3!)N (N − 1 loops)

= 12λT
∑
n

∫
d3p

(2π)3
[−Π1(ωn,p)]N−1 DN

0 (ωn,p) (3.57)

Summing (3.57) from N = 1 to ∞, we obtain

Π = 12λT
∑
n

∫
d3p

(2π)3
1

ω2
n + p2 + Π1

= −12

D1

(3.58)

which has the nice interpretation that the free propagator is replaced by
the first-order-corrected propagator D1 in the one-loop self-energy dia-
grams. Actually, we are suppressing all other similar diagrams involving
the replacement of Π1 by δm2, just as in (3.54). Taking into account
the mass counterterms simply replaces Π1 by Π1 + δm2 = Πren

1 in (3.58).
Recalling (3.41) leads to

Πren
1 = λT 2

[
1 − 3

(
λ

π2

)1/2

+ · · ·
]

(3.59)

Thus there is a term in the self-energy of order λ3/2, just as in lnZI.

3.6 Yukawa theory

The simplest theory involving interacting fermions is one in which
fermions are coupled to a neutral field by the Yukawa interaction

LI = gψ̄ψφ (3.60)
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The perturbation expansion in this case proceeds as in the previous sec-
tions with only a few changes. Since

SI =
∫ β

0
dτ

∫
d3xLI(x, τ) (3.61)

is linear in φ, it follows that 〈Sl
I〉 = 0 if l is odd. Here the expansion of

lnZ is formally an expansion in g2. The lowest-order correction to lnZ0

is

lnZ2 = 1
2〈S2

I 〉0 = 1
2g

2

∫
dτ1dτ2

∫
d3x1d

3x2

∑
n1,...,n4

∑
l1,l2

∑
p1,...,p4

∑
q1,q2

β

V 3

× exp[i(q1 + p3 − p1) · x1] exp[i(q2 + p4 − p2) · x2]

× exp[i(ωl1 + ωn3 − ωn1)τ1] exp[i(ωl2 + ωn4 − ωn2)τ2]
A

B
(3.62)

where

A =
∏
α,n,l

∏
p,q

∫
d ˜̄ψα;n(p)dψ̃α;n(p)dφ̃l(q)

× eS0 ˜̄ψρ;n1(p1)ψ̃ρ;n3(p3) ˜̄ψγ;n2(p2)ψ̃γ;n4(p4)φ̃l1(q1)φ̃l2(q2)

and

B =
∏
α,n,l

∏
p,q

∫
d ˜̄ψα;n(p)dψ̃α;n(p)dφ̃l(q)eS0

Furthermore,

S0 = β
∑
n

∑
p

˜̄ψα;n(p)G−1
0 (ωn,p)αρψ̃ρ;n(p)

− 1
2β

2
∑
n

∑
p

φ̃n(p)D−1
0 (ωn, p)φ̃−n(−p) (3.63)

The free-particle fermion propagator G0 is defined, in analogy to the free-
particle boson propagator, as

G−1
0 (ωn,p) =p−M (3.64)

Here p0 ≡ iωn + μ, M is the fermion mass, and m is the boson mass (see
(2.91)). We have changed our variable of integration from iψ† to ψ̄, which
is conventional.

The integration over the spatial and temporal coordinates in (3.62) can
be done immediately. It leads to an overall factor of β2V 2 and to the
constraints

p1 = p3 + q1 p2 = p4 + q2 n1 = n3 + l1 n2 = n4 + l2 (3.65)
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The integration over the scalar field leads to the constraints

q2 = −q1 l2 = −l1 (3.66)

The integration over the spinor field leads to either of the following
constraints:

p1 = p3 p2 = p4 n1 = n3 n2 = n4

or
p1 = p4 p2 = p3 n1 = n4 n2 = n3 (3.67)

These two possibilities lead to two topologically distinct diagrams:

lnZ2 = 1
2 − 1

2 (3.68)

The first of these represents

1
2βV

g2

m2

(
T
∑
n

∫
d3p

(2π)3
TrG0(ωn,p)

)2

(3.69)

and the second represents

−1
2βV g2T 2

∑
n1n2

∫
d3p1d

3p2

(2π)6

×Tr[G0(ωn1 ,p1)D0(ωn2 − ωn1 ,p2 − p1)G0(ωn2 ,p2)] (3.70)

The solid lines represent fermions and the broken lines represent bosons.
The arrows on the fermion lines indicate the flow of fermion number
and follow from the fact that in (3.62) a ψ̄ must always be matched to
a ψ to get a nonzero contribution. The trace operation in (3.69) and
(3.70) is over the Dirac indices. The minus sign in (3.70) comes from
anticommuting the fermion fields (which are Grassmann variables) to put
them into the canonical ordering of (2.80) and (2.81). The boson line in
the first diagram carries zero frequency and momentum and gives rise to
the factor D0(0,0) = m−2. The reader is encouraged to verify that indeed
(3.68)–(3.70) follow directly from the functional integral of (3.62).

The “finite-temperature Feynman rules” are similar to those listed in
Section 3.2. The new aspects are:

1 There is a factor T
∑

n

∫
[d3p/(2π)3]G0(ωn,p) for each fermion line.

2 There is a factor g at each vertex.
3 There is a trace over Dirac indices for each closed fermion loop as well

as a minus sign coming from the Grassmann nature of the fermion field.
4 All connected diagrams are constructed from the following elementary

vertex:

https://doi.org/10.1017/9781009401968 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968


50 Interactions and diagrammatic techniques

It turns out that the one-particle reducible diagrams (one of which
is seen in (3.68)) arise from the fact that the scalar field φ develops a
nonzero thermal average. It is in some sense analogous to a Bose–Einstein
condensate. This condensate is however driven by the interaction with the
fermions. All such diagrams can be summed by the use of the mean field
expansion. This will be illustrated in later chapters.

The frequency sum for fermions can be converted to contour integrals
in a manner closely paralleling the procedure for bosons. The fermion
propagator depends on the combination p0 = iωn + μ with ωn = (2n +
1)πT . A straightforward analysis yields

T
∑
n

f(p0 = iωn + μ) = − 1
2πi

∫ i∞+μ+ε

−i∞+μ+ε
dp0 f(p0)

1
eβ(p0−μ) + 1

− 1
2πi

∫ i∞+μ−ε

−i∞+μ−ε
dp0 f(p0)

1
eβ(μ−p0) + 1

+
1

2πi

∮
C
dp0 f(p0) +

1
2πi

∫ i∞

−i∞
dp0 f(p0)

(3.71)

The contour C is as shown in the following figure:

-- i

p
0

C

i

0 μ

The first two terms in (3.71) correspond to particle and antiparticle con-
tributions and vanish at T = 0. The third term is T -independent and gives
the T = 0 finite-density contribution. The last term is the vacuum contri-
bution.
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The boson self-energy Π is still defined by (3.25) and still satisfies (3.35).
From (3.68) the lowest-order diagram is

Π2 = (3.72)

The fermion self-energy Σ is defined by the equation

G−1 = G−1
0 + Σ =p−M + Σ(ωn,p) (3.73)

In position space, the full fermion propagator is defined by

G(x1 − x2, τ1 − τ2) =
〈
Tτ

[
ψ̄(x1, τ1)ψ(x2, τ2)

] 〉
(3.74)

where the angle brackets denote the exact ensemble average. It can be
shown that the analog of (3.35) is

Σ =
δ lnZI

δG0
(3.75)

From (3.68) the lowest-order diagrams are

Σ2(ωn,p) = − (3.76)

Explicit evaluations of loop diagrams involving fermions will be taken
up in the later chapters on theories that represent nature.

3.7 Remarks on real time perturbation theory

The perturbative treatment discussed up to now has been in the so-called
imaginary time formalism. The functional integral representation of the
partition function involves an integration over “imaginary time” from 0
to β. A Fourier decomposition of the fields leads to a discrete frequency
sum; for bosons ωn = 2πnT and for fermions ωn = (2n + 1)πT .

The one-loop expression in (3.41) can be written alternatively as

Π1 = 12λ
∫ ∞

−∞
d3p

(2π)3

∫ ∞

−∞
dp0

2π

(
i

p2 −m2 + iε
+

2π
eβ|p0| − 1

δ(p2 −m2)
)

(3.77)

This has the interpretation that the propagator consists of the sum of
a vacuum part and a finite-temperature part. Instead of a summation
over discrete frequencies there is an integration over a real, continuous,
energy p0. Because of the presence of the Dirac delta function, the finite-
temperature contribution is trivial to obtain.
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The above suggests the possibility of a “real time” perturbation theory.
The rules of Section 3.2 could perhaps be modified according to

T
∑
n

→
∫ ∞

−∞
dp0

2π

1
ω2
n + ω2

→ i

p2 −m2 + iε
+

2π
eβ|p0| − 1

δ(p2 −m2) (3.78)

βδωin,ωout → 2πδ(p0
in − p0

out)

The advantage would be that no frequency sums need to be done. The
finite-temperature contributions are naturally separated. In addition, the
Green’s functions so obtained are functions of real Minkowski momenta
pμ, which facilitates certain applications such as linear response analyses,
discussed in Chapter 6.

Unfortunately, there are cases where the simple substitution (3.78) does
not work [2]. As an example, consider a massive boson field with a cubic
self-interaction. The one-loop self-energy diagram is

Π(k) = (3.79)
k k

The (unrenormalized) self-energy evaluated at zero four-momentum
(k = 0) is

T
∑
n

∫
d3p

(2π)3
1

(ω2
n + ω2)2

(3.80)

This expression is logarithmically divergent in the ultraviolet regime
(|p| → ∞), but this divergence is regulated by the usual T = 0 countert-
erm; no new T > 0 divergences appear. If we perform the substitution
(3.78) we obtain

∫ ∞

−∞

dp0

2π

∫
d3p

(2π)3

(
i

p2 −m2 + iε
+

2π
eβ|p0| − 1

δ(p2 −m2)
)2

(3.81)

There is now a severe mathematical singularity owing to the square of the
delta function. The expression (3.81) is ill-defined.

It is possible to formulate a real time perturbation theory reminiscent of
(3.78) [3, 4]. Essentially, the number of independent fields doubles. Instead
of a single scalar field φ, we encounter two scalar fields, φ1 and φ2, called
type-1 and type-2 fields. The propagator becomes a 2 × 2 matrix even
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though the bosons are neutral and have no spin. The propagator is

D =
(

cosh θ sinh θ
sinh θ cosh θ

)⎛⎜⎝
i

p2 −m2 + iε
0

0
−i

p2 −m2 − iε

⎞⎟⎠( cosh θ sinh θ
sinh θ cosh θ

)

=

⎛⎜⎝
i

p2 −m2 + iε
0

0
−i

p2 −m2 − iε

⎞⎟⎠
+

2π
eβ|p0| − 1

δ(p2 −m2)
(

1 −eβ|p0|/2

−eβ|p0|/2 1

)
(3.82)

There are two types of vertex. A type-1 vertex has only type-1 fields
emerging from it and has its usual value, while a type-2 vertex has only
type-2 fields emerging from it and has a value opposite in sign to its type-1
counterpart. For example, for a cubic coupling,

1

1

1

= −2

2

2

The ultimate reason for this field doubling is to avoid singularities of the
type that arise in (3.81). Explicit calculations show the cancellation aris-
ing from the two components. In this regard, the delta function appearing
in (3.82) is represented as

δ(p2 −m2) = lim
ε→0

1
π

ε

(p2 −m2)2 + ε2
(3.83)

Similar field doublings appear for spin-1/2 fermions and for spin-1 vector
bosons.

It is interesting that perturbation theory at finite temperature can be
formulated directly in real time as well as in imaginary time. Our prefer-
ence is for the imaginary time formalism and this is the one adopted in
this book.

3.8 Exercises

3.1 Derive the diagrammatic rules for the neutral scalar field with a
cubic self-interaction gφ3 in 5 + 1 dimensions. Derive the lowest-
order diagrams for lnZI and Π.

3.2 Derive (3.35) to all orders.
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54 Interactions and diagrammatic techniques

3.3 Show that 1
2β coth (1

2βp0) has simple poles at p0 = 2πnTi with
residue 1 and is elsewhere analytic and bounded.

3.4 Show that Π1 is replaced by Πren
1 = Π1 + δm2 in (3.54) when the

corresponding diagrams with counterterms are included.
3.5 Show that (3.59) follows from (3.41) when λ � 1.
3.6 Prove (3.71).
3.7 Prove (3.75).
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4
Renormalization

Relativistic quantum field theories generally display infinities at suffi-
ciently high order in a loop expansion. These infinities must first be
regulated, meaning that cutoffs are applied to yield finite results that
can be manipulated with some mathematical rigor. The results are then
renormalized, so that the parameters of the Lagrangian and the cutoffs
are eliminated in favor of physical observables such as electric charge
and mass. If there are only a finite number of cutoffs as the number of
loops increases, the theory is said to be renormalizable and the cutoffs
can always be eliminated in favor of a finite number of observables. If
the number of required cutoffs increases without bound as the number
of loops increases then the theory is said to be nonrenormalizable and
one must specify an infinite number of observables to define the theory.
The general opinion is that a fundamental theory of nature should be
renormalizable. This is based on the belief that there are only a finite
number of independent parameters in our universe. An effective theory
only needs to describe nature over a finite range of distances or momenta,
and such a theory need not be renormalizable. In this chapter we consider
the basic aspects of a renormalizable theory and its implications for finite
temperatures. For definiteness we study a scalar field theory; the same
principles apply to more complicated theories, such as the gauge theories
to be studied in later chapters.

4.1 Renormalizing λφ4 theory

Recall that the interaction contribution to the partition function is given
by

lnZI = ln
( ∫

[dφ]eS∫
[dφ]eS0

)
(4.1)

55
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56 Renormalization

For the λφ4 theory the Lagrangian is

L = 1
2∂μφ∂μφ− 1

2m
2φ2 − λφ4 (4.2)

We found in Chapter 3 that we needed to add a counterterm −1
2δm

2φ2,
which is equivalent to saying that m2 = m2

R + δm2, where mR is the renor-
malized mass. The cutoff dependence of the self-energy at lowest order
could be canceled by a suitable choice of δm2.

Now we investigate what happens when we scale the field and the
coupling constant. Write

φ = Z1/2
3 φR (4.3)

Notice that we can integrate with [dφR] since Z3 cancels between the
numerator and denominator in (4.1). We also write

λ = Z1Z−2
3 λR (4.4)

The scaling factors Z1 and Z3 are known as the coupling constant and
the wavefunction renormalization, respectively. Usually in the literature
the symbol Z instead of Z is used for these, but here we do not want to
confuse them with the partition function.

The Lagrangian becomes

L = 1
2

[
∂μφR∂

μφR − (m2
R + δm2

)
φ2

R

]Z3 − λRφ
4
RZ1

= LR + 1
2

[
∂μφR∂

μφR −m2
Rφ

2
R

]
(Z3 − 1)

− 1
2Z3δm

2φ2
R − λRφ

4
R (Z1 − 1) (4.5)

where

LR = 1
2∂μφR∂

μφR − 1
2m

2
Rφ

2
R − λRφ

4
R (4.6)

The Lagrangian is thus expressed as a function of the renormalized field
and of the renormalized mass and coupling constant. The latter two
have numerical values that must be determined by experiment. All cut-
off dependence resides in the unobservable quantities Z1, Z3, and δm2.
In a perturbative renormalization scheme they should have power series
expansions

Z1 = 1 +
∞∑
n=1

anλ
n
R

Z3 = 1 +
∞∑
n=1

bnλ
n
R (4.7)

δm2 =
∞∑
n=1

cnλ
n
R
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4.2 Renormalization group 57

The coefficients an, bn, cn will depend in general upon the ultraviolet
cutoff Λc.

All renormalizable field theories can be dealt with in the manner
sketched above. The reader is referred to the excellent texts on relativistic
quantum field theory listed in the bibliography at the end of the chapter
for a full discussion of the renormalization program.

We remark again that whatever regularization and renormalization is
necessary and sufficient at zero temperature and chemical potential is
also necessary and sufficient at finite temperature and chemical potential.
(Recall the discussion in Section 3.4.)

4.2 Renormalization group

For the moment consider the λφ4 theory at T = 0 and with mR = 0. Gen-
eralization to mR > 0 and other theories is straightforward. The finite-
temperature effects are studied in Section 4.4.

Let Γ(n) be a 1PI Green’s function of n powers of the field φ. The
statement that the theory is renormalizable means that

Zn/2
3

(
λ,

Λc

M

)
Γ(n)(p, λ,Λc) = Γ(n)

R (p, λR,M) (4.8)

The unrenormalized Green’s function depends on the unrenormalized cou-
pling and on the cutoff Λc. The symbol p can represent one momentum
or a set of momenta (p1, p2, . . .). Since Z3 is dimensionless it can only
depend on λ and on Λc/M . What is M? Green’s functions are typically
infinite, so we must specify their value at some particular point, for exam-
ple, p2 = M2, using one or other of the following diagrams:

pp

or

pp

0 0

We could require Γ(n)
R to have its free-field value at p2 = M2, that is,

Γ(n)
R (p2 = M2, λR,M) = Γ(n)

R (p2 = M2, 0,M) (4.9)

as is frequently done, but the choice is arbitrary. Physical results should
be independent of the renormalization scheme, in particular, independent
of the choice of M .

The requirement of renormalizability has consequences. To see them,
take the total derivative of the left- and right-hand sides of (4.8) with
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respect to M , keeping λ and Λc fixed:

M
d

dM

(
Zn/2

3 Γ(n)
)

= M

(
∂Zn/2

3

∂M

)
λ,Λc

Γ(n)

(4.10)

M
d

dM
Γ(n)

R = M

(
∂Γ(n)

R

∂M

)
λR

+

(
∂Γ(n)

R

∂λR

)
M

(
∂λR

∂M

)
λ,Λc

Now for sake of convenience of notation define

γ(n) = −Z−n/2
3 M

(
∂Zn/2

3

∂M

)
λ,Λc

= Z−n/2
3 Λc

(
∂Zn/2

3

∂Λc

)
λ,M

=
1
2
nΛcZ−1

3

(
∂Z3

∂Λc

)
λ,M

= nγ(1) (4.11)

and

βλ = M

(
∂λR

∂M

)
λ,Λc

= −Λc

(
∂λR

∂Λc

)
λ,M

(4.12)

in the conventional notation. The quantity βλ must not be confused
with the inverse temperature. Putting these all together, we arrive at
the renormalization-group equation(

M
∂

∂M
+ βλ

∂

∂λR
+ γ(n)

)
Γ(n)

R = 0 (4.13)

All the Γ(n)
R must satisfy this equation on account of renormalizability. It

expresses the invariance of physical observables under changes in M , the
renormalization scale.

The renormalized 1PI Green’s function has the general functional form

Γ(n)
R = pDz

( p

M
, λR

)
where D is the dimension of Γ(n) and z is a dimensionless function of the
two displayed dimensionless variables. After substitution into (4.13), fac-
toring out pD, and then defining x = M/p, y = λR, we obtain the linear,
homogeneous, first-order partial differential equation(

x
∂

∂x
+ βλ(y)

∂

∂y
+ γ(n)(y)

)
z(x, y) = 0 (4.14)
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This equation can be solved by the method of characteristics. The solution
is

z = f(u(x, y)) exp
(∫ x0

x
γ(n)(x

′)
dx′

x′

)
(4.15)

Here x0 is a reference point, f is an arbitrary function, and u(x, y) = c
represents the relationship between x and y when they satisfy the differ-
ential equation

x
dy

dx
= βλ(y) (4.16)

The solution to this equation involves one constant of integration, cor-
responding to c. What is meant by γ(n)(x) is γ(n)(y(x)) where y(x) is
determined from u(x, y) = c. Translating this back into the original nota-
tion we have the solution to (4.13) as

Γ(n)
R = G

(
p, λ̄

(
M ′

M

))
exp

(∫ M ′/p

M/p
γ(n)(x)

dx

x

)
(4.17)

The function G is arbitrary and undetermined by the renormalization-
group equation. The renormalization-group running coupling λ̄ satisfies
the differential equation

χ
dλ̄

dχ
= βλ(λ̄) (4.18)

where χ = M ′/M , subject to the condition

λ̄(χ = 1) = λR (4.19)

The exponential in (4.17) is referred to as the anomalous dimension of
Γ(n)

R .
To the lowest nontrivial order, βλ is computed to be (Exercise 4.1)

βλ(λ̄) =
9

2π2
λ̄2 (4.20)

The differential equation to be solved is

χ
dλ̄

dχ
=

9
2π2

λ̄2 (4.21)

The solution satisfying (4.19) is

λ̄ =
λR

1 − (9/4π2)λR lnχ2
(4.22)
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The denominator may be expanded in a power series in λR:

λ̄ = λR

∞∑
n=0

[
9λR

4π2
ln
(
M ′2

M2

)]n
(4.23)

This expansion may be arrived at in a completely independent manner,
as follows. At each order in perturbation theory compute the logarith-
mic contribution of the highest power. This is known as the leading-log
approximation. One obtains the same result as a consequence of the renor-
malization group.

The renormalization-group running coupling λ̄ does not depend on M
and λR separately but only on a particular combination of them. In (4.22)
define

9
2π2

ln Λ ≡ λ−1
R +

9
2π2

lnM (4.24)

Furthermore, let us choose M ′2 = p2, the only natural scale in the prob-
lem. Then

λ̄ =
4π2

9 ln (Λ2/p2)
(4.25)

The effective coupling λ̄ no longer depends on the coupling λR originally
appearing in the Lagrangian! This is often referred to as dimensional
transmutation. There is no longer an intrinsic coupling constant, but in
its place there is an intrinsic energy scale Λ (not to be confused with
the cutoff Λc). The effective coupling λ̄ depends on the momentum p.
As p/Λ → 0, we have λ̄ → 0, which is infrared freedom. The coupling
effectively goes to zero at large distance so that weak coupling expansions
should be quite accurate there. Since to lowest order the beta function
βλ is positive, it follows that λ̄ must be larger at short distances. In fact,
from (4.25), λ̄ → ∞ as p/Λ → 1. This is certainly an artifact of the lowest-
order perturbation expansion of βλ, but nevertheless it indicates that the
coupling grows as the distance decreases.

4.3 Regularization schemes

We have regulated the divergences in the scalar field theory by placing an
upper limit on the integration over four-momentum in Euclidean space.
There are alternative regularization procedures, dimensional regulariza-
tion being the most commonly used by far. Dimensional regularization is
almost indispensable in gauge theories. The idea is to work in n = 4 − ε
dimensions where integrals converge and then analytically continue to
ε → 0.
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Consider the self-energy in scalar field theory. The one-loop expression
in Minkowski space is

Πvac
1 = −12λκε

∫
dnl

(2π)n
i

l2 −m2 + iε

= −12λκε

(2π)n
πn/2Γ(1 − n/2)

m2−n
(4.26)

This scheme requires the introduction of a mass scale κ to compensate
for the deviation from four dimensions and so ensuring that λ remains
dimensionless. The Γ function has poles at the negative integers. Using

Γ(−n + δ) =
(−1)n

n!

(
1
δ

+ ψ(n + 1) + O(δ)
)
, (4.27)

with

ψ(n + 1) = 1 +
1
2

+ · · · + 1
n
− γE (4.28)

where γE is Euler’s constant, we find that

Πvac
1 =

3λm2

4π2

[
2
ε

+ ψ(2) + ln
(
κ2

m2

)
+ ln 4π + O(ε)

]
(4.29)

This may be compared with the momentum cutoff scheme

Πvac
1 =

3λ
4π2

[
Λ2

c −m2 ln
(

Λ2
c

m2

)
+ O

(
m4

Λ2
c

)]
(4.30)

In the “minimal subtraction” scheme (MS) none of the constant terms
are absorbed into the mass, only the divergent 1/ε term. In the “modified
minimal subtraction” scheme (MS) the finite constant terms are absorbed
too. A similar absorption is made for the renormalized coupling.

The arbitrariness in choosing the counterterms is a reflection of the
whole regularization and renormalization program in quantum field the-
ory. After expressing physical observables in terms of them, there should
be no difference. However, the intrinsic scale Λ does depend on the scheme;
for example, there are ΛMOM, ΛMS, ΛMS, and so on. Their numerical values
will in general be different. This is nowhere more apparent than in QCD.

4.4 Application to the partition function

Now we investigate the implications of the renormalization group for the
partition function. Let T replace p. As given in (4.1), lnZI is comparable
with a Green’s function that is zeroth order in the field. It has dimension
exactly four and no anomalous dimension. Thus, (4.17) instructs us to
replace λR with λ̄. If we had an exact expression for lnZ then the choice of
renormalization scale M would indeed be arbitrary. Since we only compute
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a finite number of terms in a weak-coupling expansion, we should choose
M in an optimal way so as to minimize the contribution of higher-order
terms. For the massless self-interacting scalar field we take M = bT , where
b is a number of order unity, since this is the only energy scale in the
problem. We then have

λ̄ =
2π2

9 ln(Λ/bT )
(4.31)

As T/Λ → 0 the thermodynamics is well approximated by a gas of non-
interacting massless bosons. As T/Λ → 1 the system becomes strongly
coupled and the weak coupling expansion is no longer a reasonable approx-
imation. What really happens at very high temperatures is unknown.

In Chapter 3 the pressure was calculated up to order λ3/2. It has been
calculated up to order λ2 by Frenkel, Saa, and Taylor [1], and to order
λ5/2 by Parwani and Singh [2]. Using the minimal subtraction scheme,

P =
π2

90
T 4

{
1 − 5

24

(
9λR

π2

)
+

5
18

(
9λR

π2

)3/2

− 5
36

(
9λR

π2

)2 [3
4

ln
(

2πT
M

)
+ c1

]
+

5
36

(
9λR

π2

)5/2 [
ln
(

9λR

π2

)
+

3
2

ln
(

2πT
M

)
+ c2

]}
(4.32)

is obtained. Here the prime has been dropped from the M in accordance
with the notation in Section 4.2. The constants are given by

c1 =
3
8

ln (4π) +
1
2
ζ ′(−3)
ζ(−3)

− ζ ′(−1)
ζ(−1)

+
γE

8
+

59
60

≈ −0.606 85

c2 =
ζ ′(−1)
ζ(−1)

+
γE

4
− 2 ln 3 − 5

4
≈ −1.317 87 (4.33)

If the scale M is held fixed then the perturbative expansion is not reliable
at high temperatures on account of the logarithmic terms ln(2πT/M).
The renormalization group tells us that we should not choose M constant
but proportional to the temperature. If we choose M = bT then the large
temperature-dependent logarithms are of order unity. Indeed, if we choose
the coefficient b just right then there is no contribution of order λ2

R at all!
It is compensated by corresponding contributions at higher orders in λR.
Equivalently, we can eliminate the logarithmic terms ln(2πT/M) by re-
expressing the pressure in terms of the renormalization-group running
coupling from (4.23),

λ̄ = λR

[
1 +

9λR

2π2
ln
(
bT

M

)]
+ O(λ3

R) (4.34)

The result, of course, is the same.
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4.5 Exercises

4.1 Derive (4.20) from the definition (4.12). Hint: The renormalized cou-
pling λR can be determined from the expression −(1/3!)(δ2 lnZ1/
δD2

0)1PI. Use (3.11) and (3.15) to obtain a diagrammatic expansion
for λR. You will find that the order-λ2 correction is given by a single
one-loop diagram. Note that you only need the cutoff (Λc) depen-
dence to determine βλ.

4.2 Verify the claim surrounding (4.34).
4.3 Make a plot illustrating the convergence of the expansion of the

pressure in (4.32) using M = T . Repeat the exercise with M = πT ,
2πT , and 2πT e4c1/3.

4.4 Derive a renormalization-group equation for Γ(n)
R at finite tempera-

ture as well as finite momentum, and then find the solution. Discuss
how you might want to choose the optimal value of M when there
are two variables, p and T .
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5
Quantum electrodynamics

The single most important field theory is electromagnetism. It is respon-
sible for atomic structure and for the great diversity of materials around
us: solids, liquids, and gases. The development of nonrelativistic many-
body theory was stimulated primarily by solid state and condensed matter
physics, where the potentials used all derive from electromagnetism. This
compels us to study quantum electrodynamics at high temperatures and
densities where the motion of the electrons becomes relativistic. In met-
als, the density of plasma electrons rarely exceeds a few electrons per
cubic angstrom. This means that the Fermi momentum, kF = (3π2ne)1/3,
is of order 10 keV at most. Unfortunately, it is difficult to test relativistic
many-body theory in the basement of the physics building in table-top
experiments! Our attention must then be directed toward astrophysical
and cosmological applications. Dense astrophysical objects, such as white
dwarf stars, will be considered in Chapter 16.

There is another reason for developing the theory of QED at high tem-
perature and density, and that is the extension to a nonabelian gauge the-
ory, quantum chromodynamics (QCD). We may be able to study QCD at
high energy density in terrestrial experiments by colliding energetic heavy
nuclei (see Chapter 14).

5.1 Quantizing the electromagnetic field

First, let us consider the electromagnetic field in the absence of charged
particles. From classical physics we can write down a field strength tensor
as

Fμν = ∂μAν − ∂νAμ (5.1)

64
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5.1 Quantizing the electromagnetic field 65

where Aμ is the vector potential. The electric and magnetic fields are

Ei = −F0i = Fi0

Bi = 1
2εijkFjk or B = ∇× A

(5.2)

The Lagrangian density is

L = −1
4FμνF

μν (5.3)

Notice that Fμν is invariant under the local (or x-dependent) transforma-
tion

Aμ(x, t) → Aμ(x, t) − ∂μα(x, t) (5.4)

where α(x, t) is some smooth function of xμ. Since the field strength tensor
is invariant under this transformation, so are the electric and magnetic
fields, and so is the Lagrangian. This is called a U(1) gauge symmetry.

To quantize the theory and to compute a partition function, we need a
Hamiltonian formulation. In order to do this, we must agree on a gauge
to work in. A convenient gauge for this purpose is the axial gauge

A3(x, t) = 0 (5.5)

Actually (5.5) does not entirely fix the gauge, as any gauge function
α(x, y, t) that is independent of z leaves (5.5) unchanged. We shall fix
this residual gauge freedom later.

The conjugate momenta are defined by

πμ =
∂L

∂(∂0Aμ)
= F0μ (5.6)

(This should not viewed be as a tensor equation but as true component by
component.) Since Fμν is antisymmetric in its Lorentz indices, it follows
that π0 = 0. Thus A0 is not a dynamical field, it is a dependent field. The
independent fields are A1 and A2 with conjugate momenta

π1 = F01 = −E1 = ∂0A1 − ∂1A0

π2 = F02 = −E2 = ∂0A2 − ∂2A0 (5.7)

These two independent fields actually correspond to the two polarization
degrees of freedom of free radiation.

The z component of the electric field is

E3 = F30 = ∂3A0 (5.8)

Since A3 = 0 there is no momentum conjugate to A3; hence E3, like A0,
must be a dependent field. We can determine E3 by an application of
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Gauss’s law, which, in the absence of charged particles, is

∇ · E = 0 (5.9)

Thus,

E3(x, y, z, t) =
∫ z

z0

dz′[∂1π1(x, y, z′, t) + ∂2π2(x, y, z′, t)] + P (x, y, t)

(5.10)

and

A0(x, y, z, t) =
∫ z

z0

dz′′E3(x, y, z′′, t) + Q(x, y, t) (5.11)

Here, P and Q are smooth functions of x, y, and t. The gauge is not
completely fixed until these two functions are specified. They may be
determined by specifying the values of A0 and E3 at z = z0 for all x, y,
and t.

The Hamiltonian may now be found from the Lagrangian in the canoni-
cal way (see (2.23)). Dropping surface terms we find the well-known result

H = 1
2E

2 + 1
2B

2 = 1
2π

2
1 + 1

2π
2
2 + 1

2E
2
3(π1, π2) + 1

2B
2 (5.12)

The partition function is

Z =
∫

[dπ1][dπ2]
∫

periodic
[dA1][dA2]

× exp
[∫ β

0
dτ

∫
d3x

(
iπ1

∂A1

∂τ
+ iπ2

∂A2

∂τ
−H

)]
(5.13)

Since we have a free-field theory, we should be able to calculate Z exactly.
However, in the present form this is not easy since it is a rather compli-
cated function of π1 and π2.

To put (5.12) and (5.13) in a more manageable form we insert the
identity

1 =
∫

[dπ3]δ(π3 + E3(π1, π2)) (5.14)

and replace E3 with −π3 in the integrand. Note that, despite the sugges-
tive notation, π3 is not the conjugate momentum of any field; (5.14) is
simply the condition on E3 that ensures Gauss’s law. Now

δ(π3 + E3(π1, π2)) = δ(∇ · π) det
(
∂(∇ · π)

∂π3

)
(5.15)

Furthermore,

det
(
∂(∇ · π)

∂π3

)
= det(∂3) (5.16)
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Thus far we have

Z =
∫

[dπ1][dπ2][dπ3]
∫

periodic
[dA1][dA2]δ(∇ · π) det(∂3)

× exp
[∫ β

0
dτ

∫
d3x

(
iπ1

∂A1

∂τ
+ iπ2

∂A2

∂τ
− 1

2π
2 − 1

2B
2

)]
(5.17)

The constraint of Gauss’s law can be implemented alternatively by
using the integral representation of the delta function. In vacuum field
theory we would write

δ(∇ · π) =
∫

[dA0] exp
(
i

∫
d4xA0 ∇ · π

)
(5.18)

where A0 is some auxiliary field, or a Lagrange multiplier field. At finite
temperature we make the replacement t → −iτ and now also A0 → iA0.
Thus

δ(∇ · π) =
∫

[dA0] exp
(
i

∫ β

0
dτ

∫
d3xA0 ∇ · π

)
(5.19)

Using this representation to implement Gauss’s law, we may integrate
over π directly:

Z =
∫

[dπ1][dπ2][dπ3]
∫

[dA0][dA1][dA2] det(∂3)

× exp
[∫ β

0
dτ

∫
d3x

(
iπ1

∂A1

∂τ
+ iπ2

∂A2

∂τ
− i∇A0 · π − 1

2π
2 − 1

2B
2

)]
=
∫

[dA0][dA1][dA2] det(∂3)

× exp

{∫ β

0
dτ

∫
d3x

[
1
2

(
i
∂A
∂τ

− i∇A0

)2

− 1
2B

2

]}
(5.20)

where A = (A1, A2, 0) and we have ignored an irrelevant overall normal-
ization constant. Notice that the argument of the exponential is

1
2E

2 − 1
2B

2 = L (5.21)

Making this identification and inserting the factor

1 =
∫

[dA3]δ(A3) (5.22)

we arrive at

Z =
∫

periodic
[dAμ]δ(A3) det(∂3) exp

(∫ β

0
dτ

∫
d3xL

)
(5.23)
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The axial gauge is not necessarily a convenient gauge to use for practical
computations. Furthermore, it is not immediately apparent that (5.23) is
a gauge-invariant expression for Z. Take an arbitrary gauge specified by
F = 0, where F is some function of Aμ and its derivatives. For the axial
gauge above, F = A3. For this gauge, (5.23) becomes

Z =
∫

periodic
[dAμ]δ(F ) det

(
∂F

∂α

)
exp

(∫ β

0
dτ

∫
d3xL

)
(5.24)

Equation (5.24) is manifestly gauge invariant: L is invariant, the gauge-
fixing factor times the Jacobian of the transformation δ(F ) det(∂F/∂α)
is invariant, and the integration is over all four components of the vector
potential. Equation (5.24) reduces to (5.23) in the case of the axial gauge
A3 = 0. We know this is correct since it was derived from first principles
in the Hamiltonian formulation of the gauge theory, Z = Tr e−βH .

5.2 Blackbody radiation

It is important to verify that (5.24) describes blackbody radiation with
two polarization degrees of freedom. We shall do this in two different
gauges, the axial gauge A3 = 0 and the covariant Feynman gauge.

In the axial gauge, we rewrite (5.20) as

Z =
∫

[dA0][dA1][dA2] det(∂3) eS0 (5.25)

where

S0 = 1
2

∫
dτ

∫
d3x (A0, A1, A2)

×
⎛⎝ ∇2 −∂1∂τ −∂2∂τ

−∂1∂τ ∂2
2 + ∂2

3 + ∂2
τ −∂1∂2

−∂2∂τ −∂1∂2 ∂2
1 + ∂2

3 + ∂2
τ

⎞⎠⎛⎝A0

A1

A2

⎞⎠
We may express the determinant of ∂3 as a functional integral over a
complex ghost field C, which is a Grassmann field with spin 0:

det(∂3) =
∫

[dC̄][dC] exp
(∫ β

0
dτ

∫
d3x C̄∂3C

)
(5.26)

(This is (2.82) generalized to an infinite number of degrees of freedom.)
These ghost fields C and C̄ are not physical fields since they do not
appear in the Hamiltonian. Furthermore, since they are anticommuting
scalar fields they violate the spin-statistics theorem. They are simply a
convenient functional integral representation of the determinant of an
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operator. The great usefulness of these fictitious ghost fields will be in
nonabelian gauge theories.

In frequency–momentum space the partition function is expressed as

lnZ = ln det(βp3) − 1
2 ln detD (5.27)

where

D = β2

⎛⎝ p2 −ωnp1 −ωnp2

−ωnp1 ω2
n + p2

2 + p2
3 −p1p2

−ωnp2 −p1p2 ω2
n + p2

1 + p2
3

⎞⎠
Carrying out the determinantal operation,

lnZ = 1
2Tr ln

(
β2p2

3

)− 1
2 Tr ln

[
β6p2

3

(
ω2
n + p2

)2]
= ln

{∏
n

∏
p

[
β2(ω2

n + p2)
]−1

}

= 2V
∫

d3p

(2π)3
[
−1

2βω − ln(1 − e−βω)
]

(5.28)

Here, ω = |p|. Comparison with (2.40) shows that (5.28) describes mass-
less bosons with two spin degrees of freedom in thermal equilibrium; in
other words, blackbody radiation.

A family of covariant gauges is given by the condition

F = ∂μAμ − f(x, τ) = 0 (5.29)

where f is an arbitrary function. Under a gauge transformation,

F = ∂μ(Aμ − ∂μα) − f = ∂μAμ − f − ∂2α (5.30)

and ∂F/∂α = −∂2. Inserting into (5.24) yields

Z =
∫

[dAμ] det(−∂2) δ(∂μAμ − f) exp
(∫ β

0
dτ

∫
d3xL

)
(5.31)

The physics contained in Z is unchanged if we first multiply by

exp
(
− 1

2ρ

∫
dτ

∫
d3x f2

)
and then do a functional integration over f ,

Z =
∫

[dAμ] det(−∂2) exp
(∫

dτ

∫
d3xLeff

)
(5.32)
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where

Leff = L − 1
2ρ

(∂μAμ)2

is the effective Lagrangian, including the gauge-fixing term, and ρ is any
real number. The Feynman gauge corresponds to the choice ρ = 1 and
the Landau gauge to ρ = 0.

The partition function should be independent of α and should be the
same as in the axial gauge. For simplicity, we examine Z in the Feynman
gauge. Then,∫

dτ

∫
d3xLeff = 1

2

∫
dτ

∫
d3xAμ

(
∂2
τ + ∇2

)
Aμ (5.33)

where the summation over μ is Euclidean because in (5.19) we let A0 →
iA0. We again employ a ghost field to write

det(−∂2) =
∫

[dC̄][dC] exp
(∫

dτ

∫
d3x (∂μC̄)(∂μC)

)
(5.34)

Combining (5.32) with (5.34), we get

lnZ = 2
(

1
2

)
Tr ln

[
β2
(
ω2
n + p2

)]
+ 4
(−1

2

)
Tr ln

[
β2
(
ω2
n + p2

)]
(5.35)

The four degrees of freedom of the Aμ field combine with the two degrees
of freedom of the C (ghost) field, which contribute with the opposite
sign, to produce just the correct number of physical degrees of freedom.
The complex ghost field cancels the unphysical degrees of freedom of the
longitudinal and timelike photons. Equation (5.35) is the same as (5.28).

5.3 Diagrammatic expansion

Photons interact with fermions (to be specific, we shall consider electrons)
with the interaction Lagrangian

LI = −eψ̄Aψ (5.36)

where e is the electronic charge. By far the most frequently used gauges
are the covariant gauges. The partition function is

Z =
∫

[dC̄][dC][dAμ][dψ̄][dψ] exp
(∫

dτ

∫
d3xL

)
(5.37)

where

L = L0 + LI
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and

L0 = ψ̄(i ∂ −m + μγ0)ψ − 1
4F

μνFμν

− 1
2ρ

(∂μAμ)2 + (∂μC̄)(∂μC)

The ghost field does not interact with any other field but serves only to
cancel two of the four gauge-field degrees of freedom in the ideal gas term.

The partition function and other physical quantities of interest may be
formally expanded in a power series in LI or e. The diagrammatic rules
closely parallel those discussed in Chapter 3. The bare propagators and
vertex are:

fermion G0 =
1

p−m
=

p

p0 = (2n + 1)πT i + μ (5.38)

photon Dμν
0 =

1
p2

[gμν − (1 − ρ)pμpν/p2] =
μ ν

p0 = 2nπTi

vertex

−eγμ =

μ

As an example, the lowest-order correction to the ideal gas of photons,
electrons, and positrons is

lnZ2 = −1
2 (5.39)

The photon self-energy at one loop is

Πμν = D−1
μν −D0

−1
μν = (5.40)

5.4 Photon self-energy

The photon self-energy is related to the inverse of the full and bare prop-
agators by

Πμν = D−1
μν −D0

−1
μν (5.41)

The inverse propagator is related to the propagator by

DμαD−1
αν = gμν (5.42)

The propagator and the self-energy satisfy certain fundamental con-
straints. To discover them, it is convenient to work with k0 = 2nπTi ana-
lytically continued to arbitrary complex values. (Recall our analysis of
Section 3.4. This continuation will be taken up again in Chapter 6.) Let
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kμ be the four-momentum of the photon. Current conservation requires
that Πμν be transverse,

kμΠμν = 0 (5.43)

and gauge invariance requires that

kμkνDμν = ρ (5.44)

in a covariant gauge specified by ρ. Both these constraints hold at T >
0, μ = 0, as well as in the vacuum. The interested reader is referred to
Fradkin [1] for a proof of (5.43). The proof of (5.44) will now be outlined.

Consider making the gauge transformation Aμ → Aμ − ∂μα, ψ → eieαψ
in the partition function as expressed in (5.37). All terms are manifestly
independent of α apart from the gauge-fixing term, which becomes

− 1
2ρ

(∂μAμ − f)2

where

f = ∂2α

By construction, the partition function is gauge invariant. Therefore, if
we functionally differentiate lnZ with respect to f any number of times,
we must get zero. In particular,

δ lnZ

δf(x, τ)
=

〈∂μAμ(x, τ)〉
ρ

− f(x, τ)
ρ

= 0

δ2 lnZ

δf(x, τ)δf(x′, τ ′)
=

〈∂μAμ(x, τ)∂νAν(x′, τ ′)〉
ρ2

− 〈∂μAμ(x, τ)〉f(x′, τ ′)
ρ2

(5.45)

− δ(τ − τ ′)δ(x − x′)
ρ

= 0

Evaluating (5.45) at f = 0 and taking the Fourier transform, we obtain
(5.44). A constraint on the thermal average of a product of N vector
potentials is likewise obtained by differentiating N times lnZ with respect
to f , and then setting f = 0.

The propagator, its inverse, and the self-energy, are all symmetric
second-rank tensors. Assuming rotational invariance (which would not
be correct for a solid) the most general tensor of this type is a linear
combination of gμν , kμkν , uμuν , and kμuν + kνuμ. Here uμ = (1, 0, 0, 0)
specifies the rest frame of the many-body system. Taking into account
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(5.41) to (5.44) we obtain the general forms

Πμν = GPμν
T + FPμν

L

Dμν =
1

G− k2
Pμν

T +
1

F − k2
Pμν

L +
ρ

k2

kμkν

k2
(5.46)

(D−1)μν = (G− k2)Pμν
T + (F − k2)Pμν

L +
kμkν

ρ

The quantities F and G are scalar functions of k0 and |k|. The two pro-
jection operators are four-dimensionally transverse, but one is also three-
dimensionally transverse (PT) while the other is three-dimensionally lon-
gitudinal (PL):

P 00
T = P 0i

T = P i0
T = 0

P ij
T = δij − kikj/k2 (5.47)

Pμν
L = kμkν/k2 − gμν − Pμν

T

These have the properties

Pμσ
L PLσν = −Pμ

Lν

Pμσ
T PTσν = −Pμ

Tν

kμP
μν
T = kμP

μν
L = 0 (5.48)

Pμσ
L PTσν = 0

Pμ
Lμ = −1

Pμ
Tμ = −2

In the vacuum there is no preferred rest frame, so the vector uμ cannot
play any role (it is not defined). Also, in the vacuum Πμν must be propor-
tional to gμν − kμkν/k2; hence F = G. Furthermore, G can only depend
on k2. At finite temperature and density, however, F and G can depend
on k0 = u · k and |k| =

√
(u · k)2 − k2 separately, owing to the lack of

Lorentz invariance.
Let us evaluate the photon self-energy at the one-loop level. From

(5.40),

Πμν = e2T
∑
l

∫
d3p

(2π)3
Tr
(
γν

1
p−m

γμ
1

p+ k −m

)
(5.49)

Here p0 = (2l + 1)πTi + μ and k0 = 2nπTi. We can always write Πμν =
Πμν

vac + Πμν
mat, where

Πμν
vac = lim

T→0
μ→0

Πμν (5.50)
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is the vacuum self-energy and Πμν
mat is the remainder due to the presence of

matter. The vacuum part is discussed in many textbooks on field theory,
such as Peskin and Schroeder [2]. The matter part is readily evaluated:

Π00
mat = − e2

π2
Re
∫ ∞

0

dp p2

Ep
NF(p)

[
1 +

4Epk
0 − 4E2

P − k2

4pω
ln
(
R+

R−

)]
(5.51)

Πμ
matμ = −2

e2

π2
Re
∫ ∞

0

dp p2

Ep
NF(p)

[
1 − 2m2 + k2

4pω
ln
(
R+

R−

)]
Here

ω = |k| k2 = k2
0 − ω2 Ep =

√
p2 + m2

NF(p) =
1

eβ(Ep−μ) + 1
+

1
eβ(Ep+μ) + 1

R± = k2 − 2k0Ep ± 2pω

Also, the reader should note that here we define the action of the operator
Re as follows: Ref(k0) = 1

2 [f(k0) + f(−k0)].
Various limits of (5.51) are of physical interest. They correspond to the

screening of electric and magnetic fields and plasma oscillations. These
topics are discussed in Chapter 6 in particular, in the context of linear
response theory.

5.5 Loop corrections to lnZ

5.5.1 Two loops

The lowest-order correction to lnZ due to interactions is the two-loop
diagram seen in (5.39). There are two methods of doing explicit calcula-
tions with such diagrams. In the traditional method the frequency sums
are performed directly. Another method uses analytic continuation and
contour integrals, as discussed in Chapter 3. Both methods must of course
give the same answer, but usually the contour integral method is much
easier.

From (5.39), we have in the Feynman gauge the exchange contribution

lnZex

βV
= −1

2
e2

∫
d3p

(2π)3
d3q

(2π)3
d3k

(2π)3
(2π)3δ(p − q − k)

× T 3
∑

np,nq,nk

βδnp,nq+nk

Tr[γμ(p + m)γμ(q + m)]
k2(p2 −m2)(q2 −m2)

(5.52)
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The trace is readily carried out. Apart from integration over three-
momenta this becomes

−8T 3
∑

np,nq,nk

βδnp,nq+nk

2m2 − p · q
k2(p2 −m2)(q2 −m2)

(5.53)

The Kronecker delta may be written as

βδnp,nq+nk
=
∫ β

0
dθ exp[θ(p0 − q0 − k0)]

=
exp

[
β(p0 − q0 − k0)

]− 1
p0 − q0 − k0

(5.54)

where p0 = (2np + 1)πTi + μ, q0 = (2nq + 1)πTi + μ, and k0 = 2nkπT i.
Since q0 and k0 enter the argument of the exponential with minus signs
we multiply by − exp[β(k0 + q0 − μ)], which is unity when evaluated on
the integers. This procedure ensures that the integrands of the contour
integrals fall off exponentially before the θ integration is performed, so
that one never need worry about contributions from contours distorted
out to infinity. This procedure also guarantees that the normal vacuum
is recovered in the limit of zero temperature and chemical potential (see
the discussion in the papers of Norton and Cornwall [3] and Kapusta [4]).
With this analytic continuation of the Kronecker delta, (5.53) becomes

−8T
∑
nk

1
k2

T
∑
np

1
p2 −m2

T
∑
nq

1
q2 −m2

I(p0, q0, k0) (5.55)

where

I(p0, q0, k0) =
2m2 − p · q
p0 − q0 − k0

{exp[β(k0 + q0 − μ)] − exp[β(p0 − μ)]}

Notice that I has no singularities. Hence, each of the sums may be
converted to a contour integral via (3.40) and (3.71), and these contour
integrations may be performed simultaneously and independently. For
example,

T
∑
np

1
p2 −m2

I(p0, q0, k0)

= I(Ep, q
0, k0)

N−
F (p)
2Ep

+ I(−Ep, q
0, k0)

N+
F (p) − 1
2Ep

(5.56)
T
∑
nk

1
k2

I(p0, q0, k0)

= −I(p0, q0, ω)
NB(k)

2ω
− I(p0, q0,−ω)

NB(k) + 1
2ω

https://doi.org/10.1017/9781009401968 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968


76 Quantum electrodynamics

where the fermion and boson occupation numbers are

N±
F (p) =

1
exp[β(Ep ± μ)] + 1

(5.57)
NB(k) =

1
exp(βω) − 1

and ω = |k|, Ep =
√

p2 + m2.
As is evident, the contour integration method has two obvious advan-

tages over the direct summation method. First, the contour integrals may
be evaluated independently of each other whereas the direct summations
must be done in consecutive order. This is a great algebraic simplifica-
tion, which becomes more pronounced as the complexity of the diagram
increases. Second, the contour integration puts each particle on its mass
shell automatically.

When (5.56) is used to evaluate (5.55), one finds terms that are
quadratic in the occupation numbers, terms that are linear, and terms
that are independent of the occupation numbers. Those that are indepen-
dent represent the energy shift of the vacuum and are not of interest to
us. Those that are linear are canceled by the fermion and photon vacuum
self-energy renormalizations. These are represented as

−

( (

− 1
2

( (

the angled parentheses indicating that the T = μ = 0 limit of the sub-
graph is to be taken (cf. (3.49)). Putting all the above together we find
the two-loop result:

lnZex

βV
= − 1

6
e2T 2

∫
d3p

(2π)3
NF(p)
Ep

− 1
2
e2

∫
d3p

(2π)3
d3q

(2π)3
1

EpEq

×
{(

1 +
2m2

(Ep − Eq)2 − (p − q)2

)
[N−

F (p)N−
F (q) +N+

F (p)N+
F (q)]

+
(
1 +

2m2

(Ep + Eq)2 − (p − q)2

)
[N−

F (p)N+
F (q) +N+

F (p)N−
F (q)]

}
(5.58)

where NF = N+
F + N−

F . This is referred to as the exchange term because
in the T = 0 limit it arises from the exchange of the three-momenta of
a pair of fermions in the Fermi sea. Various limits of the exchange term
are of interest, and so are listed below; note that the Fermi momentum is
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pF =
√
μ2 −m2 when |μ| > m:

lnZex

βV
= − e2

(2π)4

{
3
2

[
μpF −m2 ln

(
μ + pF

m

)]2

− p4
F

}
(T = 0) (5.59)

lnZex

βV
= − e2

288

(
5T 4 +

18
π2

μ2T 2 +
9
π4

μ4

)
(m = 0) (5.60)

lnZex

βV
=

e2

2(2π)3
m2T 2e2(μ−m)/T (T � m− μ � m) (5.61)

Equation (5.59) will be useful in our discussion of white dwarf stars.
Equation (5.60) will reappear in QCD plasma. Equation (5.61) modifies
the classical ideal gas equation of state to P = nT − e2n2/8mT .

5.5.2 Ring diagrams

The next order to contribute is not e4 as naively expected but e3 when
T > 0 and e4 ln e2 when T = 0 but μ = 0. These arise from the set of ring
diagrams shown in (3.54), where the photon self-energy is given to lowest
order by (5.40),

lnZring

βV
= −1

2T
∑
n

∫
d3k

(2π)3
Tr {ln [1 + D0(k)Π(k)] −D0(k)Π(k)} (5.62)

Making use of the explicit forms of D0 and Π as given by (5.46), we may
carry out the trace operation to obtain

lnZring

βV
= −1

2T
∑
n

∫
d3k

(2π)3

{
2
[
ln
(

1 − G(n, ω)
k2

)
+

G(n, ω)
k2

]

+ ln
(

1 − F (n, ω)
k2

)
+

F (n, ω)
k2

}
(5.63)

Note that F and G are functions of n (since k0 = 2πnTi) and ω = |k|. The
terms involving G have a coefficient of 2 relative to the terms involving F .
The reason is that there are two transverse degrees of freedom but only
one longitudinal degree of freedom (Pμ

Tμ = −2, Pμ
Lμ = −1). Note that the

expressions (5.62) and (5.63) are manifestly gauge invariant since the ρ-
dependent part of D0 vanishes, as a consequence of current conservation,
when it multiplies Π.

Since −k2 = ω2 + 4π2T 2n2, the logarithms may be expanded to second
order in F and G to give an e4 contribution, as long as n = 0. If either
F (n = 0, ω → 0) or G(n = 0, ω → 0) does not vanish then expan-
sions of the logarithms do not converge. To isolate this potential infrared
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divergence, we write

−1
2T

∫
d3k

(2π)3

[
2 ln

(
1 +

G(0, 0)
ω2

)
− 2G(0, 0)

ω2
+ ln

(
1 +

F (0, 0)
ω2

)
− F (0, 0

ω2

]
(5.64)

The remaining terms, which are explicitly of order e4 and which have no
infrared divergence, are

1
4
T

∫
d3k

(2π)3

⎧⎨⎩∑
n�=0

[
2
(
G(n, ω)

k2

)2

+
(
F (n, ω
k2

)2
]

+ 2
(
G(0, ω)

ω2

)2

− 2
(
G(0, 0)
ω2

)2

+
(
F (0, ω)

ω2

)2

−
(
F (0, 0)
ω2

)2
}

(5.65)

Upon examination of (5.46) and (5.51) we find that G(n = 0, ω → 0) = 0
but

F (n = 0, ω → 0) =
e2

π2

∫ ∞

0

dp

Ep

(
p2 + E2

p

)
NF(p) (5.66)

After integrating over k in (5.64), we find the order-e3 contribution,

lnZring

βV
=

T

12π
F 3/2(0, 0) (5.67)

This result, nonanalytic in α = e2/4π, is precisely analogous to our result
in Chapter 3 for the massless λφ4 theory. The nonanalyticity here arises
because interactions at finite temperature and density generate a static
electric screening mass for the photon.

There are several interesting limits of F (n = 0, ω → 0). In the ultrarel-
ativistic limit (m = 0),

F (0, 0) = e2

(
T 2

3
+

μ2

π2

)
(5.68)

In the nonrelativistic limit and with classical statistics,

F (0, 0) =
2e2

T

(
mT

2π

)3/2

e(μ−m)/T (5.69)

which, when inserted in (5.67), is the well-known Debye–Hückel formula.
At zero temperature, the discrete frequency of the photon becomes

continuous and the n = 0 mode cannot be isolated. From (3.40),

lim
T→0

T
∑
n

=
1

2πi

∫ i∞

−i∞
dk0 =

1
2π

∫ ∞

−∞
dk4 (5.70)
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At T = 0 it is convenient to work in Euclidean space with k4 = −ik0 and
with k̄2 = k2

4 + k2 = −k2 ≥ 0. Both F and G are functions of |k̄| and φ,
where tanφ = |k|/k4. Then (5.63) becomes

lnZring

βV
= − 1

(2π)3

∫ ∞

0
dk̄2 k̄2

∫ π/2

0
dφ sin2 φ

×
{

2
[
ln
(

1 +
G(k̄2, φ)

k̄2

)
− G(k̄2, φ)

k̄2

]
+ ln

(
1 +

F (k̄2, φ)
k̄2

)
− F (k̄2, φ)

k̄2

}
(5.71)

The potential infrared divergence in (5.71) may be isolated by setting
k̄ = 0 whenever possible in the integrand:

− 1
(2π)3

∫ ∞

0
dk̄2 k̄2

∫ π/2

0
dφ sin2 φ

{
2 ln

(
1 +

G(0, φ)
k̄2

)
+ ln

(
1 +

F (0, φ)
k̄2

)

− 2G(0, φ) + F (0, φ)
k̄2

+
1

2k̄2

1
k̄2 + μ2

[F 2(0, φ) + 2G2(0, φ)]
}

(5.72)

Notice the term 1/(k̄2 + μ2). The choice of μ2 is arbitrary; any choice
independent of e2 will give the same coefficient of e4 ln e2. After integrating
over k̄2, (5.72) becomes

− 1
2(2π)3

∫ π/2

0
dφ sin2 φ

{
F 2(0, φ)

[
ln
(
F (0, φ)

μ2

)
− 1

2

]
+ 2G2(0, φ)

[
ln
(
G(0, φ)

μ2

)
− 1

2

]}
(5.73)

The explicit forms of F (0, φ) and G(0, φ) may be substituted in (5.73)
and the integration performed. A lengthy analysis yields

lnZring

βV
= −e4 ln e2

128π6

[
(6 − 4 ln 2)μp3

F − 5μ2p2
F + 4μ3pF ln

(
μ + pF

μ

)
+ 6μm2pF ln

(
μ+ pF

25/3μ

)
−m2(4μ2 +m2) ln2

(
μ+ pF

m

)
+ m2μ(4μ2 + m2)

I(a)
pF

]
(5.74)

where

I(a) =
∫ ∞

0

dx

a2x2 − 1
ln
(
x + 1
x− 1

)
a =

μ

pF
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The ultrarelativistic limit is

lnZring

βV
= −e4 ln e2

128π6
μ4 (5.75)

and the nonrelativistic limit is

lnZring

βV
= −e4 ln e2

48π6
(1 − ln 2)μp3

F (5.76)

5.5.3 Three loops at finite density

The three-loop diagrams not included in the ring sum are

+ (5.77)

The evaluation of these diagrams is technically quite involved because of
overlapping ultraviolet divergences. For further discussion, see Freedman
and McLerran [5] and Baluni [6].

The result of evaluating (5.77) together with the order-e4 contribution
from the sum of ring diagrams is

P =
μ4

12π2

[
1 − 3

2
α(M)
π

− 3
2

(
α(M)
π

)2

ln
(
α(M)
π

)

− 1
2

(
α(M)
π

)2

ln
(

μ2

M2

)
+ (2.118 19)

(
α(M)
π

)2
]

(5.78)

Certain integrals had to be done numerically in producing this result,
giving the number in the coefficient of α2. The photon wavefunction
renormalization constant Z3 was defined at a Euclidean subtraction point
k̄2 = M2. Equivalently, the photon self-energy was renormalized in such
a way that F (k̄2 = M2, μ = 0) = G(k̄2 = M2, μ = 0) = 0.

The choice of subtraction energy M is completely arbitrary. In (5.78)
notice that a logarithm of μ/M appears. At higher orders of α, higher
powers of the logarithm will appear. Therefore, to reduce the importance
of higher-order terms at high density we are free to choose M = μ. (The
optimum choice of the constant of proportionality between M and μ is
not known.) Then (5.78) becomes

P =
μ4

12π2

[
1 − 3

2
α(μ)
π

− 3
2

(
α(μ)
π

)2

ln
(
α(μ)
π

)

+ (2.118 19)
(
α(μ)
π

)2
]

(5.79)
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The next question is: What is α(μ)? From our knowledge of the renor-
malization group we know that α(μ) must satisfy a renormalization-group
equation. To lowest order,

M
dα

dM
= c0α

2 (5.80)

In massless QED the constant c0 is computed to be 2π/3. Realizing that
we have chosen M = μ to suppress large logarithms at high density, we
find that the renormalization-group running coupling is

α

(
μ

μ0

)
=

α(1)
1 − [2α(1)/3π)] ln(μ/μ0)

(5.81)

Here μ0 is some reference scale and α(1) is the value of the coupling at
that scale. Just as in (4.24), (4.25) for the massless λφ4 theory, we can
combine α(1) and μ0 into one constant Λ. Then

α
(μ

Λ

)
=

3π
2 ln(Λ/μ)

(5.82)

Here Λ is the intrinsic energy scale of massless QED. This theory is not
asymptotically free. Therefore, when μ � Λ the coupling α(μ/Λ) is very
small. The perturbative expansion of the partition function for a cold
high-density electron gas converges rapidly until μ � Λ is reached. This
limitation is not of practical significance because the intrinsic energy scale
Λ ∼ mee137 is astronomically large (me = 0.511 MeV).

It is apparent that the perturbation series for P in (5.79) is rapidly con-
vergent at non-astronomically-large densities because α/π � 2.3 × 10−3.

5.5.4 Three loops at finite temperature

The pressure for finite temperature QED has been calculated for μ = 0
up to order e5. We first show results up to e4. See Corianò and Parwani
[7] for the details (especially on the delicate handling of the singular-
ities). The usual zero-temperature ultraviolet singularities are regular-
ized through dimensional regularization, ensuring that the physical result
is gauge invariant. Evaluating the diagrams (5.77) at finite temperature
for Nf electron flavors (physical QED corresponds to Nf = 1), with the
appropriate counterterms, yields

P

T 4
=

π2

45

(
1 +

7
4
Nf

)
− 5e2Nf

288

+
e3

12π

(
Nf

3

)3/2

+
e4Nf

π6
(0.4056 ± 0.0030)

− e4N2
f

[
0.4667 ± 0.0020

π6
+

5
1728π2

ln
(

T

M

)]
(5.83)
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The above also includes the e4 contribution for the set of ring diagrams
discussed earlier. As before the uncertainties in the quantities are due to
the numerical evaluation of some integrals. Note that the coupling in the
expression for the pressure is to be evaluated at some renormalization
scale M . This scale M may be chosen on physical grounds: for example,
setting M = T will eliminate the logarithm at this and higher orders.
An alternative procedure is to use renormalization-group arguments to
relate the coupling e at some scale M to that at another scale set by the
temperature. Doing this, one may write

e2(T ) = e2

[
1 +

e2Nf

6π2
ln
(

T

M

)]
+ O(e6) (5.84)

where e is the coupling in (5.83). Defining α(T ) = e2(T )/4π, (5.83) can
be written as

P

T 4
=

π2

45

(
1 +

7
4
Nf

)
− 5π2

72
α(T )Nf

π
+

2π2

9
√

3

(
α(T )Nf

π

)3/2

+
(

0.658 ± 0.006
Nf

− 0.757 ± 0.004
)(

α(T )Nf

π

)2

+ O
(
α(T )5/2

)
(5.85)

The logarithm in (5.83) has disappeared and has been absorbed into the
renormalization-group redefinition of the coupling constant.

The order-e5 contribution is then obtained by resumming the boson
propagators in (5.77) through a ring insertion, as discussed previously.
The details appear in Parwani and Corianò [8]; the result is

P5

T 4
=
(
α(T )Nf

π

)5/2(π2 [1 − γE − ln(4/π)]
9
√

3
− π2

2Nf

√
3

)
(5.86)

where γE is Euler’s constant.

5.6 Exercises

5.1 Prove (5.12).
5.2 Derive the blackbody radiation formula from (5.32) for arbitrary ρ.
5.3 Discuss what happens when the nonlinear gauge F = AμAμ −

f(x, τ) = 0 is chosen.
5.4 Derive the free-photon propagator given by (5.38).
5.5 Obtain the general forms given in (5.46) for the in-medium photon

propagator and its inverse.
5.6 Repeat the calculation in the text for lnZex but with an arbitrary

covariant gauge parameter ρ. Is the result independent of ρ?
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5.7 Using (5.51) and (5.46), find the limits of F and G when k2 = k2
0 −

k2 = 0.
5.8 Determine the combinatoric factors for the two diagrams of (5.77).
5.9 Derive (5.63) from (5.62).
5.10 Calculate the relative contributions to the pressure in QED at finite

temperature and zero electron mass from orders 0, 2, 3, 4 and 5 in e
for arbitrary Nf .
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6
Linear response theory

Suppose that a solid is hit with a hammer. Sound waves will propa-
gate outwards from the point of contact. How is the frequency of the
sound wave related to its wave number? How does a light wave propa-
gate through plasma? What happens when a charge impurity is embedded
in an electrically neutral medium? Is it screened, and if so how is that
screening described quantitatively? If a medium is disturbed by a small
amount one might expect its response also to be small. The quantitative
formalism for dealing with small disturbances is called linear response
theory. The beauty of the theory is that the response of the system can
be expressed as a folding of the external source causing the disturbance
with a response function that is computed using equilibrium correlation
functions not dependent on the strength of the external source. There-
fore, details of the internal dynamics of the thermodynamic system can
be studied using weak external probes. Other areas of science where lin-
ear response theory has proven to be extremely useful are quite extensive,
and include x-ray scattering from crystals and molecules, electron scatter-
ing from protons and nuclei, and sound waves generated by earthquakes
propagating through the earth’s interior.

6.1 Linear response to an external field

Suppose we apply some external field to our system, which is initially in
equilibrium. The goal of linear response theory is to calculate the change in
the ensemble average value of any operator Y (x, t) caused by the external
field, to first order in that external field.

Let

H ′(t) = H + Hext(t) (6.1)

84
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where H is the unperturbed Hamiltonian (but which still contains inter-
actions) and Hext(t) is the perturbation that couples the external field to
the system. We will imagine that Hext(t) vanishes when t < t0, so that
the system has had plenty of time to achieve equilibrium in the past. The
exact equation of motion for Y is

∂Y (x, t)
∂t

= i
[
H ′(t), Y (x, t)

]
(6.2)

Let |j〉 be an eigenstate of H (in the Heisenberg picture). Then it follows
that the time rate of change of the expectation value of Y in the state |j〉
is

∂〈j|Y (x, t)|j〉
∂t

= i〈j| [H ′(t), Y (x, t)] |j〉
= i〈j| [Hext(t), Y (x, t)] |j〉

(6.3)

Equation (6.3) is exact, but it is generally impossible to solve it in closed
form. At this point we assume that Hext causes only a small change in
the expectation value of Y . Then to first order in Hext we can integrate
(6.3) as

δ〈j|Y (x, t)|j〉 = 〈j|Y (x, t)|j〉 − 〈j|Y (x, t0)|j〉

= i

∫ t

t0

dt′〈j| [Hext(t′), Y (x, t)
] |j〉 (6.4)

Now take the (grand canonical) ensemble average,

δ〈Y (x, t)〉 =

∑
j e−βKjδ〈j|Y (x, t)|j〉∑

j e−βKj
(6.5)

Here K = H − μiNi, where allowance is made for an arbitrary number of
conserved charges. Using (1.1) and (6.4) in (6.5), we obtain

δ〈Y (x, t)〉 = i

∫ t

t0

dt′ Tr
{
ρ̂
[
Hext(t′), Y (x, t)

]}
(6.6)

This expresses the change in the ensemble-average value of Y in terms of
the commutator of Hext and Y evaluated in the unperturbed ensemble,
represented by ρ̂. We reiterate that (6.6) is correct to first order in Hext.

As an example, consider a real scalar field φ that is coupled to an
external source J(x, t) via

Hext(t) =
∫

d3xJ(x, t)φ̂(x, t) (6.7)

We are interested in the change in the ensemble-average value of φ̂ when
the external source is turned on. Putting (6.7) into (6.6) with Y = φ̂

https://doi.org/10.1017/9781009401968 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968


86 Linear response theory

gives

δ〈φ̂(x, t)〉 = −i

∫ t

t0

dt′
∫

d3x′J(x′, t′) Tr
{
ρ̂
[
φ̂(x, t), φ̂(x′, t′)

]}
(6.8)

At this point it is useful to introduce the following quantities:
the time-ordered propagator,

iD(x, t;x′, t′) = Tr
{
ρ̂Tt

(
φ̂(x, t)φ̂(x′, t′)

)}
(6.9)

the retarded Green’s function,

iDR(x, t;x′, t′) = Tr
{
ρ̂
[
φ̂(x, t), φ̂(x′, t′)

]}
θ(t− t′) (6.10)

the advanced Green’s function,

iDA(x, t;x′, t′) = −Tr
{
ρ̂
[
φ̂(x, t), φ̂(x′, t′)

]}
θ(t′ − t) (6.11)

In (6.9), Tt is the time-ordering operator. Then (6.8) becomes

δ〈φ̂(x, t)〉 =
∫ ∞

−∞
dt′
∫

d3x′J(x′, t′)DR(x, t;x′, t′) (6.12)

Here we have let t0 → −∞ and have set the upper limit of integration
over t′ to ∞ on account of (6.10).

Since the unperturbed system is in thermal equilibrium, DR must
depend only on x − x′ and t− t′ (the former would not be true for a
solid or crystal, of course). We insert the Fourier transforms

DR(x − x′, t− t′) =
∫

d3k dω

(2π)4
ei[k·(x−x′)−ω(t−t′)]DR(ω,k) (6.13)

J(x′, t′) =
∫

d3p dα

(2π)4
ei(p·x

′−αt′)J̃(α,p) (6.14)

into (6.12) to obtain

δ〈φ̂(x, t)〉 =
∫

d3k dω

(2π)4
ei(k·x−ωt)J̃(ω,k)DR(ω,k) (6.15)

or

δ〈φ̃(ω,k)〉 = J̃(ω,k)DR(ω,k) (6.16)

which is a very aesthetic form. The change in the ensemble average of the
field, in frequency–momentum space, is equal to the external source times
the retarded Green’s function.
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6.2 Lehmann representation

The question arises how the real time Green’s functions required in
the linear response approach to dynamical perturbations are obtained.
Are they related to the imaginary time propagators studied in previous
chapters? In fact they should be, since all dynamical information in a
quantum theory is contained in the matrix elements of operators. If both
the real time and imaginary time correlation functions can be expressed in
terms of matrix elements then a connection can be made. These expres-
sions are referred to as Lehmann representations. We shall work them
out for a real scalar field. It is straightforward to do the same for com-
plex scalar fields and for fields with spin, the main complication being the
tensorial structures.

Consider the fully interacting ensemble average of a product of scalar
field operators. Suppose that the states |n〉 form a complete set of eigen-
states of the Hamiltonian and of the momentum operator. Starting with

iD+(x, y) = 〈φ̂(x)φ̂(y)〉 =
1
Z

∑
n

e−βEn〈n|φ̂(x)φ̂(y)|n〉 (6.17)

we insert a complete set of states between the field operators:

〈φ̂(x)φ̂(y)〉 =
1
Z

∑
m,n

e−βEn〈n|φ̂(x)|m〉〈m|φ̂(y)|n〉 (6.18)

Under the assumption that the system is translation invariant in both time
and space, the matrix elements at x are related to the matrix elements at
x = 0 as follows:

〈n|φ̂(x)|m〉 = ei(pn−pm)·x〈n|φ̂(0)|m〉 (6.19)

Thus the explicit representation of the average of the product of fields is

iD+(x− y) =
1
Z

∑
m,n

e−βEnei(pn−pm)·(x−y)〈n|φ̂(0)|m〉〈m|φ̂(0)|n〉 (6.20)

The Fourier transform (we use the same symbol D in coordinate space
and momentum space for ease of notation)

D+(k) =
∫

d4z eik·zD+(z) (6.21)

can be expressed in terms of the spectral density

ρ+(k) =
1
Z

∑
m,n

e−βEn(2π)3δ(k − pm + pn)|〈n|φ̂(0)|m〉|2 (6.22)

as

iD+(k) = 2πρ+(k) (6.23)
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This spectral density is positive definite. The Dirac delta functions do not
affect this, since one can always work in a large but finite box for which
the energy and momentum modes are discrete, replacing the Dirac delta
functions by Kronecker delta functions.

In a similar way we define

iD−(x, y) = −〈φ̂(y)φ̂(x)〉 (6.24)

whose Fourier transform is also expressed in terms of a spectral density:

iD−(k) = 2πρ−(k) (6.25)

where

ρ−(k) = −e−βk0ρ+(k) (6.26)

The minus sign comes from the definition and the Boltzmann factor comes
from interchanging the labels m and n in the sum over states and using
energy conservation. Obviously this spectral density is negative definite.

The ensemble average of the commutator is

Dn(x− y) = −i〈[φ̂(x), φ̂(y)]〉 = D+(x− y) + D−(x− y) (6.27)

where the superscript “n” denotes the “normal” commutator-defined
Green’s function. Its spectral density is

ρn(k) = ρ+(k) + ρ−(k) =
(
1 − e−βk0

)
ρ+(k) = − (eβk0 − 1

)
ρ−(k)

=
1
Z

∑
m,n

(
e−βEn − e−βEm

)
(2π)3δ(k − pm + pn)|〈n|φ̂(0)|m〉|2 (6.28)

For linear response theory the most relevant correlation function is the
retarded propagator

DR(z) = θ(z0)Dn(z) (6.29)

Associated with it is the advanced propagator

DA(z) = −θ(−z0)Dn(z) (6.30)

Straightforward manipulations show that these can be expressed as inte-
grals over the spectral density ρn:

DR(k) = −
∫ ∞

−∞
dω

ω − k0 − iε
ρn(ω,k) (6.31)

DA(k) = −
∫ ∞

−∞
dω

ω − k0 + iε
ρn(ω,k) (6.32)

The imaginary parts of these functions are proportional to the spectral
density,

ImDR(k) = −ImDA(k) = −πρn(k) (6.33)
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and their real parts are equal,

ReDR(k) = ReDA(k) (6.34)

under the assumption that k is real.
Now we come to the connection with the imaginary time propagator,

for which the finite-temperature perturbation theory was developed. From
(3.21) we know that

D(x, τ) = 〈φ̂(x, τ)φ̂(0)〉
=

1
Z

∑
n

e−βEn〈n|φ̂(x, τ)φ̂(0)|n〉

=
1
Z

∑
m,n

e−βEn〈n|φ̂(x, τ)|m〉〈m|φ̂(0)|n〉 (6.35)

Just as in (2.86), the field evolves in imaginary time according to

φ̂(x, τ) = eHτ φ̂(x, 0)e−Hτ (6.36)

which leads to

D(x, τ) =
1
Z

∑
m,n

e−βEneτ(En−Em)ei(pm−pn)·x〈n|φ̂(0)|m〉〈m|φ̂(0)|n〉

(6.37)
Following the conventions of Chapter 3, the Fourier transform is

D(ωn,k) =
∫ β

0
dτ

∫
d3x e−i(k·x+ωnτ)D(x, τ)

=
1
Z

∑
m,n

(2π)3δ(k − pm + pn)〈n|φ̂(0)|m〉〈m|φ̂(0)|n〉

× e−βEm − e−βEn

En − Em − iωn
(6.38)

which can be written in terms of the spectral density as

D(ωn,k) =
∫ ∞

−∞
dω

ω + iωn
ρn(ω,k) (6.39)

Thus the advanced and retarded propagators can be obtained from the
finite-temperature propagator by analytic continuation as follows:

DR(k) = −D(ωn → ik0 − ε) (6.40)
DA(k) = −D(ωn → ik0 + ε) (6.41)

The spectral density ρn determines both the real time and imaginary time
propagators and is therefore a very important function.

A concrete example of these relations is provided by a free field.
The imaginary time propagator is D = 1/(ω2

n + k2 + m2). From this

https://doi.org/10.1017/9781009401968 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968


90 Linear response theory

one immediately obtains ρn = sign(k0) δ(k2
0 − k2 −m2). This shows quite

directly that all the weight is concentrated on the mass shell of the par-
ticle. Generally, for interacting particles in a medium, this weight gets
spread out over a finite range of energies. The free-particle spectral den-
sity has two obvious properties that generalize to interacting systems.
One is the symmetry in the sign of the energy and the other is an integral
over the energy.

The spectral density ρn given in (6.28) has the symmetry

ρn(−ω,−k) = −ρn(ω,k) (6.42)

Here k0 = ω. In a rotationally invariant system, for every state with energy
En and momentum pn there is a state with the same energy and the
opposite momentum. Therefore

ρn(ω,−k) = ρn(ω,k) (6.43)

Combining the above symmetries we conclude that ρn is an odd function
of the energy:

ρn(−ω,k) = −ρn(ω,k) (6.44)

The canonical commutation relation can be usefully employed to derive
a sum rule on the spectral density. Take the spatial Fourier transform of

lim
x0→0

∂

∂x0
Dn(x) = −i〈[π̂(0,x), φ̂(0,0)]〉 = −δ(x) (6.45)

and use the Lehmann representation for Dn. One concludes that∫ ∞

−∞
dω ωρn(ω,k) = 1 (6.46)

This sum rule is naturally obeyed by the free-particle spectral density. It
also implies that interactions might modify the shape of the function ρn

but that the total integrated weight is constant.

6.3 Screening of static electric fields

Let us apply an external static electric field Ecl, as might be generated
by an imposed charge distribution, to a QED plasma and observe the
response. The Hamiltonian density for this interaction is

Hext = E · Ecl (6.47)

The external field Ecl is a classical field, not a quantum operator like E
and B. It depends on position but not on time.
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The change in the electric field caused by the introduction of the exter-
nal field into the plasma can be computed using (6.6):

δ〈Ei(x, t)〉 = −i

∫ ∞

−∞
dt′
∫

d3x′Ecl
j (x′) Tr

{
ρ̂
[
Ei(x, t), Ej(x′, t′)

]}
θ(t− t′)

(6.48)

Thus we need to know the commutator of two electric field operators.
Using the expression for the electric field in terms of the vector potential
and the canonical commutation relations, one readily finds that〈[

Ei(x, t), Ej(x′, t′)
]〉

θ(t− t′) = ∂i∂
′
j

{〈[A0(x, t), A0(x′, t′)]〉θ(t− t′)
}

− ∂i∂
′
0

{〈[A0(x, t), Aj(x′, t′)]〉θ(t− t′)
}

− ∂0∂
′
j

{〈[Ai(x, t), A0(x′, t′)]〉θ(t− t′)
}

+ ∂0∂
′
0

{〈[Ai(x, t), Aj(x′, t′)]〉θ(t− t′)
}

− iδijδ(x − x′)δ(t− t′)
(6.49)

The real time photon propagator is

DR
μν(x − x′, t− t′) = iTr

{
ρ̂
[
Aμ(x, t), Aν(x′, t′)

]}
θ(t− t′) (6.50)

where the sign is chosen to be compatible with the definition of the imag-
inary time propagator in Section 5.3. It depends only on the differences
x − x′ and t− t′, owing to translation invariance in a plasma and to the
assumption of thermal equilibrium. Combining (6.48) to (6.50) we obtain
the net electric field in the medium,

Enet
i (x, t) = Ecl

i (x) + δ〈Ei(x, t)〉
=
∫ ∞

−∞
dt′
∫

d3x′Ecl
j (x′)

× (−∂i∂
′
jD

R
00 + ∂i∂

′
0D

R
0j + ∂0∂

′
jD

R
i0 − ∂0∂

′
0D

R
ij

)
(6.51)

where the arguments of DR
μν are x − x′ and t− t′ as in (6.50). The Fourier

transforms are

DR
μν(x − x′, t− t′) =

∫
d3k dω

(2π)4
eik·(x−x′)e−iω(t−t′)DR

μν(ω,k) (6.52)

and

Ecl(x′) =
∫

d3p

(2π)3
eip·x

′
Ecl(p) (6.53)
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Substitution in (6.51) gives

Enet
i (x) = −

∫
d3k

(2π)3
eik·xEcl

j (k)
[
kikjD

R
00(ω,k) + ωkiD

R
0j(ω,k)

+ ωkjD
R
i0(ω,k) + ω2DR

ij(ω,k)
]
ω=0

(6.54)

Note that the ω = 0 limit is a consequence of the static nature of the
applied field.

In covariant gauges the propagator is given in (5.46). In such gauges the
last three terms in (6.51) vanish. Hence the net electric field in momentum
space is

Enet
i (k) =

kikjE
cl
j (k)

k2 + F (ω = 0, k)
(6.55)

For a plasma, the net electric field must point in the same direction as
the applied external field owing to rotational invariance. The magnitudes
can be related by multiplying both sides of the above equation by ki and
summing over i. Thus

Enet(k) =
Ecl(k)
ε(k)

(6.56)

where ε(k) is the static dielectric constant and is given by

ε(k) = 1 +
F (0,k)

k2
(6.57)

This result may be obtained in other gauges as well. In the temporal
axial gauge, A0(x, t) = 0, the propagator is given by

D00 = 0 D0i = D0i = 0

Dij =
1

G− k2

(
δij − kikj

k2

)
+

1
F − k2

k2

k2
0

kikj
k2

(6.58)

Insertion of (6.58) into (6.54) again yields (6.55), although it is interest-
ing that in this gauge the contributing term is [ω2DR

ij(ω,k)]ω=0. In the
Coulomb gauge, ∇ · A(x, t) = 0, the propagator is given by

Dμν =
1

G− k2
Pμν

T +
1

F − k2

k2

k2
uμuν (6.59)

where uμ = (1, 0, 0, 0) defines the rest frame of the medium. The self-
energy Πμν is related to F and G just as in (5.46). This may be verified
by returning to the definition of the self-energy in terms of the full and
bare propagators, which may be written as

Dμν = Dμν
0 −Dμα

0 ΠαβDβν (6.60)

Substitution of (6.59) into (6.54) again yields (6.55).
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It must be emphasized that (6.55) is an exact result, to be used with
the exact expression for F (0,k) or with the best available approximation
to it. The only assumption is that the applied field Ecl is weak enough to
justify the linearity approximation.

The dielectric function is the screening factor. In the limit of no inter-
actions, where e → 0 and F → 0, the net electric field equals the applied
field. In the absence of matter T = 0 and μ = 0, but with interactions
turned on, e = 0, there is still a modification of the applied electric field
known as vacuum polarization. When |k| � me, one finds that

Fvac(0,k) ≈ − α

15π
|k|4
m2

e

(6.61)

When |k| � me,

Fvac(0,k) ≈ − α

3π
k2 ln

(
k2

M2

)
(6.62)

where M is the renormalization energy scale. One may think of virtual
electron–positron pairs continually popping out of and back into the vac-
uum to produce this modification of the applied field. Since ε(|k| > 0) = 1,
one may in this sense think of the vacuum as a medium. Furthermore
we may think of the dielectric constant as the ratio of the squared net
observed charge at momentum transfer k to the squared ordinary electric
charge at zero momentum transfer,

αnet(k)
α

=
1

1 + Fvac(0,k)/k2
(6.63)

Substitution of (6.62) into (6.63) gives exactly the lowest-order
renormalization-group result, (5.82) with μ → |k| � me, which is no coin-
cidence.

The one-loop finite-temperature and finite-density contribution to F is
in general a complicated function of k. It is given in (5.51) since F (0,k) =
−Π00(0,k). At very short distances, |k| � T and μ, the vacuum contribu-
tion dominates, Fvac � Fmat. At very long distances, |k| � T and μ, the
matter contribution dominates, Fvac � Fmat. At distances much less than
the average interparticle spacing, many-body effects cannot be important
and one recovers the vacuum. At distances much greater than the aver-
age interparticle spacing, many-body effects are most important. In fact
Fvac/Fmat ∝ k2 as k → 0, modulo logarithms. Recalling (5.66), (5.68),
and (5.69), we define the QED electric mass mel by m2

el = F (0, k → 0).
Then, approximately,

ε(k) ≈ 1 +
Fvac(0,k)

k2
+

m2
el

k2
(6.64)
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Linear response theory gives both vacuum polarization and plasma
screening.

6.4 Screening of a point charge

As a concrete demonstration of a situation commonly encountered, place
a static charge Q1 at x1 and another static charge Q2 at x2. What is the
change in free energy of the QED plasma as a function of separation?
Analogous problems arise in condensed matter physics when treating an
impurity or defect.

From Gauss’s law,

∇ · Ecl
1 = Q1 δ(x − x1) (6.65)

we obtain

Ecl
1 (x) =

∫
d3k

(2π)3
eik·xEcl

1 (k)

where

Ecl
1 = −i

k
k2

e−ik·x1 Q1 (6.66)

Similar equations are obtained for charge 2. The change in free energy is

V (x1,x2) =
1
2

∫
d3x

[
Ecl

1 (x) · 〈E2(x)〉 + Ecl
2 (x) · 〈E1(x)〉

]
where

〈E1(x)〉 = Enet
1 (x) 〈E2(x)〉 = Enet

2 (x) (6.67)

After some manipulation, this takes the form

V (r = x1 − x2) = Q1Q2

∫
d3k

(2π)3
eik·r

k2 + F (0,k)
(6.68)

When r is very large, the dominant contribution to the integral comes
from k ≈ 0. For this case, we replace F (0,k) by its infrared limit m2

el.
Then we get

V (r) =
Q1Q2

4π
e−melr

r
(6.69)

which is a screened Coulomb potential with inverse screening length mel.
At T = μ = 0 one may compute the change in the form of Coulomb’s

law due to vacuum polarization by expanding (6.68) to first order in F
and substituting in (6.61). The result is

ΔVC =
α

15πm2
e

Q1Q2δ(r) (6.70)
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This result was first obtained by Uehling [1] and by Serber [2]. See also
Bjorken and Drell [3]. Its effect has been measured in the Lamb shift in
atomic hydrogen.

At low temperatures, T � |μ|, the functional form of (6.69) is not cor-
rect even at long distances; it turns out that it is not a good approxi-
mation to replace F (0,k) by its infrared limit m2

el because of the sharp
Fermi surface.

The formula (5.51) gives the matter part of F at one-loop order for
arbitrary values of external energy, momentum, temperature, and chem-
ical potential. Evaluating it at zero energy (which is the same as at zero
Matsubara frequency) and T = 0 gives

Fmat(0, k)

=
e2

24π2

[
16μkF − 4k2 ln

(
μ + kF

m

)
− μ(4μ2 − 3k2)

k
ln
(
k − 2kF

k + 2kF

)2

+
(2m2 − k2)

√
k2 + 4m2

k

× ln

(
2μ2(k2 + 2m2) − 2μkkF

√
k2 + 4m2 −m2(k2 + 4m2)

2μ2(k2 + 2m2) + 2μkkF

√
k2 + 4m2 −m2(k2 + 4m2)

)]
(6.71)

Here kF =
√
μ2 −m2 is the Fermi momentum and k = |k|. The vacuum

part is derived in many books on QED, such as Berestetskii, Lifshitz, and
Pitaevskii [4] and Quigg [5]. It is

Fvac(0, k)

= − e2

4π2
k2

[
4m2

3
M2 − k2

M2k2

+
1

3M

(
1 − 2m2

M2

)√
M2 + 4m2 ln

(√
M2 + 4m2 −M√
M2 + 4m2 + M

)

− 1
3k

(
1 − 2m2

k2

)√
k2 + 4m2 ln

(√
k2 + 4m2 − k√
k2 + 4m2 + k

)]
(6.72)

where M is an arbitrary subtraction point such that Fvac(0,M) = 0.
The integrand in (6.68) has poles at k = ±imel ≈ ±i

√
F (0, k → 0).

The contribution from these poles gives a Debye screening function of the
form (6.69). The integrand also has a pair of branch points at k = 2kF ± iε
and a mirror pair at k = −2kF ± iε. The branch cuts can be taken to
be vertical lines going up from the points k = ±2kF + iε and vertical
lines going down from the points k = ±2kF − iε. The contribution to the
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potential between point charges from these branch cuts is tedious but
straightforward to evaluate. The result for asymptotically large r is

V (r) =
Q1Q2e

2

4π3

μ

(4 + a)2

{
m2

μ2

cos 2kFr

(kFr)3
− sin 2kFr

(kFr)4

×
[
e2

π2

m4

μ3kF

1
4 + a

(
ln(4kFr) + γE − 3

2

)
− 16

4 + a

m2

μ2
+

m4

2μ4
− k2

F

μ2

]}
(6.73)

where a = F (0, 2kF)/k2
F. The terms neglected in this expression are one

order higher either in 1/r or in e2. The contribution from the branch
cuts dominates the Debye contribution at large r because the latter falls
exponentially in r whereas the former falls as a power.

There are two especially interesting limits of this potential. Let us write
Qi = Zie. The nonrelativistic limit, kF � m, is

V (r) =
Z1Z2e

2ξkF

2π(4 + ξ)2
cos(2kFr)

(kFr)3
(6.74)

with

ξ =
e2

2π2

m

kF

This form of screening is usually referred to as Friedel oscillation in low-
temperature physics (Fetter and Walecka [6]) and can be observed in the
nuclear magnetic resonance lines in dilute alloys [7].

The relativistic limit, kF � m, is

V (r) = Z1Z2
ᾱ2

4π
sin 2kFr

k3
Fr

4
(6.75)

This involves the renormalization-group running coupling

ᾱ =
α

1 − (2α/3π) ln (4μ/eM)
=

3π
2 ln (eΛMOM/4μ)

(6.76)

where ΛMOM is the QED scale parameter. This is familiar from (5.80)–
(5.82). The relativistic results were obtained by Sivak [8] and by Kapusta
and Toimela [9]. There may be applications to the dense matter present
in white dwarf and neutron stars.

Finally, consider what happens at small but nonzero temperature,
T � |μ|. The sharp Fermi surface is smeared over a thickness T in the
energy. Consequently, the branch cuts do not extend to the real axis,
and the branch points are shifted by an amount 2πμTi/kF. Then the
asymptotic formula for the potential must be multiplied by the factor
exp(−2πμTr/kF). When T 2 > e2k3

F/4π
4μ the contribution from the pole,

k ∼ imel, begins to dominate the oscillating terms coming from the branch
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cuts. For a white dwarf star with kF = 4me the crossover would be at
3 × 108 K or 30 keV.

6.5 Exact formula for screening length in QED

It is possible to derive an exact formula for the screening length of static
electric fields in QED. This formula connects the screening length to the
thermodynamic equation of state and so is a very interesting relation
indeed.

An exact expression for the photon self-energy, known as the
Schwinger–Dyson equation [10, 11], is

Πμν(k) = e2T
∑
np

∫
d3p

(2π)3
Tr [γμG(p)Γν(p, p− k)G(p− k)]

= (6.77)

Here the blobs on the fermion lines represent the exact fermion propa-
gator G, and the blob at the vertex represents the exact photon–fermion
vertex function Γμ. The latter depends in general on the incoming fermion
momentum p and the outgoing fermion momentum p− k. To lowest order,
the photon–fermion vertex function is the point (or contact) coupling
appearing in the Lagrangian,

Γμ
0 = γμ (6.78)

Corrections due to interactions may be found order by order, by applying
the formula

−eΓ = (δ lnZ/δΓ0)1PI (6.79)

which may be derived in a way analogous to (3.35). For example, from
(5.39), (5.62), and (5.77) we obtain

−eΓμ(p, p− k) =
p

p− k

k
μ +

p

p− k

k
μ + · · · (6.80)

It should be clear intuitively that a relation exists between the fermion
propagator and the photon–fermion vertex, since the latter represents the
propagation of a fermion while emitting a photon of momentum k. To see
what this relation might be, consider the free-fermion inverse propagator

G−1
0 (p) = p−m (6.81)
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We notice that

∂G−1
0

∂pμ
= γμ = Γμ

0 (6.82)

It turns out that the exact result is

∂G−1

∂pμ
= lim

δμ→0
Γμ(p, p− δμ) (6.83)

where only the μ-component of the four-vector δμ is nonzero. Equation
(6.83) is known as the differential form of Ward’s identity. It relates the
momentum derivative of the exact inverse fermion propagator to the exact
photon–fermion vertex in the limit k → 0.

The only change in the derivations of the Schwinger–Dyson equations
and the Ward identity at T > 0 and μ = 0 is the substitution of the fre-
quency sums for energy integrals (the interested reader should consult
Bjorken and Drell [3]; see also Fradkin [12], whose arguments we are fol-
lowing here).

At finite temperature and density, in the imaginary time formalism
p0 = (2np + 1)πT i + μ. Thus from (6.83)

∂G−1

∂μ
= Γ0(p, p) (6.84)

The screening length follows from Π00 in the static infrared limit.
Combining (6.77) and (6.84) yields

m2
el = −Π00(k0 = 0, k → 0)

= −e2T
∑
np

∫
d3p

(2π)3
Tr
(
γ0G(p)

∂G−1

∂μ
(p)G(p)

)

= e2 ∂

∂μ
T
∑
np

∫
d3p

(2π)3
Tr
[
γ0G(p)

]
= e2

(
∂n

∂μ

)
T

= e2∂
2P (μ, T )
∂μ2

(6.85)

The electric screening length is directly related to the equation of state.
To see how remarkable (6.85) is, notice that the static infrared limit of

the photon propagator at one-loop order is determined by the pressure of
a noninteracting fermion gas. To show the power of (6.85) we recall the
formula for P (μ, T ) for a massless electron–positron plasma from Exercise
2.7 and from (5.60), (5.67), and (5.68). Since the pressure is known to
order e3 when both T and μ are nonzero, the inverse screening length is
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known to order e5. For μ = 0,

m2
el =

(
e2

3
− e4

8π2
+

e5

4
√

3π3
+ · · ·

)
T 2 (6.86)

This expression is phrased in terms of a fixed coupling constant e evalu-
ated at a fixed scale. Let us denote that scale by M0. At some other scale
M the coupling constant changes to

e2(M) = e2(M0)
[
1 +

e2(M0)
6π2

ln
(

M

M0

)]
(6.87)

according to the renormalization group. Then

m2
el =

{
e2(M)

3
− e4(M)

18π2

[
ln
(

M

M0

)
+

9
4

]
+

e5(M)
4
√

3π3
+ · · ·

}
T 2 (6.88)

The issue is how best to choose M and M0 to minimize higher-order
contributions. This may be resolved as follows.

Return to (6.68) and expand F (0,k) in powers of |k|, keeping terms up
to and including k2. Including both the vacuum and finite-temperature
parts, and using the above expression for m2

el(e), the integrand of (6.68)
becomes

e2

m2
el(e) + {1 − (e2/6π2) [ln(πT/M) + 4/3 − γE]}k2

If we use the electric screening mass to one-loop order only, this becomes

ē2

m2
el(ē) + k2

where

ē2(T ) =
e2

1 − (e2/6π2) [ln(πT/M) + 4/3 − γE]
=

6π2

ln
(
eγE−4/3Λ/πT

)
(6.89)

The fixed coupling constant has been replaced by the renormalization-
group running coupling with the absolute scale determined naturally. If
we use the electric screening mass to order e5 we get

m2
el =

{
e2

3
+

e4

18π2

[
ln
(
πT

M

)
− γE − 11

12

]
+

e5

4
√

3π3
+ · · ·

}
T 2 (6.90)

Expressing e in terms of ē gives exactly the formula (6.85) with the fixed
coupling replaced by the running coupling:

m2
el =

(
ē2

3
− ē4

8π2
+

ē5

4
√

3π3
+ · · ·

)
T 2 (6.91)
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This has been verified in an explicit diagrammatic analysis by Blaizot,
Iancu, and Parwani [13] (the constant following the logarithm in this
work is different, on account of the different renormalization schemes).

The relation (6.85) can be understood very simply. Insert a charge Q
at location x in an electron–positron plasma. If the plasma has a charge
density −en then there must be a net background charge density to ensure
charge neutrality. Denote this background charge density by en0, so that
in equilibrium n = n0. Owing to the insertion of the charge Q there will be
a rearrangement of electrons and positrons in the plasma. The condition
of local hydrostatic equilibrium requires a balance of forces:

−∇P = enEnet (6.92)

Poisson’s equation is

∇ · Enet = [Qδ(x) − e(n− n0)] (6.93)

where Enet is the net electric field due to the external charge Q and
the consequent rearrangement of the charged particles in the plasma.
In equilibrium, T must be uniform but the charge chemical potential μ
may depend on position. Thus we write P = P (μ, T ), T = constant, μ =
μ(x), and seek to determine μ(x). Let μ0 denote the chemical potential
in the absence of the charge, and let δμ(x) denote the difference after
the introduction of the charge. Then ∇P = (∂P/∂μ)∇δμ, and n− n0 =
(∂n/∂μ)δμ. Taking the divergence of Enet in (6.92), identifying it with
(6.93), and using the above information we arrive at the expressions(∇2 −m2

el

)
δμ = −eQδ(x)

m2
el = e2 ∂2P

∂μ2

(6.94)

which have the solution

δμ(r) =
eQ

4πr
e−melr (6.95)

This is the Thomas–Fermi approximation. Clearly (6.95) is only valid for
large r, since the derivation assumes that |δμ/μ| � 1. At short distances,
the momentum dependence of F (0,k) in (6.68) cannot be neglected and
the Thomas–Fermi result is modified. This result is also incorrect for a
cold Fermi gas, as already detailed in Section 6.4.

6.6 Collective excitations

Instead of applying a static external field, let us hit the system with an
impulsive perturbation. Without loss of generality, we may focus on a sin-
gle Fourier component. Thus, for the scalar field discussed in Section 6.1,
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we take

J(x, t) = J0(k) eik·xδ(t)

J̃(ω,q) = (2π)3J0(k)δ(q − k)
(6.96)

This leads to the field response

δ〈φ̂(x, t)〉 = J0(k) eik·x
∫ ∞

−∞
dω

2π
e−iωtDR(ω,k) (6.97)

The retarded Green function is analytic in the upper half-plane. Suppose
that it has a simple pole located at ω = ω(k) − iγ(k) with γ(k) ≥ 0. Then

DR(ω,k) =
R(k)

ω − ω(k) + iγ(k)
(6.98)

where R(k) is the residue. Evaluation of (6.97) leads to

δ〈φ̂(x, t)〉 = −iJ0(k)R(k) ei(k·x−ω(k)t) e−γ(k)t (6.99)

The field response is a traveling wave with dispersion relation ω(k) and
damping constant γ(k).

For a free field with mass m, ω(k) =
√

k2 + m2, γ(k) = 0, and R(k) =
1
2ω(k). The amplitude of the wave is proportional to the residue and to
the Fourier amplitude of the impulse.

6.7 Photon dispersion relation

Let us consider a QED plasma at such high temperature or density that
the electron mass may be neglected. Based on the previous discussion,
we would expect that the poles of the photon propagator would give the
dispersion relations for traveling electromagnetic waves in the plasma.
However, this requires careful consideration owing to the fact that the
photon propagator is gauge dependent.

Transverse oscillations have a dispersion relation determined by

k2
0 = k2 + G(k0,k) (6.100)

in the temporal axial gauge (6.58), in the Coulomb gauge (6.59), and in the
covariant gauges (5.46). We write k0 = ω − iγ and assume weak damping,
otherwise the oscillations would not propagate. The above equation can
be decomposed into real and imaginary parts:

ω2 = k2 + ReG(ω,k)

γ = − ImG(ω,k)
2ω

(6.101)
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Even at one-loop order, G(k0,k) is a complicated function. In general,
the solutions can only be found numerically. In the limit of short or long
wavelengths, however, analytical results may be found.

For short wavelengths we expect that the modification of the free-
photon dispersion relation ω = |k| by medium effects will be small. The
reason is that if we probe the system at distances considerably less than
the average interparticle spacing then medium effects should tend to zero.
Thus we look for a solution when ω ≈ |k| � T, |μ|. From Exercise 5.7 we
know that

G(ω = |k|) =
1
2
e2

(
1
3
T 2 +

μ2

π2

)
≡ m2

P (6.102)

which is precisely 1
2m

2
el = 1

2F (k0 = 0, k → 0) to order e2. The short-
wavelength dispersion relation is then

ω2 = k2 + m2
P + · · · (6.103)

Clearly this is a gauge invariant result. One may think of the high-
momentum photons as having acquired a mass mP due to plasma inter-
actions.

For the long-wavelength transverse oscillations, we expect a substantial
modification of the free-photon dispersion relation owing to many-body
effects. The oscillatory electric and magnetic fields will cause any nearby
electrons and positrons to be accelerated, giving the oscillation inertia.
In fact, one might expect that it would take a finite amount of energy
to excite an oscillation with vanishing momentum. To look for a solution
to (6.100) and (6.101) we calculate G in the limit |k2| = |k2

0 − k2| � T 2.
The functions F and G may be obtained from a combination of (5.46),
(5.48), and (5.51). This is a straightforward calculation leading to [14]

G(k0,k) = m2
P − 1

2
F (k0,k) (6.104)

and

F (k0,k) = −2m2
P

k2

|k|2
[
1 − k0

4|k| ln
(
k0 + |k|
k0 − |k|

)2
]

(6.105)

It must be emphasized that these expressions are valid not just for the
case where |k0| and |k| are small compared with T but also near the light
cone. In fact, note that G(k2 = 0) = m2

P, the same as the limit obtained
from the exact one-loop expression for G.

For small momenta we find that

G(|k| � ω < T, |μ|) = ω2
P

(
1 +

k2

5ω2
+ · · ·

)
(6.106)
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The plasma frequency ωP is related to the electric mass and the photon
mass via ω2

P = 1
3m

2
el = 2

3m
2
P at order e2 when the electron mass is set to

zero. The long-wavelength dispersion relation for transverse excitations is

ω2 = ω2
P + 6

5k
2 + · · · (6.107)

Indeed, it does take a finite energy to excite one of these modes even at
zero momentum.

Next we turn to longitudinal oscillations, or compressional charge-
density waves. Without doing the full linear response analysis in each
gauge, we would expect that the dispersion relation is determined by the
poles of the following functions in the specified gauge:

temporal axial

1
k2 − F

k2

k2
0

Coulomb
1

k2 − F

k2

k2

covariant
1

k2 − F
(6.108)

Some of the subtleties involved in gauge invariance now arise.
Consider the limit of no interactions. Then F = 0, and the covariant

gauges produce the spectrum ω = |k|, whereas in the temporal axial and
Coulomb gauges there is no wave propagation. This could have been antic-
ipated. Free electromagnetic radiation is transversely polarized. The tem-
poral axial and Coulomb gauges are physical gauges in the sense that they
have the correct number of polarization degrees of freedom, namely, two.
The covariant gauges are unphysical in the same sense since they have
four degrees of freedom. The extra two degrees of freedom are canceled
by the ghosts in the partition function. There is nothing wrong in all this,
but one must be careful to ask only physical questions of the theory. The
situation is not altered when interactions are turned on at T = μ = 0.
Recall that F = (k2/k2)Π00. It turns out that Π00 is not singular enough
at k2 = 0 to cancel the factor of k2. For example, to order e2,

Fvac =
α

3π
k2 ln

(−k2

M2

)
(6.109)

The covariant gauges still have a singularity at k2 = 0, a branch point due
to pair production, while the other two gauges do not. The conclusion is
that short-wavelength longitudinal excitations do not propagate.
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The spectrum of long-wavelength longitudinal excitations in the plasma
is manifestly gauge invariant and is determined by

k2
0 = k2 + F (k0,k) (6.110)

or equivalently

k2 = Π00(k0,k) (6.111)

Decomposing into real and imaginary parts gives

k2 = ReΠ00(ω,k)

γL =
ImΠ00(ω,k)

∂ ReΠ00(ω,k)/∂ω
(6.112)

Expanding Π00 in powers of k2/k2
0 leads to

Π00(ω,k) = ω2
P

(
1 +

3k2

5ω2
+ · · ·

)
k2

ω2
(6.113)

and finally to the dispersion relation

ω2 = ω2
P + 3

5k
2 + · · · (6.114)

The energy at zero momentum for longitudinal and transverse excitations
is the same, which is no surprise since at zero momentum there is no
distinction between longitudinal and transverse modes.

At arbitrary momentum, the dispersion relation cannot be obtained
by analytic means for either mode. They must be found by numerical
methods.

It is interesting that the damping constants as determined by the
approximate expressions (6.104) and (6.105) are zero. However, if one
returns to the exact one-loop expressions for F and G it turns out that

γT = γL =
e2

24π
ωP (6.115)

at zero momentum. The origins of the various factors in this result are
not difficult to find. The factor e2 comes from the square of the photon–
electron or photon–positron vertex and the factor ωP comes from phase
space.

Lastly, notice that the propagator in the covariant gauges has a term
ρkμkν/k2. Clearly, no physical significance should be attached to this
pole since the residue is proportional to the gauge parameter and in fact
vanishes in the Landau gauge ρ = 0.
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6.8 Electron dispersion relation

The electron propagator is

G(p) =
1

p−me + Σ(p)
(6.116)

In the Feynman gauge the one-loop expression for the self-energy is

Σ(p) = e2T 2
∑
nk

∑
nq

∫
d3k

(2π)3
d3q

(2π)3
1
k2

γμ 1
q −me

γμβδnp,nk+nq (2π)3δ(p − k − q)

(6.117)

At very high temperature the electron mass may be neglected. The evalu-
ation of this self-energy is rather tedious but straightforward. The vacuum
contribution may be found in numerous textbooks. Here we shall focus
on the matter contribution.

The leading contribution at order T 2 and μ2 is [15]

Σ0
mat = −m2

F

8|p| ln
(
p0 + |p|
p0 − |p|

)2

Σmat =
m2

F

2|p|2p
[
1 − p0

4|p| ln
(
p0 + |p|
p0 − |p|

)2
] (6.118)

where m2
F = 1

2(m2
P + 1

3e
2T 2) = 1

4e
2(T 2 + μ2/π2). Equations (6.118) may

be compared with the corresponding expressions for F and G for the
photon self-energy. Although the electron self-energy is in general gauge
dependent, the leading contributions (6.118) can be shown to be indepen-
dent of the gauge. As with the photon self-energy, it must be emphasized
that these expressions are valid not only for small electron energy and
momentum but also near the light cone at any momentum.

The poles of the propagator are determined by

[p0 + Σ0
mat(p0,p)]2 = [p + Σmat(p0,p)]2 (6.119)

There are two undamped solutions to this equation, referred to as ω+(p)
and ω−(p). They can be expressed in parametric form as

ω2±(p) = z2p2±(z)

p2±(z) = ω2
F

[ ±1
z ∓ 1

∓ 1
2

ln
(
z + 1
z − 1

)] (6.120)

with ω2
F = 1

2m
2
F and z > 1. The two solutions are shown in Figure 6.1.
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Fig. 6.1. The two branches (ω±) of the electron dispersion relation are shown.
For comparison, the dispersion relation of a massless particle is also plotted
(broken line).

At momenta that are high in comparison with T and μ, the solutions
become

ω2
+ = p2 + m2

F + · · ·

ω2− = p2 + 4p2 exp
(
−4p2

m2
F

− 1
)

+ · · · (6.121)

whereas at low momentum the solutions become

ω± = ωF ± 1
3
|p| + 1

3
p2

ωF
+ · · · (6.122)

The low-momentum spectra have an optical character. The high-
momentum spectrum for ω+ solution may be used to define a finite-
temperature and finite-density fermion mass, just as the photon mass
was defined at high momentum.

It is interesting to examine the behavior of the propagator in the vicinity
of the poles. In the high-momentum limit,

G(ω → ω+, p � mF) ≈ 1
2
γ0 − p̂ · γ
ω − ω+

G(ω → ω−, p � mF)≈ 2p2

m2
F

exp
(
−4p2

m2
F

− 1
)

γ0 + p̂ · γ
ω − ω−

(6.123)
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and in the low-momentum limit

G(ω → ω+, p � mF)≈ 4
3
γ0 − p̂ · γ
ω − ω+

G(ω → ω−, p � mF)≈ 4
3
γ0 + p̂ · γ
ω − ω−

(6.124)

These display a number of features. The ω+ solution has the same relation
between chirality and helicity as free electrons whereas the ω− solution
has the opposite relation between chirality and helicity. This is true for all
momenta, not just in the limits. It suggests that the ω+ branch represents
the modification of the dispersion relation of a real electron in the plasma,
whereas the ω− branch is a true collective excitation. Indeed, the residue
of that branch vanishes as the momentum becomes large, which is the
vacuum limit. The residue of the ω+ branch in the high-momentum limit
is the same as for free electrons. Finally, notice that the residues are the
same as the momentum tends to zero since there is no distinction between
different polarizations when the particle is at rest.

6.9 Kubo formulae for viscosities and conductivities

Many physical systems can be described using fluid dynamics. In the
context of this book, examples of such systems are stars, the early universe
and, to some extent, high-energy nuclear collisions. The state of the fluid
can be described in terms of its temperature and chemical potentials,
specified as functions of space and time, together with an equation of state.
The dynamics of the fluid is described by equations of motion based on
the energy–momentum tensor Tμν(x). Here xμ = (t,x). The local energy
density is T 00, the local momentum density is T i0, and the flux of these
quantities in the direction j is T μj . Local conservation of energy and
momentum is expressed as

∂νT
μν = 0 (6.125)

This conservation law is general and makes no assumption about local
equilibrium or the types of interactions. Without loss of generality the
energy–momentum tensor can always to taken to be symmetric. As a
concrete example, the energy–momentum tensor for a set of N noninter-
acting particles labeled by index n is

T μν(x) =
N∑

n=1

pμnpνn
En

δ(x − xn(t)) (6.126)

where xn(t) is the trajectory of the nth particle.
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In a field theory with independent fields labeled φn and Lagrangian L
the energy–momentum tensor is found in the usual way to be

Tμν =
∑
n

∂L
∂μφn

∂νφn − gμνL (6.127)

Specific examples include a self-interacting scalar field

Tμν = ∂μφ∂νφ− gμνL (6.128)

and the electromagnetic field

Tμν = Fμ
ρF

ρν + 1
4g

μνFαβFαβ (6.129)

To evaluate these in a classical field theory, the solutions to the field
equations are inserted into these expressions. In a quantum theory the
fields are operators and the expressions are therefore also operators. In a
fluid, the expressions may be averaged over spacetime volumes that are
large compared with typical thermal wavelengths and correlation lengths
but small compared with distances and times over which local energy and
momentum densities vary appreciably; this averaging process is referred
to as coarse-graining.

Coarse-graining is easy to describe but usually difficult to implement.
It can be done in numerical simulations, of course. In a hydrodynamic or
perfect-fluid description, the assumption of local thermal equilibrium is
made. Then the energy–momentum tensor is

Tμν = −Pgμν + wuμuν (6.130)

where P is the local pressure, w = ε + P is the local enthalpy density,
and uμ = (γ, γv) is the local flow velocity relative to some fixed reference
frame. In a frame in which the fluid is locally at rest, uμ = (1, 0, 0, 0),
T 00 = ε, T ij = Pδij , and T i0 = 0. In general the trace of the energy–
momentum tensor is Tμ

μ = ε− 3P . For a noninteracting gas of massless
particles, 1

3ε = P and the trace vanishes. If there are conserved charges,
such as baryon number or electric charge, there is an additional conserva-
tion law or equation of motion for each. For example, the baryon current
is

Jμ
B = nBu

μ (6.131)

where nB = J0
B is the local baryon density. The conservation law is

∂μJ
μ
B = 0 (6.132)

Note that the baryon number flows with the same four-velocity as
appeared in the energy–momentum tensor. The local pressure, energy,
and baryon densities are related through the equation of state. Equiva-
lently they can all be expressed in terms of T and μB.
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When variations in temperature and chemical potential become appre-
ciable over length scales that are not large compared with thermal wave-
lengths or correlation lengths then gradients in the thermodynamic vari-
ables must be taken into account. In a typical nonrelativistic fluid the
massive particles carry the energy and momentum so that energy, momen-
tum, and baryon number all flow together with only very minor departures
associated with thermal conductivity. In a relativistic fluid, meaning one
in which P is not much less than ε, or equivalently in which the tem-
perature and chemical potential are not much less than the mass of the
particles, the situation is more complicated. The energy and momentum
may flow with a velocity different from that of the baryons if the sys-
tem has gradients that are not negligibly small. The situation is then
described in terms of (first-order) relativistic viscous-fluid dynamics. Dis-
sipative contributions are added to the energy–momentum tensor:

Tμν = −Pgμν + wuμuν + ΔTμν

Jμ
B = nBu

μ + ΔJμ
B

(6.133)

The dissipative terms are proportional to first-order derivatives of the
flow velocity, temperature, and chemical potential. There are two common
definitions of the flow velocity in relativistic dissipative fluid dynamics.

In the Eckart approach uμ is the velocity of baryon number flow
[16]. The dissipative terms must satisfy the conditions ΔJμ

B = 0 and
uμuνΔTμν = 0, the latter following from the requirement that T 00 be
the energy density in the local (baryon) rest frame. The most general
form of ΔTμν is given by

ΔTμν = η(Δμuν + Δνuμ) +
(

2
3η − ζ

)
Hμν∂ρu

ρ

− χ(Hμαuν + Hναuμ)Qα (6.134)

Here

Hμν = uμuν − gμν (6.135)

is a projection tensor normal to uμ,

Δμ = ∂μ − uμu
β∂β (6.136)

is a derivative normal to uμ, and

Qα = ∂αT − Tuρ∂ρuα (6.137)

is the heat flow vector, whose nonrelativistic limit is Q = −∇T . Further-
more, η is the shear viscosity, ζ is the bulk viscosity, and χ is the thermal
conductivity. The entropy current is

sμ = suμ +
1
T
uνΔTμν (6.138)
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and is defined is such a way that uμs
μ = s, the local entropy density. Its

divergence is

∂μs
μ =

η

2T
(
∂iu

j + ∂ju
i − 2

3δ
ij∇ · u)2

+
ζ

T
(∇ · u)2 +

χ

T 2
(∇T + T u̇)2 (6.139)

All three dissipation coefficients must be non-negative to ensure that
entropy can never decrease.

In the Landau–Lifshitz approach, uμ is the velocity of energy transport.
The dissipative part of the energy–momentum tensor satisfies uμΔTμν =
0, and ΔJμ

B is not constrained to be zero. In this case the most general
form of the energy–momentum tensor is

ΔTμν = η(Δμuν + Δνuμ) +
(

2
3η − ζ

)
Hμν∂ρu

ρ (6.140)

The baryon current is modified to

ΔJμ
B = χ

(
nBT

w

)2

Δμ
(μB

T

)
(6.141)

The three coefficients η, ζ, and χ are the same as in the Eckart approach.
This can be proven in a variety of ways. For example, even though the
entropy current in this approach is different, being

sμ = suμ − μB

T
ΔJμ

B (6.142)

its divergence is the same. Physical, observable, results cannot depend on
how one defines the frame of reference.

In the above approaches the dissipative coefficients are taken to be phe-
nomenological constants or, rather, functions of temperature and chemical
potential. However, it ought to be possible to derive them from the micro-
scopic theory. In particular, it ought to be possible to derive them using
linear response theory since departures from local thermal equilibrium
are assumed to be small. Indeed this is so, and the resulting formulae are
named after Kubo [17].

Consider the problem of pure baryon number diffusion in the absence
of energy flow. The most direct approach to use in this case is that of Lan-
dau and Lifshitz: the vanishing of the energy flux implies that the flow
velocity is zero. The equation of continuity for the baryon current, includ-
ing dissipation, reduces to a diffusion equation for the baryon chemical
potential:

∂μB/∂t = D∇2μB (6.143)
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Here

D ≡ χT

dnB/dμB

(nB

w

)2
(6.144)

is the diffusion constant. A single Fourier mode exp[i(k · x − ωt)] will
relax towards equilibrium as exp(−Dk2t).

A nonuniform baryon distribution can be achieved by the imposition
of an external force that is turned on and off, allowing the system to
relax back towards equilibrium. It does not matter how this is done. For
example, we could take the coupling Hamiltonian to be

Hext(t) =
∫

d3x Ĵμ
B(x, t)Jext

μ (x, t) (6.145)

where Jext
μ is an external perturbing current. The response of the baryon

current is given in the usual way by

δ〈Ĵμ
B(ω,k)〉 = Jext

ν (ω,k)Bμν
R (ω,k) (6.146)

where Bμν
R (ω,k) is the Fourier transform of the retarded current–current

correlation or response function:

iBμν
R (x, t;x′, t′) =

〈[
Ĵμ
B(x, t), Ĵν

B(x′, t′)
]〉

θ(t− t′) (6.147)

Since baryon number is conserved the most general form of the response
function is

Bμν
R = BLP

μν
L + BTP

μν
T (6.148)

where BL and BT are longitudinal and transverse response functions.
Without loss of generality it is convenient to parametrize the longitudinal
response function, or equivalently the time–time component, as

B00
R (ω,k) =

k2

k2
BL(ω,k) =

ik2D(ω,k)
ω + ik2D(ω,k)

B00
R (ω = 0, k) (6.149)

Here D(ω,k) is an unknown function. It is expected to be a smooth
function of ω and k, whereas the response function itself is expected to
have singularities, usually poles. If we define D ≡ D(ω → 0, k → 0), and if
there is a slow perturbing variation in the baryon density, then the density
will relax back towards equilibrium with a dispersion relation determined
by the pole of the response function, namely, ω = −iDk2. Therefore we
may identify this D with the diffusion constant in the dissipative fluid
dynamics calculation.

The diffusion constant can be extracted directly from the response func-
tion. First,

D = lim
ω→0

lim
k→0

i

ω

BL(ω,k)
BL(0, k)

(6.150)
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Now BL(ω = 0,k → 0) = −B00
R (ω = 0,k → 0) = ∂2P/∂μ2

B = ∂nB/∂μB.
(The reasoning is the same as for the electric screening mass.) Further-
more,

BL(ω, |k| → 0) = k̂ik̂ j Bij
R (ω, |k| → 0) (6.151)

where k̂i = ki/|k| is a unit vector in the direction of k. Putting all this
together and using the rotational symmetry yields a linear response for-
mula for the thermal conductivity:

χT =
1
3

(
w

nB

)2

lim
ω→0

1
ω

∫
d4x eiωt

〈[
Ĵ i
B(t,x), Ĵ i

B(0,0)
]〉

θ(t) (6.152)

The factor (w/nB)2 arises in the conversion of baryon current to enthalpy
current. Alternatively, (6.152) could be written in terms of the spectral
densities for the longitudinal part of the baryon response function as

χT =
1
3

(
w

nB

)2

lim
ω→0

1
ω
ρn
L(ω, |k| = 0)

=
1

3T

(
w

nB

)2

lim
ω→0

ρ+
L (ω, |k| = 0) (6.153)

The latter equality follows from the relation ρn = (1 − e−βω)ρ+, as dis-
cussed in Section 6.2.

There are Kubo-type linear-response expressions for the viscosities too.
These may be derived in a way analogous to that for the thermal con-
ductivity since Tμν may be viewed as representing a set of four conserved
currents. One obtains

η =
1
20

lim
ω→0

1
ω

∫
d4x eiωt

〈[Sij(t,x), Sij(0,0)
]〉

θ(t) (6.154)

ζ =
1
2

lim
ω→0

1
ω

∫
d4x eiωt〈[P(t,x), P(0,0)]〉θ(t) (6.155)

where P = −1
3T

i
i represents the trace of the momentum tensor (the pres-

sure in equilibrium) and Sij = T ij − δijP represents the traceless part.
These follow from the dispersion relation for the transverse part of the
momentum density,

ω = −iDSk2 (6.156)

where DS = η/w, and from the dispersion relation for pressure waves,

ω2 − v2
Pk2 + iDPωk2 = 0 (6.157)
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where DP = (4
3η + ζ)/w (when the thermal conductivity is neglected). In

terms of the spectral densities we have

η =
1
20

lim
ω→0

1
ω
ρn
SS(ω, |k| = 0) =

1
20T

lim
ω→0

ρ+
SS(ω, |k| = 0) (6.158)

ζ =
1
2

lim
ω→0

1
ω
ρn
PP (ω, |k| = 0) =

1
2T

lim
ω→0

ρ+
PP (ω, |k| = 0) (6.159)

It is worth noting that in all these formulae the relevant transport coeffi-
cient is proportional to a diffusion constant with dimensions of length. In
a multicomponent fluid those particles or fields with the longest diffusion
length tend to dominate the transport coefficient.

In a similar manner one may derive an expression for the electrical
conductivity, which is the coefficient in Ohm’s law JEM = σelE:

σel =
1
6

lim
ω→0

1
ω

∫
d4x eiωt

〈[
Ĵ i

EM(t,x), Ĵ i
EM(0,0)

]〉
θ(t) (6.160)

This may also be expressed in terms of the corresponding spectral density.
The viscosities in λφ4 theory have been calculated by Jeon [18] and

Jeon and Yaffe [19]. In the limit of weak coupling and high temperature,
the shear viscosity is

η = 5.28T 3/λ2 (6.161)

The parametric dependence of η on T and λ is straightforward. Recall that
η = wDS . A diffusion constant may be estimated as n〈σv〉, where n is an
average density, σ is a cross section, and v is the speed of the particles.
For massless, or nearly massless, particles, v ≈ 1, n ∝ T 3, and w ∝ T 4.
The thermally averaged elastic cross section in λφ4 theory is propor-
tional to λ2/T 2. Putting this all together yields the estimate η ∝ T 3/λ2,
in agreement with the result quoted above. However, to calculate the over-
all coefficient is not easy. This may be seen immediately by the inverse
dependence of η on λ. An infinite set of ladder diagrams corresponding
to elastic scattering must be summed along with finite-temperature self-
energy insertions. The calculation is ultimately reduced to a single integral
equation that is solved numerically. The bulk viscosity for point particles
with no internal degrees of freedom undergoing local interactions is gen-
erally much smaller than the shear viscosity. For the λφ4 theory the bulk
viscosity is nonzero at high temperature because of inelastic scatterings.
When these are taken into account it is found that

ζ = 0.00214λ ln2(1.55λ) T 3 (6.162)

The ratio of the two viscosities ζ/η = λ3 ln2(1.55λ)/2470. For λ = 1/10
the ratio is 1.4 × 10−6 and for λ = 1 it is 7.8 × 10−5. The thermal and
electrical conductivities have no meaning in this theory since there is no
conserved charge.
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The shear viscosity, diffusion constant, and electrical conductivity have
been evaluated at high temperature in gauge theories, to lowest order in
the gauge coupling but to all orders in the logarithm of the coupling, by
Arnold, Moore, and Yaffe [20]. Rather than applying the Kubo formulae
directly they found it more expedient to do a numerical calculation based
on the Boltzmann transport equation. For one flavor of lepton (electrons)
the results are

D =
0.596

α2 ln(1.46/α)
1
T

(6.163)

η =
2.39

α2 ln(5.99/α)
T 3 (6.164)

σel =
2.50

α ln(1.46/α)
T (6.165)

and for two flavors (electrons and muons) they are

D =
0.392

α2 ln(1.08/α)
1
T

(6.166)

η =
1.53

α2 ln(2.33/α)
T 3 (6.167)

σel =
3.29

α ln(1.08/α)
T (6.168)

Here D refers to (conserved) lepton number diffusion. These QED expres-
sions have an extra logarithmic factor arising from the screening of the
long-range Coulomb force. The corresponding results for QCD will be
discussed in later chapters.

6.10 Exercises

6.1 Find the linear response of the fermion number density to an applied
neutral scalar field φext(x, t) for a Yukawa theory with interaction
LI = gψ̄ψφ.

6.2 Repeat the analysis of Section 6.2 for a charged scalar field with a
chemical potential.

6.3 Derive (6.47) for the interaction Lagrangian (5.36). You may choose
whichever gauge you prefer.

6.4 Repeat the analysis leading to (6.70) but in the opposite limit, that
of vanishing electron mass.

6.5 Derive the low-momentum expansion for F (0,k) at finite tempera-
ture and chemical potential.

6.6 Derive the limiting form, (6.104) and (6.105), of the photon self-
energy.
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6.7 Is there an expression analogous to (6.120) for the photon dispersion
relations?

6.8 Find the relationship between the flow velocities in the Eckart and
the Landau–Lifshitz approaches.

6.9 Transport coefficients may be expressed in terms of differing corre-
lation functions. As an example of this, express the thermal conduc-
tivity in terms of the density–density correlation function instead of
the current–current one.

6.10 Derive the Kubo formula for the electrical conductivity.
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7
Spontaneous symmetry breaking and

restoration

In the standard model of particle physics, which has been thoroughly
tested to energies above 100 GeV, a central role is played by scalar fields
introduced in the Lagrangian with a negative mass-squared. These fields
are introduced to spontaneously break a gauge symmetry and so yield
the massive vector mesons W and Z, as observed in nature, in the frame-
work of a renormalizable field theory. This is the Higgs mechanism, to be
discussed in Section 7.4, and more specifically in the Glashow–Weinberg–
Salam model of electroweak interactions in Chapter 15. Spontaneous sym-
metry breaking is more general, and arises in the strong interactions too
as is elucidated in later chapters. We now turn our attention to a simple
model to illustrate the phenomenon. This will be followed by a general
statement of Goldstone’s theorem, and a consideration of loop corrections
and of the Higgs model.

7.1 Charged scalar field with negative mass-squared

Consider a complex scalar field Φ with Lagrangian

L = ∂μΦ∗∂μΦ −m2Φ∗Φ − λ(Φ∗Φ)2 (7.1)

This Lagrangian has a global U(1) symmetry Φ → Φe−iα, as discussed in
Section 2.4. What happens if m2 = −c2 < 0? First suppose that λ = 0.
Then in frequency–momentum space the action is

S0 = −1
2β

2
∑
n

∑
p

(
ω2
n + p2 − c2

)
× [φ1;n(p)φ1;−n(−p) + φ2;n(p)φ2;−n(−p)] (7.2)

where Φ = φ1 + iφ2 in the usual notation. This action is not negative
definite and therefore the functional integral is not convergent. Another
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Fig. 7.1.

way to see this is to recall the expression for the partition function, (2.40),
and simply replace m2 with −c2:

lnZ0 = 2V
∫

d3p

(2π)3
[
−1

2βω − ln
(
1 − e−βω

)]
ω =

√
p2 − c2

(7.3)

The dispersion relation indicates an instability when |p| < c.
The basic problem is that the potential is unbounded from below when

λ = 0. To stabilize the system we require λ > 0, which means a repulsive
interaction between the particles. The aforementioned instability occurs
at small momenta. This suggests that the bosons condense, or accumulate,
in the zero-momentum mode. Therefore, following the discussion of Bose–
Einstein condensation, we separate out explicitly the static infrared part
of the field as

Φ = ξ + χ

Φ∗ = ξ∗ + χ∗ (7.4)

Here ξ is a constant and χn=0(p = 0) = 0; that is, the thermal average
〈Φ〉 = ξ. Owing to the global U(1) symmetry, L depends only on the
magnitude of ξ and not on its phase, as illustrated in Figure 7.1. For
convenience we shall choose ξ real.

In terms of the shifted field, the Lagrangian is given by

L = −U(ξ) + L0 + LI (7.5)

where

U(ξ) = −c2ξ2 + λξ4

L0 = 1
2∂μχ1∂

μχ1 − 1
2

(
6λξ2 − c2

)
χ2

1

+ 1
2∂μχ2∂

μχ2 − 1
2

(
2λξ2 − c2

)
χ2

2

LI = −
√

2λξ
(
χ2

1 + χ2
2

)
χ1 − 1

4λ
(
χ2

1 + χ2
2

)2
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7.1 Charged scalar field with negative mass-squared 119

In addition, L contains terms linear in χ1 and χ2, but these contribute
nothing and may be dropped. (Using the Fourier expansion (2.30), we
see that these terms contribute to the action an amount proportional to∫ β
0 dτ

∫
d3xχ(x, τ) ∝ χn=0(p = 0).) The procedure of shifting the field in

this way and regarding χ1 and χ2 as the elementary excitations instead
of φ1 and φ2 is called the mean field expansion. The mean field potential
energy density is U(ξ), as we show below. The mean field masses can be
read off from L0 as

m̄2
1 = 6λξ2 − c2

m̄2
2 = 2λξ2 − c2

(7.6)

Finally, notice that a cubic interaction is induced if ξ = 0.
The mean field approximation is obtained by calculating lnZ with the

neglect of LI. One might expect this to be a good approximation if both
λ and λξ are small. At this point, it is convenient to introduce the ther-
modynamic potential density Ω. For a uniform infinite volume system we
have the relationship

Ω(T, ξ) = −P (T, ξ) = −T

V
lnZ (7.7)

We know from thermodynamical considerations (Landau and Lifshitz [1];
Reif [2]) that in thermal equilibrium Ω is a minimum with respect to
variations in ξ, when ξ is treated as a variational parameter. Intuitively,
this can be recognized by remembering that in equilibrium the pressure is
spatially uniform and that a local fluctuation to a state of lower pressure
is obviously unstable. In the mean field approximation,

Ω(T, ξ) = U(ξ) +
∫

d3p

(2π)3
[

1
2ω1 + 1

2ω2

+ T ln
(
1 − e−βω1

)
+ T ln

(
1 − e−βω2

)]
(7.8)

ωi =
√

p2 + m̄2
i

The vacuum energy density is Ω(T = 0, ξ).
The classical energy density, obtained by neglecting the zero-point

energy in the fields, is

Ωcl(T = 0, ξ) = U(ξ) = −c2ξ2 + λξ4 (7.9)

This potential has a minimum at ξ2
0 = ξ2(T = 0) = c2/2λ, as shown in

Figure 7.2. The potential energy density has a local maximum at ξ = 0.
This explains the instability encountered earlier. Instead of expanding
about this local maximum, we should expand about the global minimum
at ξ0. The mean field masses, that is, the masses of small excitations about
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Fig. 7.2

the equilibrium field configuration, are

m̄2
1(T = 0) = 2c2

m̄2
2(T = 0) = 0

(7.10)

These results are rather transparent. If we allow for complex values of
ξ then the potential would still have the shape illustrated if we rotated
the curve about the vertical axis. So we plot U along the z-axis and take
the complex ξ plane to define the x- and y- axes. Since U depends only
on |ξ|, we obtain the famous “bottom of the wine bottle” shape. Radial
excitations of the field have a mass

√
2c, while rotational excitations have

zero mass. Since the Lagrangian written in terms of Φ and Φ∗ has a
global U(1) symmetry, it is clear that if we change the phase of the field
everywhere in space at the same time there will be no change in the energy
of the system. This static, infinite-wavelength, zero-momentum excitation
circles around the bottom of the potential in the complex ξ plane. This
excitation is called a Goldstone boson. The U(1) symmetry apparent in
(7.1) is not so obvious in (7.5). It is said to be spontaneously broken, since
the vacuum exhibits a lesser symmetry than the Lagrangian. The real and
imaginary components of the field exhibit different masses. The existence
of a Goldstone boson in such a case is guaranteed by Goldstone’s theorem,
which is discussed in more detail in the next section.

There are a number of analogies with more common systems. In a
ferromagnetic metal all the spins line up at T = 0. Since there is no pre-
ferred direction in which they should point, rotational symmetry is spon-
taneously broken. Spin waves with vanishing momentum carry no energy;
their dispersion relation is ω = csk. When the ends of a rod are subjected
to sufficient force, the lowest-energy state is achieved when the rod is
bowed. Since there is no preferred direction in which the rod should bow,
rotational symmetry is spontaneously broken. The energy of a rotating
bent rod, ω = l2/2I, vanishes as the angular momentum l goes to zero.

Now we raise the temperature of the system to T > 0. When T 2 � ξ2
0 =

c2/2λ, not much of interest happens. There is an ideal gas of quasiparticles
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Fig. 7.3

with masses m̄1 =
√

2c and m̄2 = 0. The thermal pressure is

Pthermal = P0(T, m̄2
1) + P0(T, m̄2

2) (7.11)

where

P0(T, m̄2) = −T

∫
d3p

(2π)3
ln
(
1 − e−βω

)
=
∫

d3p

(2π)3
p2

3ω
1

eβω − 1

ω =
√

p2 + m̄2 (7.12)

When T is not small we must allow for the possibility that thermal
fluctuations may change the equilibrium value of the condensate field ξ.
If the interesting physics occurs when T 2 � c2/λ � c2, then we make a
high-temperature expansion of P (T,m2) as (see appendix Section A1.3)

P0(T,m2) =
π2

90
T 4 − 1

24
m2T 2 +

1
12π

m3T

+
m4

64π2

[
ln
(

m2

16π2T 2

)
+ 2γE − 3

2

]
+ · · · (7.13)

Then, with P = −Ω,

Ω(ξ, T ) = λξ4 +
(

1
3
λT 2 − c2

)
ξ2 − π2

45
T 4 − 1

12
c2T 2 (7.14)

Keeping only the first two terms in (7.13) yields (7.14). This is actually a
very clever termination of the series, often used in the literature, since (i)
it is correct when T = 0, (ii) it is a good approximation when T > c, and
(iii) it is a remarkably transparent function of ξ and T . The isotherms
of the thermodynamic potential are shown in Figure 7.3. The minimum
shifts to smaller values of ξ and becomes less deep, as T increases. At
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Fig. 7.4

T 2
c ≡ 3c2/λ, the coefficient of ξ2 changes sign and the potential has a

minimum at ξ = 0. The location of the minimum is

ξ2
min(T ) =

{
c2/2λ− T 2/6 T ≤ Tc

0 T ≥ Tc
(7.15)

This is shown in Figure 7.4. It can be seen that there is a phase transition
at Tc. The spontaneously broken U(1) symmetry is restored!

Using (7.15) in (7.14), the pressures in the low- and high-temperature
phases are, after normalizing the vacuum pressure and energy density to
zero,

P<(T ) =
(
π2

45
+

λ

36

)
T 4 − 1

12
c2T 2

P>(T ) =
π2

45
T 4 +

1
12

c2T 2 − c4

4λ

(7.16)

The pressure and entropy are continuous at Tc,

P<(Tc) = P>(Tc)

dP<(Tc)
dT

=
dP>(Tc)

dT

(7.17)

but the heat capacity is discontinuous,

d2P<(Tc)
dT 2

− d2P>(Tc)
dT 2

=
2
3
c2 (7.18)

Hence this is a second-order phase transition. The physical origin of this
symmetry-restoring phase transition is that the ordering inherent in the
vacuum, and represented by the accumulation of an infinite number of
particles into the zero-momentum state or condensate field ξ, is destroyed
by thermal fluctuations at high temperatures. The second-order nature of
the phase transition is expected from the general Landau theory of phase
transitions (Landau and Lifshitz [1]). A first-order transition would arise
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if a term cubic in ξ were present in Ω, but this is not allowed by the U(1)
symmetry.

There are potential flaws in the beautiful scenario just painted. First,
the masses in the mean field approximation are

m̄2
1 = 6λξ2

min(T ) − c2 =
{

2c2 − λT 2 T ≤ Tc

−c2 T ≥ Tc
(7.19)

m̄2
2 = 2λξ2

min(T ) − c2 =

{
−1

3λT
2 T ≤ Tc

−c2 T ≥ Tc

We are burdened again by a negative mass-squared at T > 0. Also, where
is the Goldstone boson when 0 < T ≤ Tc? Finally, what about the change
in the zero-point energy in (7.8) as ξ varies with T? We shall return to
these questions after a more general discussion of Goldstone’s theorem.

7.2 Goldstone’s theorem

Goldstone’s theorem may be stated as follows:

If a continuous symmetry of the Lagrangian is spontaneously broken, and
if there are no long-range forces, then there exists a zero-frequency exci-
tation at zero momentum.

Here are some examples from nonrelativistic many-body systems [3].

� Ferromagnets. The absence of long-range forces, which may tend to
couple spins at large distances, is necessary for the existence of a mode
with ω → 0 as k → 0.

� Superconductors. In the Bardeen–Cooper-Schrieffer (BCS) theory there
is a spontaneous breaking of phase invariance associated with the con-
servation of electron number. However, there is an energy gap (equal
to the mass of the Cooper pairs), so there is no Goldstone boson. The
reason is that there are long-range electromagnetic forces.

� Superfluids. A low-temperature Bose system is a superfluid. The conden-
sate field, at T = 0, is 〈Φ〉 = ξ, which is related to the particle number
density by n = |ξ|2. The phonon spectrum is

ω2 =
k2

2m

(
k2

2m
+ 2nV (k)

)
where V (k) is the Fourier transform of the two-body potential. By def-
inition, a short-range potential has the property that V (k = 0) is finite
and positive. In that case, ω →√

nV (k = 0)/mk as k → 0. This is not
so for a long-range potential. For the Coulomb force, V (k) = e2/k2 and,
as k → 0, ω → e

√
n/m = ωP, the plasma frequency.
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We would like a nonperturbative proof of Goldstone’s theorem. How-
ever, to be concrete, we will construct such a proof in the context of the
U(1) scalar field theory discussed in the previous section.

The U(1) symmetry is Φ → Φe−iα, or δΦ = −iαΦ if |α| � 1. The con-
served current density may be recalled from (2.47). In terms of the shifted
field, it is

jμ = χ2∂μχ1 − χ1∂μχ2 −
√

2ξ∂μχ2 (7.20)

The total charge, Q =
∫
d3x j0(x), is conserved; Q̇ = 0. The change in Φ

due to an infinitesimal change in phase can also be expressed in operator
form as

δΦ = iα[Q,Φ] (7.21)

That is, the total charge is the generator of the phase transformation.
Taking the thermal, or ensemble, average of δΦ, we find 〈δΦ〉 = −iα〈Φ〉 =
−iαξ. Taking the thermal average of (7.21), we find an expression for the
condensate field,

ξ = −
∫

d3x 〈[j0(x, t), Φ(0, 0)]〉 (7.22)

Now we define the function

Fμ(k0,k) =
∫

d4x eik·x〈T [jμ(x),Φ(0)]〉 (7.23)

Since ∂μj
μ = 0 and

T [jμ(x)Φ(0)] = jμ(x)Φ(0)θ(x0) + Φ(0)jμ(x)θ(−x0) (7.24)

it follows that

kμF
μ = −i

∫
d4x ∂μ

{
eik·x〈T [jμ(x),Φ(0)]〉

}
(7.25)

+ i

∫
d3x e−ik·x〈[j0(x),Φ(0)]〉

If the surface term in (7.25) vanishes then comparison with (7.22) shows
that

lim
k→0

kμF
μ = −iξ (7.26)

If ξ = 0, which means that the U(1) symmetry is spontaneously broken,
then F has a pole at k = 0. This pole corresponds to a zero-frequency
excitation at zero momentum.
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It is not difficult to determine Fμ. Substituting (7.20) into (7.23) leads
to

Fμ(k) = −ξkμ
∫

d4x eik·x〈T [χ2(x)χ2(0)]〉
= −iξkμD2(k) (7.27)

where D2 is the real time Green’s function. Combining (7.26) and (7.27)
tells us that the imaginary part of the shifted field has a dispersion relation
with the property that ω(k = 0) = 0. This is the Goldstone boson.

If the surface term in (7.25) is not zero then no conclusion may be
drawn. This is often the case when there are massless spin-1 bosons in
the theory. This is a gauge theory. We will discuss what happens in this
case later on, focusing especially on the Higgs model and the Glashow–
Weinberg–Salam model of the electroweak interaction.

7.3 Loop corrections

Now let us turn our attention to Ω and also to the self-energies of the
fields.

In Section 7.1 we neglected the shift in the zero-point energy of the
vacuum. Up to an (infinite) additive constant we can write∫

d3p

(2π)3
ω =

∫
d4p

(2π)4
ln(p2 + m2) (7.28)

where p = (p, p4) is a Euclidean four-vector. Our regularization procedure
is simply to place an upper cutoff, Λc, on the integration over |p|. This is
what we did in Section 3.4 (see also Chapter 4). Then∫

d3p

(2π)3
ω =

1
64π2

[
4m2Λ2

c − 2m4 ln
(

Λ2
c

m2

)
−m4

]
+ constant (7.29)

plus terms that vanish as Λc → ∞. We may add to the Lagrangian the
counterterms

δc2Φ∗Φ − δλ(Φ∗Φ)2

In general, δc2 and δλ will depend on the other constants in the
Lagrangian, and on c2 and λ as well as Λc. The vacuum energy density is

Ω(T = 0, ξ) = −(c2 + δc2)ξ2 + (λ + δλ)ξ4

+
1

64π2

[
2(m̄2

1 + m̄2
2)Λ

2
c − m̄4

1 ln
(

Λ2
c

m̄2
1

)
− m̄4

2 ln
(

Λ2
c

m̄2
2

)
− 1

2
(m̄4

1 + m̄4
2)
]

(7.30)
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There is some freedom in choosing δc2 and δλ. However, we should insist
that Ω(T = 0, ξ) be finite (independent of Λc) and that Goldstone’s the-
orem be satisfied (m̄2 = 0). The latter will occur only if Ω(T = 0, ξ) has
its minimum at ξ2 = c2/2λ. A straightforward calculation yields

δc2 =
λΛ2

c

4π2
+

λc2

4π2
ln
(

Λ2
c

2c2

)
+ c2

δ′λ
λ

δλ =
5λ2

8π2
ln
(

Λ2
c

2c2

)
+ δ′λ

(7.31)

Here δ′λ = constant × λ2 is not determined by the above conditions. The
renormalized vacuum energy density is

Ω(T = 0, ξ) = −c2
(

1 − λ

8π2
+

δ′λ
λ

)
ξ2 + λ

(
1 − 5λ

16π2
+

δ′λ
λ

)
ξ4

+
m̄4

1

64π2
ln
(
m̄2

1

2c2

)
+

m̄4
2

64π2
ln
(
m̄2

2

2c2

)
(7.32)

There are several noteworthy points concerning (7.32). By construction
it has its minimum at the same location as the classical energy density.
Thus, in the true vacuum m̄2

1 = 2c2 and m̄2
2 = 0, the same as in the classi-

cal approximation. Goldstone’s theorem is obeyed. To (7.32) we may add
any constant. Thus, not only the location of the minimum but also its
depth can be made the same as in the classical approximation. Notice,
however, that when ξ2 < c2/2λ then m̄2

2 < 0 and Ω has an imaginary part.
This is not unreasonable since in that region the system is unstable.

In the high-temperature expansion (7.13) there is also a term of order
m4 lnm2, with a coefficient of equal magnitude but opposite sign. Thus
the order-m4 lnm2 terms in the vacuum and high-temperature contribu-
tions cancel. Adding together (7.13) and (7.32) gives an improved high-
temperature expression for the thermodynamic potential (for now we will
neglect the term −(m3

1 + m3
2)T/12):

Ω(T, ξ) = −π2

45
T 4 − c2T 2

12
+

c4

32π2
ln
(

8π2T 2

c2
e−2γE+3/2

)
− c2ξ2

[
1 +

δ′λ
λ

+
λ

4π2
ln
(

8π2T 2

c2
e−2γE+1

)
− λT 2

3c2

]
+ λξ4

[
1 +

δ′λ
λ

+
5λ
8π2

ln
(

8π2T 2

c2
e−2γE+1

)]
(7.33)

The appearance of the logarithms is all that really distinguishes this
improved potential from its predecessor. (The δ′λ/λ terms can be
absorbed into the arguments of the logarithms if desired.) Now ln(T/c)
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is a slowly varying function compared with T 2 or T 4. So the shape of
the potential is hardly affected. The critical temperature is determined as
usual by the vanishing of the coefficient of ξ2. To lowest order, T 2

c = 3c2/λ,
as before. An improved formula is obtained by substituting the lowest-
order result in the logarithm:

T 2
c =

3c2

λ

[
1 +

δ′λ
λ

+
λ

4π2
ln
(

24π2

λ
e−2γE+1

)]
(7.34)

The correction is of relative order λ lnλ. For instance, if we take δ′λ = 0
and λ = 0.1 then the correction is only about 2%. It may seem as if the
critical temperature depends on the rather arbitrary value of δ′λ but this
is not so; the numerical values of c and λ depend on the renormalization
prescription used to define them, which involves δ′λ through (7.31). In
the end, Tc must be independent of the renormalization prescription.

The next problem we face in the mean field approximation is that m̄2
2 <

0 for T > 0 and m̄2
1 < 0 for T > 2T 2

c /3. Note that the finite-temperature
corrections (7.19) to these masses are negative and proportional to λT 2

in the high-temperature limit (T > c). The one-loop contributions to the
self-energies are of the same order. Therefore, they must be computed.

From the Lagrangian (7.5) we find the two-loop contributions to lnZ
to be

3 + 3 + 2

+ 3 + (7.35)

A solid line represents the χ1 propagator and a broken line represents the
χ2 propagator. There is a factor −λ/4 at each four-point vertex and a
factor −√

2λξ at each three-point vertex. (Note that the 1PR diagrams
do not appear on account of the stipulation that χ0(0) = 0. This can be
shown by returning to the diagrammatic rules following from the func-
tional integral in Section 3.2.) The self-energies are

Π1 = −12 − 4 − 18 − 2

Π2 = −12 − 4 − 4 (7.36)

The diagrams involving a three-point vertex, the so-called exchange dia-
grams, are momentum and frequency dependent. To renormalize, we
must add the counterterms −δc2 + 6ξ2δλ and −δc2 + 2ξ2δλ to Π1 and
to Π2, respectively. In the high-temperature approximation, and at low
frequency and momentum, the exchange diagrams may be neglected. This
follows simply from power counting. Both types of diagram involve one
integration over the loop momentum, but the exchange diagrams involve
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Fig. 7.5

two propagators instead of one. Then

Πmat
1 = Πmat

2 =
1
3
λT 2 (7.37)

Adding these to (7.19), we obtain the masses

m2
1 = m̄2

1 + Πmat
1 =

⎧⎪⎨⎪⎩
2c2
(

1 − T 2

T 2
c

)
T ≤ Tc

1
3
λ
(
T 2 − T 2

c

)
T ≥ Tc

(7.38)

m2
2 = m̄2

2 + Πmat
2 =

{
0 T ≤ Tc
1
3
λ
(
T 2 − T 2

c

)
T ≥ Tc

The behaviour of the masses as a function of temperature is shown in
Figure 7.5. Thus the pathological behavior of the boson propagators has
been cured. The vanishing of the masses at the critical point is charac-
teristic of a second-order phase transition. Typically, one finds that the
correlation lengths diverge at Tc. (The last diagram for Π1 in (7.36) actu-
ally diverges if we let the external frequency and momentum go to zero
and if T < Tc, because m2 = 0. That is, the zero-mode contribution is pro-
portional to λ2ξ2T

∫
dp/p2. This is of no physical importance since the

mass is defined to be the location of the pole of the real time propagator
at zero momentum. The relevant limit in (7.36) is Π1(ω = m1, k = 0).)

The lesson learned is that the mean field approximation is not reli-
able in all respects. It turns out that it correctly predicts a second-order
symmetry-restoring phase transition at T 2

c = 3c2/λ. However, it is incor-
rect in the finer details, such as the finite-temperature behavior of the
correlation lengths (boson masses). This is a serious matter, since Gold-
stone’s theorem is violated. At the very least, one should include all loop
corrections to the same order in the coupling constants as is retained
in the mean field approximation. The reason is that a loop expansion is
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essentially an expansion in powers of the Lagrangian. In order to respect
the symmetries of the Lagrangian, one must retain all diagrams through
a fixed number of loops.

A better approximation scheme would be to consider the thermody-
namic potential Ω as function of the mean field 〈Φ〉 = ξ and as a functional
of the boson propagators D1 and D2. The mean field would be determined
by the minimization condition ∂Ω/∂ξ = 0, and the propagators would be
determined by the Schwinger–Dyson equations. To implement this idea,
we would add to the quadratic part of the action S0 the term

− 1
2β

2
∑
n

∑
p

[χ1;−n(−p)Π1(ωn,p)χ1;n(p) + χ2;−n(−p)Π2(ωn,p)χ2;n(p)]

(7.39)

and subtract the same quantity from SI. In the S0 case, (7.39) is to be
treated as a counter-term. Recalling (2.36) and the steps leading up to it,
we can write the thermodynamic potential as [4]

Ω(T, ξ,D1,D2)

= U(ξ) − 1
2T
∑
n

∫
d3p

(2π)3

[
ln(T 2D1) + ln(T 2D2) − D1

D̄0
1

− D2

D̄0
2

+ 2

]

+
∞∑
l=2

Ωl(ξ,D1,D2) + subtractions (7.40)

Here
D̄0

1 =
(
ω2
n + p2 + m̄2

1

)−1

D̄0
2 =

(
ω2
n + p2 + m̄2

2

)−1
(7.41)

These are the mean field propagators, and Ωl is the sum of all l-loop
diagrams; in these loop diagrams, the bare propagators are to be replaced
with the full propagators. Here, the potential Ω is an extremum with
respect to independent functional variations of D1 and D2, on account of
the Schwinger–Dyson equations

D−1
1 − D̄0−1

1 = 2
∞∑
l=2

δΩl

δD1

D−1
2 − D̄0−1

2 = 2
∞∑
l=2

δΩl

δD2

(7.42)

These equations determine Π1 and Π2 self-consistently, just as ξ is deter-
mined self-consistently from ∂Ω/∂ξ = 0.

As a practical matter, the loop sum must be terminated at a finite
order. Then the momentum- and frequency-dependent self-energies must
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be determined self-consistently and substituted into (7.40) to compute Ω.
The mean field is then determined by minimizing Ω. If only the two-loop
diagrams (7.35) are retained and the high-temperature approximation is
made, (7.37) and (7.38) follow. Then Ω may be computed from (7.40)
straightforwardly since the propagators are both non-negative for all fre-
quency and momentum. Minimization with respect to ξ will yield ξ as
a function of T . One finds again that at T 2

c = 3c2/λ there is a second-
order symmetry-restoring phase transition, as predicted by the mean field
approximation. This is left as an exercise.

7.4 Higgs model

The model discussed so far can be made more interesting by coupling the
charged scalar field to the electromagnetic field. The Lagrangian density
is

L = (∂μ − ieAμ)Φ∗(∂μ + ieAμ)Φ + c2Φ∗Φ − λ(Φ∗Φ)2 − 1
4F

μνFμν (7.43)

Anticipating the spontaneous breaking of the U(1) symmetry, which is
now a local symmetry, we shift the field by setting

Φ = ξ + χ (7.44)

and stipulate that 〈χ〉 = 0. Apart from terms linear in χ, we obtain

L = −U(ξ) + L0 + LI (7.45)

where

L0 = 1
2(∂μχ1) (∂μχ1) − 1

2m̄
2
1χ

2
1 + 1

2(∂μχ2)(∂μχ2) − 1
2m̄

2
2χ

2
1

− 1
4F

μνFμν + e2ξ2AμAμ −
√

2eξχ2∂μA
μ

LI = −
√

2λξ
(
χ2

1 + χ2
2

)
χ1 − 1

4λ
(
χ2

1 + χ2
2

)2
+ eAμ(χ1∂μχ2 − χ2∂μχ1)

+ e2AμAμ

[√
2ξχ1 + 1

2

(
χ2

1 + χ2
2

)]
Here m̄2

1, m̄
2
2, and U(ξ) are as defined in Section 7.1. It would appear from

L0 that the electromagnetic field has developed a mass
√

2eξ. However,
this must be carefully considered because of the mixing between χ2 and
Aμ.
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To find the spectrum of excitations at T = 0 it is useful to make the
change of variables

Φ =
(
ξ + 2−1/2φ

)
exp

(
iη√
2ξ

)
A′

μ = Aμ +
∂μη√
2eξ

(7.46)

where φ and η are two independent real fields. Substitution into (7.43)
yields

L = −U(ξ) + L′
0 + L′

I (7.47)

where

L′
0 = 1

2∂μφ ∂μφ− 1
2m̄

2
1φ

2 − 1
4F

′μνF ′
μν + e2ξ2A′μA′

μ

L′
I = −

√
2λξφ3 − 1

4λφ
4 + e2

(√
2ξ + 1

2φ
)
φA′μA′

μ

Notice that all reference to the field η has gone! Minimizing the classical
energy density U(ξ) gives an equilibrium condensate ξ2 = c2/2λ, the same
as before. Thus, at T = 0, we have a real scalar field with mass

√
2c and a

vector field with mass ec/
√
λ. Counting the number of degrees of freedom,

we have one for the former and three for the latter. This is the same as
without spontaneous symmetry breaking, namely two for the Φ field and
two for the massless Aμ field. There is no Goldstone boson; the Goldstone
theorem does not apply, because Aμ is a vector field. The generation of
mass for the vector field via spontaneous symmetry breaking is known as
the Higgs mechanism. It is a central concept in modern gauge theories.

The choice of variables in (7.46) is not very appropriate for a mean
field approximation at high temperature, because we expect ξ to decrease
with increasing T and eventually to vanish above a critical temperature.
Therefore we return to (7.45) to study the thermodynamics.

At T = 0 it can be shown that the χ2 field in (7.45) does not represent
an observable particle in scattering experiments [5]. In more picturesque
language, it is said that the vector field increases its number of polariza-
tion degrees of freedom from two to three and becomes massive by eating
the would-be Goldstone boson.

The partition function is

Z =
∫

[dAμ] [dΦ] [dΦ∗] δ(F ) det
(
∂F

∂α

)
exp

(∫ β

0
dτ

∫
d3xL

)
(7.48)

One convenient choice of gauge is the so-called Rρ-gauge,

F = ∂μAμ −
√

2eξρχ2 − f(x, τ) (7.49)
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in the limit ρ → 0. Under an infinitesimal gauge transformation

Φ → Φeieα ≈
(
ξ +

χ1 + iχ2√
2

)
(1 + ieα)

Aμ → Aμ − ∂μα

(7.50)

we have
∂F

∂α
= −∂2 − e2ξ

(
2ξ +

√
2χ1

)
ρ → −∂2 (7.51)

Furthermore, multiplying the right-hand side of (7.48) by

exp
(
− 1

2ρ

∫ β

0
dτ

∫
d3x f2

)
and functionally integrating over f gives a β-independent correction.
Hence

Z = lim
ρ→0

det
(−∂2

) ∫
[dAμ] [dΦ] [dΦ∗] exp

(∫ β

0
dτ

∫
d3xLeff

)
(7.52)

where

Leff = −U(ξ) + L0 + LI − 1
2ρ

(
∂μAμ −

√
2eξρχ2

)2

Close scrutiny of (7.52) brings out the following points. The factor
det
(−∂2

)
cancels two specious degrees of freedom. The gauge-fixing term

has a part that is independent of ρ and that, in fact, cancels the mixing
term between χ2 and Aμ in (7.45). The limit ρ → 0 ensures that only
those gauge-field configurations with ∂μAμ = 0 contribute to the partition
function.

A high-temperature mean field approximation similar to (7.13) and
(7.14) can be carried out, with the result

Ω(ξ, T ) = λξ4 +
[(

λ

3
+

e2

4

)
T 2 − c2

]
ξ2 − 2π2

45
T 4 − 1

12
c2T 2 (7.53)

This predicts a second-order symmetry-restoring phase transition at T 2
c =

12c2/(4λ + 3e2). Of course, the particle masses exhibit the pathological
behavior typical of the mean field approximation and it is necessary to
calculate the one-loop self-energies to obtain a more respectable behavior.

Since the Higgs model contains two independent dimensionless cou-
pling constants, new phenomena may occur. If λ >∼ e4 then the qualitative
behavior of the phase transition sketched above is not altered by higher-
order loop corrections. If λ <∼ e4 then the mass of the vector meson is
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comparable with or greater than Tc, and the second-order phase transition
may even become a first-order one. In fact, when λ → 3e4/32π2, quantum
corrections cause Tc to decrease to zero, and for λ < 3e4/32π2 there is no
spontaneous symmetry breaking even at T = 0. The interested reader is
referred to the review of Lindé [6].

If c = 0 then we are dealing with massless scalar electrodynamics, not
the Higgs model. Surprisingly, spontaneous symmetry breaking occurs
here also. It is driven by the one-loop quantum correction to the vacuum
energy density, the shift in the zero-point energy of the vacuum. This
phenomenon was discovered by Coleman and Weinberg [7]. The finite-
temperature behavior of the Coleman–Weinberg model is left as an exer-
cise.

7.5 Exercises

7.1 Choose δ′λ in (7.32) so that the depth of the minimum is the same as
in the classical theory. Then plot the classical and one-loop quantum
vacuum energy densities versus ξ for λ = 0.1, 0.01, 0.001.

7.2 Retaining the two-loop diagrams (7.35) and using the high-
temperature approximation, as discussed at the end of Section 7.3,
calculate Tc.

7.3 An alternative to the mean field expansion is an ordinary perturba-
tive expansion based on the T = 0 value of the condensate field ξ0.
This scheme has the disadvantage that it is not self-consistent, but
the advantage that one need not do an expansion in terms of full
propagators since no tachyons appear in the perturbative expansion.
In this case 〈χ〉 will not vanish at T > 0. Using only the one-loop
diagrams, show that 〈Φ〉 = ξ0 + 〈χ〉 vanishes at T 2

c = 3c2/λ.
7.4 Read the paper Coleman and Weinberg [7]. Verify their result that

there is spontaneous symmetry breaking at T = 0 in massless scalar
electrodynamics. Show that the symmetry is restored at high tem-
perature, and calculate Tc.
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8
Quantum chromodynamics

The quark model of hadrons, developed by Gell-Mann and Zweig, began
to be taken seriously in the mid to late 1960s. The discovery of scaling
in deep inelastic electron–nucleon reactions in the late 1960s seemed to
imply that at very short distances, or very high momentum transfers,
the nucleon constituents (valence quarks) behaved like weakly interact-
ing point particles. However, the interactions between quarks had to be
very strong at long distances, or small momentum transfers, to confine
them in hadrons and thus explain the non-observation of isolated quarks.
Politzer [1] and Gross and Wilczek [2], who received the Nobel prize in
2004, showed that the only renormalizable field theory of quarks that
had the property of an increasing force at long distance and a decreas-
ing force at short distance was of the type discovered by Yang and Mills
[3]. Quarks must be spin-1/2 fermions, with fractional electric charge,
and must come in three colors (a new quantum charge akin to electric
charge) in order to explain the systematics of hadron spectroscopy. Inter-
actions between quarks are mediated by gluons (the glue which holds them
together). Gluons are massless spin-1 bosons, as are photons, but unlike
photons they interact among themselves directly (via point interactions)
because they also carry a color charge. Such theories are called nonabelian
gauge theories. This theory of quarks and gluons, quantum chromody-
namics (QCD), is the accepted theory of the strong interactions. Unfor-
tunately, it has been very difficult to make quantitative predictions with
QCD, owing to its complexity and peculiar properties. For a more thor-
ough discussion of the history of QCD and its experimental support see
Close [4].

During the mid to late 1970s it was realized that there should be a
qualitative change in the properties of hadronic matter as the temperature
or density is increased. A dilute system could be described in terms of
pions, nucleons, and other hadrons. In a very dense system such extended
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composite particles would overlap, and quarks and gluons would be free
to roam. There might even be a color-deconfinement phase transition at
a temperature of several hundred MeV or a baryon density of around ten
times the normal nuclear density. A phase transition from hadron gas to
quark–gluon plasma requires a very large energy density. Such a transition
could have occurred in the very early universe during the first microsecond
of the big bang, or it could occur in the interior of a neutron star or during
the collisions of large nuclei at very high energy in terrestrial accelerators.

The outline of this chapter is as follows. In Section 8.1 the Lagrangian
of QCD is discussed as well as the functional integral representation of
the partition function, including ghosts. Section 8.2 contains a brief dis-
cussion of asymptotic freedom, whereby the effective coupling decreases
to zero logarithmically at short distance. In Sections 8.3 and 8.4 the per-
turbative evaluation of the thermodynamic potential at high temperature
and density is surveyed and all known results are summarized. Section 8.5
discusses various limits of the gluon propagator, in various gauges that
are useful in linear response analyses. Instantons are nonperturbative,
topological, excitations which contribute to the thermodynamic poten-
tial, and a short introduction to them is given in Section 8.6. Unresolved
infrared problems which appear at high order in perturbation theory are
discussed in Section 8.7. Strange cold quark matter is analyzed in Sec-
tion 8.8. Finally, the very interesting problem of color superconductivity
is studied in Section 8.9. Applications of QCD to neutron stars, the big
bang, and high-energy heavy ion collisions will be made in later chapters.

8.1 Quarks and gluons

Quarks must come in three colors (color being a new, strong-interaction,
quantum number) in order that we may construct the observed hadrons
without violating the Pauli exclusion principle. The color gauge group
of QCD is SU(3). However, we may base our analysis more generally on
the group SU(N), N = 2, 3, . . . . The generators of the group are written
as Ga, where the index a runs in integral steps from 1 to N2 − 1. The
generators satisfy the commutation relations

[Ga, Gb] = ifabcGc (8.1)

where the fabc are the group structure constants. For example, for SU(2)
the group generators may be represented by the 2 × 2 Pauli matrices and
for SU(3) by the 3 × 3 Gell-Mann matrices.

The gauge field Aμ
a carries color with a color index a = 1, . . . , N2 − 1.

The field strength is

Fμν
a = ∂μAν

a − ∂νAμ
a − gfabcA

μ
bA

ν
c (8.2)
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Here, the dimensionless coupling g enters. Under an infinitesimal gauge
transformation αa(x, t), the gluon field transforms as

Aμ
a → Aμ

a + gfabcA
μ
bαc − ∂μαa (8.3)

The field strength is not invariant, unlike in QED, since

Fμν
a → Fμν

a + gfabcF
μν
b αc (8.4)

However, its square is invariant since Fμν
a F a

μν → Fμν
a F a

μν .
The quarks come in N different colors, so the quark field ψ has a color

index i which runs from 1 to N (where N = 3 for SU(3)). The QCD
Lagrangian is

L = ψ̄(i∂ −M − g AaG
a)ψ − 1

4F
μν
a F a

μν (8.5)

The first term is the kinetic energy of the quarks. The second term is the
quark mass matrix, which is diagonal in flavor space (that is, referring to
the u, d, s, c, . . . quarks). The third term is the minimal coupling of the
quarks to the gluons. (Notice the suppression of the quark color indices in
(8.5). If Ga is represented by an N ×N matrix then ψ is represented by
an N -dimensional column vector in color space.) In order for this coupling
to be gauge invariant the quark field must transform as

ψ → exp(igGaαa)ψ (8.6)

The last term in (8.5) is gauge invariant by the construction of Fμν
a . When

g = 0, (8.5) describes massive noninteracting quarks and N2 − 1 massless
noninteracting “photons”.

The strong interactions conserve baryon number and electric charge.
They also conserve quark flavor (such as strangeness), but the weak inter-
actions allow for flavor change. Color charge is conserved by all known
interactions. The color current density is

ja(c)μ = g
(
ψ̄γμG

aψ + fabcF b
μνA

ν
c

)
= ∂νF a

νμ (8.7)

The second equality follows from the Lagrange equations of motion for
Aμ

a . The conservation law ∂μja(c)μ = 0 follows from the antisymmetry of
the field strength in its two Lorentz indices. The color charge generators
are

Qa
(c) =

∫
d3x ja(c)0 (8.8)

The non-observation of isolated quarks or gluons leads us to postulate
that only aggregates of quarks and gluons with zero net color charge, or
color singlets, have finite energy. Aggregates with net color should have
infinite energy. This would explain their absence. This color confinement
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is a generally accepted consequence of QCD but apparently has never
been rigorously established.

Quantization proceeds in a way parallel to that of QED, discussed in
Section 5.1. Equation (5.24) corresponds to the QCD formula

Z =
∫

[dAμ
a ][dψ̄][dψ]δ(F b) det

(
∂F c

∂αd

)
exp

(∫ β

0
dτ

∫
d3x(L + ψ̄μγ0ψ)

)
(8.9)

The number of polarization degrees of freedom of the gluons is 2Ng =
2(N2 − 1) and F b is the gauge fixing function; there is one for each b =
1, . . . , N2 − 1. Summation over quark color and flavor indices is implied.

One set of gauges that is often used is the set of covariant gauges

F a = ∂μAa
μ − fa(x, τ) = 0 (8.10)

Under the infinitesimal gauge transformation (8.3),

F a → ∂μ
(
Aa

μ + gfabcAb
μα

c − ∂μα
a
)
− fa (8.11)

Then the argument of the determinant is

∂F c

∂αd
= −∂2δcd + gf cbd∂μAb

μ (8.12)

As usual, we multiply Z by

exp
(
− 1

2ρ

∫
dτ

∫
d3x f2

a

)
and integrate over fa to obtain

Z =
∫

[dAμ
a ][dψ̄][dψ] det

(
−∂2δac + gfabc∂μAb

μ

)
× exp

[∫
dτ

∫
d3x

(
L + ψ̄μγ0ψ − 1

2ρ
(∂μAa

μ)2
)]

(8.13)

As in (5.26) and (5.34), we introduce ghost fields C̄a and Ca to represent
the determinant in functional integral form:

Z =
∫

[dAμ
a ][dψ̄][dψ][dC̄a][dCa] exp

(∫
dτ

∫
d3xLeff

)
(8.14)

where

Leff = L − 1
2ρ

(∂μAa
μ)2 + gfabcC̄a∂μA

μ
bCc + ψ̄μγ0ψ + ∂μC̄a∂

μCa

In the covariant gauges the ghost field does not decouple from the gluon
field. The ghost field integration cannot be factored out.
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In Table 8.1 the diagrammatic rules for QCD in the covariant gauges
are listed. Table 8.2 contains a listing of the properties of the six quarks.
The numerical values of the quark masses depend on the precise way in
which they are defined, since freely propagating quarks do not exist. The
three light quark masses are evaluated at an MS scale of 2 GeV, while the
three heavy quark masses are evaluated at their own mass.

8.2 Asymptotic freedom

The renormalization-group running coupling for massless λφ4 theory, λR,
was discussed in Section 4.2. From (4.25) we saw that the effective cou-
pling grows at high energy, or equivalently at short distance. The phys-
ical interpretation is that a point charge is shielded, or screened, by
virtual pair production in the vacuum. As we approach the source of
the charge, we penetrate the screening cloud surrounding it. The effec-
tive charge we see becomes larger due to the loss of screening. In a
sense this is like penetrating the electron cloud surrounding an atomic
nucleus. The difference is that the atomic electrons are real particles
nearly on their mass shell. Electronic screening is essentially a classi-
cal effect. The increase in the renormalization-group charge is effected in
the lowest approximation by virtual particles and so is a purely quantum
effect.

To lowest order in the coupling constant, a β-function is either positive
(the charge grows at short distance) or negative (the charge decreases
at short distance). Until 1973, examples of only the former were known.
The discovery that only nonabelian gauge theories allow for a negative
β-function is credited to Politzer [1] and to Gross and Wilczek [2]. They
showed that QCD yields a charge that decreases at short distance, an
effect called asymptotic freedom that is required by experiment. This
discovery was not anticipated by any simple intuitive reasoning. Let us
examine the renormalization-group as it applies to QCD with massless
quarks and in the set of covariant gauges.

The renormalization-group equation for the irreducible vertex function
for n gluon and n′ massless quark fields is (see the discussion leading to
(4.13))

(
M

∂

∂M
+ β(g, ρ)

∂

∂g
+ δ(g, ρ)

∂

∂ρ
+ nγA(g, ρ) + n′γψ(g, ρ)

)
×Γn,n′

(p1, . . . , pn+n′ ; g, ρ,M) = 0 (8.15)

Here δ is the “β-function” corresponding to the gauge parameter ρ.
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Table 8.1. Bare propagators and vertices in QCD in covariant gauges

Quark p
i j Gij =

δij
p−m

, p0 = iωn + μ

Gluon
k

a b Dμν =
δab
k2

(
gμν − (1 − ρ)kμkν

k2

)

Ghost Wab =
δab
k2

i j

μ, a

ΓF
0 = gγμGa

ij

k

b c

μ, a

ΓG
0 = −igfabckμ

r(β, b) q(γ, c)

k(α, a)

ΓV
0(3) = igfabc [gβγ(r − q)α

+ gαβ(k − r)γ
+ gγα(q − k)β ]

q(β, b)

k(α, a)

r(γ, c)

s(δ, d)

ΓV
0(4) = −g2 [fadefebc (gαβgδγ − gαγgδβ)

+ fabefedc (gαδgβγ − gαγgδβ)
+ facefedb (gαδgβγ − gαβgδγ)]
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Table 8.2. Quark properties

Flavor Electric charge Baryon number Mass

u (up) 2/3 1/3 3 MeV
d (down) −1/3 1/3 7 MeV

s (strange) −1/3 1/3 120 MeV

c (charm) 2/3 1/3 1.2 GeV

b (bottom) −1/3 1/3 4.25 GeV

t (top) 2/3 1/3 175 GeV

There is a Ward identity for QCD which states that the longitudinal
part of the inverse gluon propagator is not altered by interactions. That
is,

Γ2,0
L =

pμpν

ρ
(8.16)

This is the same as in QED (see (5.46)). Application of (8.15) to (8.16)
then yields the relation

δ(g, ρ) = 2ργA(g, ρ) (8.17)

This points to the advantage of the Landau gauge ρ = 0; in this gauge
δ(g, 0) = 0. Hence, starting with ρ = 0 we are guaranteed that after renor-
malization ρ = 0 will remain true, on account of the renormalization group
equation

M
∂ρ̄

∂M
= δ(ḡ, ρ̄) (8.18)

Otherwise, we must keep ρ arbitrary in our equations. For example, ρ = 1
will not remain as such under application of the renormalization group.

The γ’s may be obtained most directly from Γ2,0
T and Γ0,2. To lowest

order in g we must evaluate the following diagrams:

+ + +
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If these are normalized to have their free-field values at p2 = −M2 (accord-
ing to Euclidean momentum subtraction) then

Γ2,0
T = (p2gμν − pμpν)

{
1 +

[(
13
6

− 1
2
ρ

)
c1 − 4

3
c2

]
g2

16π2
ln
(
− p2

M2

)}
(8.19)

Γ0,2 = p
[
1 − ρ c1

g2

16π2
ln
(
− p2

M2

)]
(8.20)

The c’s are given by

facdfbcd = c1δab = Nδab
(8.21)

Nf Tr GaGb = c2 δab =
1
2
Nf δab

and Nf is the number of quark flavors. If we apply (8.15) to (8.19) and
(8.20), and after differentiation set p2 = −M2, we can solve for the γ’s:

γA =
g2

16π2

[(
13
6

− 1
2
ρ

)
c1 − 4

3
c2

]
(8.22)

γψ = − g2

16π2
ρc1 (8.23)

It is not possible to determine the β-function in these covariant gauges
with knowledge of the two-point functions (propagators) alone.

Knowledge of a three-point function would suffice to determine β. From
the following diagrams,

+ + +

we compute

Γ3,0 = −igfabc(gβγpα + gαβpγ − 2gγαpβ)

×
{

1 +
[(

17
12

− 3
4
ρ

)
c1 − 4

3
c2

]
g2

16π2
ln
(
− p2

M2

)}
(8.24)

and from

+
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we compute

Γ1,2 = −gγμGa

[
1 −

(
3
4

+
5
4
ρ

)
c1

g2

16π2
ln
(
− p2

M2

)]
(8.25)

These are computed with external momenta (p1, p2, p3) = (0,−p, p) and
normalized at p2 = −M2. Application of (8.15) to either (8.24) or (8.25)
yields the lowest-order renormalization-group β-function,

β = − g2

48π2
(11N − 2Nf) (8.26)

This will be negative, and the running coupling g will decrease with
increasing energy, as long as Nf < 5.5N . This condition is fulfilled for
SU(3), with six quark flavors.

It is worthwhile remarking that knowledge of the gluon two-point func-
tion in the Coulomb gauge (∇ · Aa = 0) and the axial gauge (n ·A = 0,
where n is a fixed four-vector) is sufficient to determine β. The reason
is that the noncovariance of these gauges provides a tensorial structure
for the gluon propagator and self-energy that requires two independent
scalar functions, even in the vacuum (see Sections 5.4 and 6.3). These two
independent scalar functions then allow the determination of both γA and
β. The result is identical to (8.26).

The renormalization-group running coupling is determined by (see
Section 4.2)

M
∂ḡ

∂M
= β(ḡ) (8.27)

with solution

ᾱ =
ḡ2

4π
=

12π
(11N − 2Nf) ln(M2/Λ2)

(8.28)

This explicitly displays asymptotic freedom: ᾱ → 0 as M → ∞. Notice
the absence of any intrinsic coupling “constant” on the right-hand side
of (8.28). In its place as the free parameter of the theory is the QCD
energy scale Λ. The numerical value of Λ is, however, dependent on
the gauge and on the renormalization scheme chosen (for example, this
might be the choice used in (8.24) and (8.25)). This is seen in higher
order.

Finite quark masses can be incorporated into the renormalization-group
analysis by adding to the differential operator in (8.15) a term

γm

(
g, ρ,

mf

M

)
mf

∂

∂mf
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for each quark flavor f. That is, mf/M is treated as a dimensionless cou-
pling constant. The quark mass may be defined by

G−1|p2=−M2 =p−m (8.29)

This is one possible renormalization prescription, but there exist others.
A direct computation of β and γm in the Landau gauge yields [5]

M
∂g

∂M
= β = − g3

48π2

⎡⎣11N − 2
3

∑
f

B0

(
m2

f

M2

)⎤⎦ (8.30)

where

B0(x) = 1 − 6x + 12
(
x2

y

)
ln
(
y + 1
y − 1

)
y =

√
1 + 4x (8.31)

and

M

m

∂m

∂M
= γm = − g2

2π2
C0

(
m2

M2

)
(8.32)

C0(x) = 1 − x ln(1 + x−1) (8.33)

Good approximations for B0 and C0 are

B0(x) � (1 + 5x)−1

C0(x) � (1 + 2x)−1 (8.34)

(We have now removed the overbar from g and m and will denote the
running coupling and mass by g and m for notational simplicity.)

In general, (8.30) and (8.32) form a set of Nf + 1 coupled first-order
nonlinear differential equations that must be solved numerically. The basic
features of these equations are readily understood in the following way.
The running coupling can be written as

g2

4π
=

12π[
11N − 2N eff

f (M)
]
ln(M2/Λ2)

(8.35)

where

N eff
f (M) � 1

ln(M2/Λ2)

∑
f

M2 + m2
f (M)

Λ2 + m2
f (M)

(8.36)

is the effective number of quark flavors at the energy scale M . Equations
(8.35) and (8.36) form a solution to (8.30) valid to the lowest order in
g. If mf(M) is small then it contributes to β, but if it is large then it
decouples. That is, if the quark mass is large compared with the energy
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scale of interest then there is insufficient energy for pair production, so
that flavor does not add to the charge screening.

As an example, consider the first three quark flavors with mu = md =
0 but ms = 0. We look at high energy where M � ms. Then g2/4π �
2π/[9 ln(M/Λ)] can be inserted into (8.32):

dms

dM
= − 4

9 ln(M/Λ)
ms

M
(8.37)

This has the solution

ms(M) = ms0

[
ln(M0/Λ)
ln(M/Λ)

]4/9

(8.38)

where ms0 is the mass at the scale M0. The monotonic decrease in quark
mass with increasing energy is in fact a general feature of (8.32), since
γm < 0.

The β-function has been computed to two loops, that is, to order g5

(the reader is referred to [6] for a more detailed discussion of massive
quarks). For massless quarks [7],

β = − (11N − 2Nf)
g3

48π2
−
(

34N2 − 13NNf + 3
Nf

N

)
g5

768π4

≡ −β0g
3 − β1g

5 (8.39)

which is still gauge and prescription independent. An approximate solu-
tion of the renormalization-group equation is

α2(M) = α1(M) − 4π
(
β1

β0

)
α2

1(M) ln
(

1
α1(M)

)
(8.40)

where α1(M) = 1/[4πβ0 ln(M2/Λ2)] is the lowest-order solution. Correc-
tions to (8.40) are of order α3

1(M) ∼ [1/ ln(M2/Λ2)]3. For QCD with Nf =
3, α2(M) = α1(M) + 0.0354α2

1(M) lnα1(M). Thus, when α1(M) � 1 we
have α2(M) � α1(M) to rather good accuracy.

The thermodynamic potential Ω must be independent of gauge and of
renormalization prescription since it is a measurable quantity. However,
the way this works in practice can be rather subtle. For example, if we
work in a covariant gauge then

d

dρ
Ω(g(ρ), ρ) =

(
∂

∂ρ
+

∂g

∂ρ

∂

∂g

)
Ω(g(ρ), ρ) = 0 (8.41)

must hold, not ∂Ω(g, ρ)/∂ρ = 0. The reason is that g depends on the
gauge and on the renormalization prescription used to render it finite
from its bare value.
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8.3 Perturbative evaluation of partition function

Since the effective QCD coupling goes to zero logarithmically at short
distances, it is reasonable to attempt a perturbative expansion of the
thermodynamic potential at high energy density [8, 9, 10]. In this and the
next section we summarize the results so far obtained. Possible limits to
the usefulness of perturbation theory will be discussed in later sections,
as will some applications of the formulae obtained here. In the following
discussion we quote perturbative results for the pressure P (T, μ). The
entropy density s = ∂P/∂T , flavor densities nf = ∂P/∂μf , and energy
density ε = −P + Ts +

∑
f μfnf are computed straightforwardly.

To zero order in the coupling, the QCD plasma is an ideal gas of gluons
and quarks. The pressure can be written down immediately from (1.31)
and (1.32):

P0 =
π2

45
NgT

4 +
N

3π2

∑
f

∫ ∞

0

dp p4

Ep
NF(p) (8.42)

where Ng = N2 − 1 is the number of gluons, which is eight for SU(3).
When mf = 0 the integral in (8.42) can be evaluated in closed form. The
contribution to the pressure is

P0f (mf = 0) = N

(
7π2T 4

180
+

μ2
fT

2

6
+

μ4
f

12π2

)
(8.43)

The exchange corrections to the ideal gas pressure are of order g2. The
relevant diagrams are shown below:

−1
2 − 1

2 + 1
12 + 1

8 (8.44)

The diagram with the quark loop is analyzed exactly as the QED dia-
gram in (5.39) but with the replacement e2 → g2 Tr GaGa = 1

2g
2Ng. Then

(5.58) to (5.61) can be taken over straightforwardly. The ghost dia-
gram and the two pure gluon diagrams can be evaluated by means that
should now be familiar. Since these are two-loop diagrams, the unrenor-
malized contributions will have parts that are quadratic and linear in
the massless boson occupation probability (eβω − 1)−1. (Parts that are
T -independent only renormalize the vacuum energy and these are dis-
carded.) The subtraction procedure eliminates the linear parts. The three
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diagrams contribute, in respective order,

P gluon
2 = g2NNg

(∫
d3p

(2π)3
1
ω

1
eβω − 1

)2(
−1

4
+

9
4
− 3
)

= − g2

144
NNgT

4 (8.45)

This result is gauge invariant, although the individual diagrams are not.
As in QED and in massless λφ4 theory, the next contributions are not

of order g4; they are of order g4 ln g2 and g3. These come from the set of
ring diagrams

1
2

[
1
2

Π

Π

− 1
3

Π

ΠΠ

+ · · ·
]

where

Π = + − 1
2 − 1

2

(8.46)

The analysis proceeds exactly in parallel with that in subsection 5.5.2.
What is needed is the static infrared limit of Πμν . This will be discussed
more thoroughly in a later section, and for now we simply quote the result
at T > 0,

P
(1)
ring =

Ng

12π
Tm3

el (8.47)

where

m2
el = F (n = 0,k → 0) = −Π00(n = 0,k → 0)

= g2

⎛⎝1
3
NT 2 +

1
2π2

∑
f

∫ ∞

0

dp

Ep
(p2 + E2

p)NF(p)

⎞⎠ (8.48)

is the square of the inverse screening length for color charge. When all
quark masses can be neglected, we have

m2
el = g2

⎡⎣(1
3
N +

1
6
Nf

)
T 2 +

1
2π2

∑
f

μ2
f

⎤⎦ (8.49)

It should be noted that (8.47) and (8.48) have been obtained in the
covariant gauges, in the Coulomb gauge, and in the temporal axial gauge
(Aa

0 = 0). If, in addition, the lowest-order momentum dependence of Π00
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is retained,

−Π00 = m2
el − 1

4Ng2|k|T + · · · (8.50)

then one obtains a g4 ln g2 term not present in QED [11],

P
(2)
ring =

NNg

65π2
T 2m2

el g
2 ln g2 (8.51)

However, this term is not precisely defined until the full order-g4 contri-
bution at finite temperature is determined. This will be discussed in the
next section.

At T = 0, the three loop diagrams that are not already included in the
ring sum are

+ + (8.52)

The first two diagrams are analogous to those of QED, (5.77), but the
last is peculiar to QCD on account of the three-gluon coupling. These
diagrams are technically quite involved, owing to overlapping ultraviolet
divergences. The interested reader is referred to Freedman and McLerran
[12] and Baluni [13] for their evaluations. The result of summing the ring
diagrams (8.46) together with (8.52) is

Pring + P4 =
1

4π2

⎧⎨⎩∑
f

μ4
f

[
Ng

11N − 2Nf

3

(
α(M)

4π

)2

ln

(
μ2
f

M2

)

+Ng

(
−2.250N + 0.409Nf − 3.697 − (4.236)

N

)
×
(
α(M)

4π

)2
]
− (μ2)2Ng

[
2 ln

(
α(M)

4π

)
− 0.476

]

×
(
α(M)

4π

)2

−NgF̄ (μ)
(
α(M)

4π

)2
}

(8.53)

where μ = (μu, μd, μs, . . .) and

F̄ (μ) = −2μ2
∑
f

μ2
f ln

(
μ2
f

μ2

)
+

2
3

∑
i>j

[
(μi − μj)4 ln

(
|μ2

i − μ2
j |

μiμj

)

+ 4μiμj(μ2
i + μ2

j ) ln
(

(μi + μj)2

μiμj

)
− (μ4

i − μ4
j ) ln

(
μi

μj

) ]
(8.54)

These formulae were obtained in the Landau gauge using the momen-
tum subtraction scheme; that is, the gluon self-energy was renormalized
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in such a way that F (k̄2 = M2,μ = 0) = G(k̄2 = M2,μ = 0) = 0. The
corresponding formulae for nonzero quark masses have not been
computed.

It should be noticed that the pressure in (8.53) depends explicitly
on the renormalization energy scale M . To avoid the large logarithms,
ln(μ2

f /M
2), that would appear if μf → ∞ while M is fixed, we should

choose M in an optimum way. There is an arbitrariness in this, but a
natural choice would be M2 = μ2 and another would be M2 = μ2/Nf . Of
course, if we could sum all orders of perturbation theory it would not mat-
ter. Truncating at a finite order means that we should choose an optimum
M to reduce the importance of the terms neglected.

The QCD coupling g is not a fixed quantity. It depends on the
gauge and on the renormalization prescription. This dependence is not
apparent at order g2 but first arises at order g4. Thus, consider two
gauges and/or prescriptions labeled i and j. One can show that (see for
example [14])

g2
i = g2

j (1 + Aijg
2
j + · · · ) (8.55)

where Aij is a computable number. The QCD scale Λ thus also depends
on the gauge and/or prescription. Putting together (8.28), (8.39), and
(8.55) we find that

Λi

Λj
= exp

(
Aij

2β0

)
(8.56)

These features of QCD must be kept in mind when using high-order per-
turbation theory. For example, the numerical coefficient of α2 in (8.53) is
gauge and prescription dependent, in just such a way that when (8.55) is
used the pressure is independent of gauge and prescription to this order
(see also Section 8.2).

8.4 Higher orders at finite temperature

As we have seen previously, the simplest possible interaction yields a
contribution to the pressure that is of order g2. Owing to the summation
implied by the ring diagrams, there are then contributions of order g3 and
g4 ln g2. By now it should be clear that one cannot determine the order
of a diagram by simply counting the number of interaction vertices, if
the diagram requires resummed gluons. This resummation procedure has
the great advantage of curing potential infrared divergences, as already
seen in Chapters 3 and 5, because in effect the resummation induces a
mass which is the static infrared limit of the self-energy. Calculations of
the pressure to order g4 and order g5 have used the following strategy
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in order to improve the convergence of the perturbation expansion. One
redefines the Lagrangian according to

L → (L + 1
2m

2
elA

a
0A

a
0δp0,0

)− 1
2m

2
elA

a
0A

a
0δp0,0 (8.57)

where L is the original Lagrangian in frequency–momentum space, A0

is the zeroth component of the color gauge field, and p0 = 2πnTi is the
zeroth component of its momentum. With this redefinition, the term in
parentheses becomes the unperturbed Lagrangian and the other term cre-
ates a thermal counterterm, necessary to avoid double-counting. Following
this scheme, the g4 term receives contributions from the sub-leading part
of the two-loop diagrams as well as from the leading part of the three-loop
diagrams. The complete finite-temperature g4 result for gauge fields with
fermions was obtained by Arnold and Zhai [14] and it is (for zero chemical
potential)

P = dAT
4π

2

9

{
1
5

(
1 +

7dF

4dA

)
−
( g

4π

)2
(
CA +

5
2
SF

)
+

16√
3

( g

4π

)3
(CA + SF)3/2

+ 48
( g

4π

)4
CA(CA + SF) ln

(
g

2π

√
CA + SF

3

)

−
( g

4π

)4
C2

A

[
22
3

ln
(

M

4πT

)
+

38
3
ζ ′(−3)
ζ(−3)

− 148
3

ζ ′(−1)
ζ(−1)

− 4γE +
64
5

]
−
( g

4π

)4
CASF

[
47
3

ln
(

M

4πT

)
+

1
3
ζ ′(−3)
ζ(−3)

− 74
3
ζ ′(−1)
ζ(−1)

− 8γE +
1759
60

+
37
5

ln 2
]

−
( g

4π

)4
S2

F

[
−20

3
ln
(

M

4πT

)
+

8
3
ζ ′(−3)
ζ(−3)

− 16
3
ζ ′(−1)
ζ(−1)

− 4γE − 1
3

+
88
5

ln 2
]
−
( g

4π

)4
S2F

(
−105

4
+ 24 ln 2

)}
(8.58)

In the equation above, ζ is Riemann’s zeta function, γE is Euler’s constant,
and M is the renormalization scale in the modified minimal subtraction
scheme, MS. For SU(N) with Nf fermions one may write dA = N2 − 1,
CA = N , dF = NNf , SF = Nf/2, S2F = (N2 − 1)Nf/4N .
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The extension of those techniques to one order higher by Zhai and
Kastening [16] yields the g5 term:

P5 =
( g

4π

)5
(
CA + SF

3

)1/2

×
{
C2

A

[
176 ln

(
M

4πT

)
+ 176γE − 24π2 − 494 + 264 ln 2

]
+ CASF

[
112 ln

(
M

4πT

)
+ 112γE + 72 − 128 ln 2

]
+ S2

F

[
−64 ln

(
M

4πT

)
− 64γE + 32 − 128 ln 2

]
− 144S2F

}
(8.59)

As will be discussed in Section 8.7, the hopes of pursuing an order-by-
order expansion in finite-temperature QCD are too optimistic. The ana-
lytic expansion has serious infrared problems. Postponing a discussion of
these aspects, it suffices here to say that for the pressure, this problem
is met at order g6. Kajantie et al. [17] evaluated perturbatively the last
calculable contribution, that of order g6 ln(1/g2). This result is partly a
conjecture, as this order receives a contribution from the complete O(g6)
term. However, without going into the details, general arguments based
on the pattern of singularity cancellation order by order can be given in
order to make progress. The interested reader may consult the quoted
reference for a discussion of these technical aspects. The pressure at order
g6 ln(1/g2) with Nf flavors is given by these authors as

P6 =
8π2

45
T 4

(
αs(M)

π

)3
{[

−659.2− 65.89Nf − 7.653N2
f + 742.5

(
1 +

1
6
Nf

)
×
(

1 − 2
33

Nf

)
ln
(

M

2πT

)]
ln
[
αs

π

(
1 +

1
6
Nf

)]
− 475.6 ln

(αs

π

)
+ qa(Nf) ln2

(
M

2πT

)
+ qb(Nf) ln

(
M

2πT

)
+ qc(Nf)

}
(8.60)

where qa(Nf), qb(Nf), qc(Nf) are polynomials in Nf . The polynomials qa,b
may be written down using the cancellation pattern alluded to earlier:

qa(Nf) = −1815
16

(
1 +

5
12

Nf

)(
1 − 2

33
Nf

)2

qb(Nf) = 2932.9 + 42.83Nf − 16.48N2
f + 0.2767N3

f (8.61)

The last polynomial, qc(Nf), is the one that receives a nonperturbative
contribution and is as yet uncalculated.
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Fig. 8.1. Perturbative results for the pressure at various orders, including g6

with an optimal constant, normalized to the noninteracting Stefan–Boltzmann
value PSB (Kajantie et al. [17]), against the scaled temperature.

It is instructive to examine the convergence of the perturbative expan-
sion term by term. This is shown in Figure 8.1 for the pure gluon case
with N = 3 and Nf = 0. The ratio of the pressure and its value in the
Stefan–Boltzmann limit is plotted against the reduced temperature. At
high temperatures, the pressure tends to the Stefan–Boltzmann limit.

8.5 Gluon propagator and linear response

In applying linear response theory to nonabelian gauge theories one must
be careful to distinguish between gauge-invariant, physically observable,
quantities and gauge-noninvariant quantities. The latter may still be rele-
vant, though, provided that we can construct some observable out of them.
This can be demonstrated with color electric screening.

The components of the color electric field,

Ea
i = F a

i0 = ∂iA
a
0 − ∂0A

a
i − gfabcAb

iA
c
0 (8.62)

are not gauge invariant, unlike the electric field of QED, which is gauge
invariant. Thus color electric screening as a physical phenomenon cannot
be demonstrated on the basis of the color electric field alone. However,
screening can be examined by computing the free energy V of a static,
color-singlet (total color charge zero), quark–antiquark pair as a function
of separation R. This can be done most directly in the temporal axial
gauge (TAG) Aa

0 = 0, for in this gauge the electric field is

Ea = −∂Aa

∂t
TAG (8.63)
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Then the analysis of Section 6.3 can be applied, with the result that the
static dielectric function is (cf. (6.64))

ε(q) = 1 +
F (0,q)

q2 , TAG (8.64)

The scalar function F must be computed in TAG. Referring to (6.58) and
(8.46) (except that in the latter there is no ghost diagram) one finds that,
for the pure TAG gluon contribution† [19],

Πmat
00 (q0, q) = −g2N

4π2

∫ ∞

0
dk kNB(k)

× Re
[
4 − (q2 − 2kq0 − q2

0)(2k + q0)2

2k2(k + q0)2
+

(2k + q0)2

2kq

+
(

1 +
(k2 + (k + q0)2 − q2)2

4k2(k + q0)2

)
ln
(
R+

R−

)]
(8.65)

Πmat
ii (q0, q) = −g2N

4π2

∫ ∞

0
dk kNB(k)

×Re
[
12 − 2

(k + q0)2

(
8k2 − q2 − q4

4k2
+ 9q0(q0 + 2k)

− 5q2

4k2
(q0 + 2k)q0 +

3q2
0

2k2
(q0 + 2k)2

)
+

1
2kq

{
− q2 + 10k2 + 10(k + q0)2

− 1
2k2(k + q0)2

[k2 + (k + q0)2 − q2]2

× [3k2 + 3(k + q0)2 + 1
2q

2]
}

ln
(
R+

R−

)]
(8.66)

where q = |q|, q0 = 2πnTi, R± = q2 − 2kq0 − q2
0 ± 2kq, and Re means

that the even part of the following function of q0 shoud be taken. The
quark matter contributions are given by (5.51) with the substitution

† The axial-gauge pole 1/(n · p) can be handled in one-loop diagrams with the principal
value (PV ) prescription. For example,

P.V.
1

n · p = lim
ε→0

1

2

(
1

n · p + iε
+

1

n · p− iε

)
see [18]. This makes sense in TAG at T > 0 only after analytic continuation of p0 and
replacement of frequency sums by contour integrals.
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e2 → 1
2g

2. In the following discussion, we will need only the static limit
of the vacuum contribution,

F vac(0, q) =
g2

48π2
(11N − 2Nf)q2 ln

(
q2

M2

)
TAG (8.67)

Recall that Πμν is related to F and G in TAG just as in (5.46).
Consider the vacuum dielectric function. Inserting (8.67) into (8.64),

we obtain the vacuum-polarization-corrected effective charge

ḡ2(q) =
g2

ε(q)
=

g2

1 + (g2/48π2)(11N − 2Nf) ln(q2/M2)

=
48π2

(11N − 2Nf) ln(q2/Λ2)
(8.68)

which is the same as the renormalization-group charge.
The situation in other gauges is not so simple. Consider the set of

covariant gauges (COVG). Then from (8.62) the color electric field has
terms that are linear or quadratic in the vector potential. To find the linear
response to an applied color electric field (such as that due to stationary
quarks) we need to compute the correlation function between two electric
field operators, and that entails knowledge of not only the propagator but
also the three- and four-point gluon functions

〈AμAνAα〉 〈AμAνAσAγ〉
There is also the complication of the ghost field. What happens if we
neglect the nonlinearity in (8.62) and naively apply (8.64)? From (8.19)
we have

F vac(0, q) =
g2

48π2

[(
13
12

− 3
2
ρ

)
N − 2Nf

]
q2 ln

(
q2

M2

)
COVG (8.69)

This does not yield the correct renormalization-group-improved charge,
nor does it yield the correct vacuum-polarization-corrected potential
between stationary quarks. This should be expected. In Section 8.2 we
found that knowledge of the gluon propagator alone was not sufficient to
determine the β-function in the covariant gauges, although it was suffi-
cient in the axial gauges.

Computation of the free energy, as a function of separation, of the static
quark–antiquark pair at T > 0 (in TAG) proceeds just as in QED. At large
separation,

V (R) =
Q1 ·Q2

4π
e−melR

R
(8.70)
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In the color-singlet state, the product of charges is Q1 ·Q2 = −g2Ng/2N .
Since (8.70) is physically measurable (at least in principle!), mel must be
gauge invariant. In TAG, it is given by

m2
el = F (0,q → 0) TAG (8.71)

which is an exact relation.
To one-loop order, all gauges receive the same contribution to Πμν from

dynamical quarks. To focus on the essentials, we shall consider a quark-
free world in the remainder of this section.

In the Feynman gauge (FG, ρ = 1), the T > 0 contribution to the gluon
self-energy is

Πmat
00 (q0, q) = −g2N

4π2

∫ ∞

0
dk kNB(k)

× Re
{

4 +
1
qk

[(q0 + 2k)2 − 2q2] ln
(
R+

R−

)}
(8.72)

Πmat
ii (q0, q) =

g2N

4π2

∫ ∞

0
dk kNB(k)

× Re
[
4 +

1
qk

(
4q2

0 − 4kq0 − 4k2 − 3q2
)
ln
(
R+

R−

)]
(8.73)

These are not the same as (8.65) and (8.66). Thus Πμν , and the functions
F and G, are not gauge invariant in nonabelian gauge theories.

From the perspective of screening, the interesting limit is q0 = 0, |q| =
q → 0 . One finds that in TAG

F (0, q → 0) = −Π00(0, q → 0)

= 1
3g

2NT 2 − 1
4g

2NTq − 11
48

g2

π2
Nq2 ln

(
q2

T 2

)
+ · · ·

(8.74)
G(0, q → 0) = 1

2Πii(0, q → 0) = − 5
16g

2NTq + · · · (8.75)

and in FG

F (0, q → 0) = −Π00(0, q → 0) = 1
3g

2NT 2 − 1
4g

2NTq + · · · (8.76)

G(0, q → 0) = 1
2Πii(0, q → 0) = − 3

16g
2NTq + · · · (8.77)

There are a number of interesting aspects to these results. The first two
terms of (8.74) and (8.76) are identical. This would not have been expected
on the basis of our earlier discussion of electric screening. The reason that
they are, and must be, the same is that these first two terms of F give rise
to the order g3 and order g4 ln g2 terms in the pressure via summation
of the ring diagrams (recall Section 6.5). The coefficients of all terms in
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the pressure up to (but not including) g4 must be gauge independent, on
account of (8.55). The third term of (8.74) combines with the vacuum
contribution to yield

11
48

g2

π2
Nq2 ln

(
T 2

M2

)
So again we see that we should choose M proportional to T to eliminate
potentially large logarithms at high temperature. The first nonzero term
of G is gauge dependent. This will be discussed further in Section 8.7.

Plasma oscillations may be discussed in a manner parallel to the dis-
cussion in Section 6.6. In TAG, a physical gauge with the proper number
of gluon-polarization degrees of freedom and no ghosts, one finds that
the long-wavelength dispersion relations for transverse and longitudinal
oscillations are

ω2
T = ω2

P + 6
5k

2 + · · ·
ω2

L = ω2
P + 3

5k
2 + · · ·

(8.78)

where ω2
P = g2NT 2/9. These waves are damped with damping constant

γT = γL = g2NT/24π. The short-wavelength longitudinal oscillations are
overdamped and do not propagate. The transverse oscillations have the
spectrum

ω2
T = k2 + 3

2ω
2
P + · · · (8.79)

and to order g2 are not damped by thermal effects.
A proper linear response analysis has also been done in another gauge,

the Coulomb gauge [20]. The results are identical to (8.78) and (8.79).
If one tries to do a cheap analysis in an unphysical gauge by simply
searching for the poles of the gluon propagator, one obtains certain erro-
neous results. For example, in the Feynman gauge one recovers (8.78)
and (8.79), but the damping constant is a factor 5 too large and of the
opposite (wrong) sign. In addition, short-wavelength longitudinal waves
propagate with ω2

L = k2 + · · · , which is unphysical.
It must be acknowledged that, at this time, color plasma waves are

an enigma. Whether they represent physically observable phenomena has
not been rigorously established.

8.6 Instantons

Instantons are nonperturbative solutions of the classical field equations
which carry topological charge. After their discovery by Belavin et al.
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[21] it was hoped that they would provide a means of understanding con-
finement. That has turned out not to be the case. In QCD their effects
are reliably computed only at short distance (or high temperature). In
this domain, it has been found that they are always dominated by per-
turbative corrections. For this reason, and because the mathematics of
instantons can become quite involved, this brief section will present only
an overview.

Instantons contribute to the partition function in addition to all per-
turbative contributions. Although not quantitatively important in their
own right, these nonperturbative solutions are of course interesting in
principle. They have also been used in a more phenomenological way to
understand various aspects of chiral symmetry breaking and restoration
and hadronic structure.

Consider an SU(2) gauge field theory without quarks. It is advantageous
in this context to work in Euclidean space, with Greek indices running
from 1 to 4. Define the matrix functions

Aμ = −ig
(

1
2σ

a
)
Aa

μ

Fμν = −ig
(

1
2σ

a
)
F a
μν

(8.80)

The action is

S =
1

2g2

∫
d4xTr(FμνF

μν) (8.81)

and the classical equations of motion are

∂μFμν + [Aμ, Fμν ] = 0 (8.82)

We make the ansatz that

Aμ = iσ̄μνa
ν (8.83)

where aν is spacetime dependent, and we define the following objects:

σij = −i
[

1
2σi,

1
2σj
]

σi4 = 1
2σi

σμν = −σνμ

σ̄ij = σij

σ̄i4 = −σi4

(8.84)

With a dual defined by

∗σμν = 1
2εμναβσ

αβ
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we find that
∗σμν = σμν self-dual
∗σ̄μν = −σ̄μν antiself-dual (8.85)

The equations of motion are satisfied when

aμ = ∂μ ln φ

∂2φ = 0
(8.86)

This solution is said to be self-dual because ∗Fμν = Fμν . An antiself-dual
solution (with ∗Fμν = −Fμν) is obtained with

Aμ = iσμνa
ν (8.87)

In both cases the classical action can be expressed as

S =
1

2g2

∫
d4x ∂2∂2 ln φ (8.88)

For the solution of Laplace’s equation we have

φ(x) = 1 +
n∑

i=1

λ2
i

(x− yi)2
(8.89)

where each λi is a real number and each yi is a fixed vector. Clearly yi
represents the position of some object and λi its size. When this solution
is used in the self-dual ansatz, it is said to represent n instantons; when it
is used in the antiself-dual ansatz it is said to represent n anti-instantons.
The instantons and anti-instantons represent tunnelings between different
states.

These field configurations can be characterized by a topological charge
q, a gauge invariant, called a Pontryagin index:

q =
1

16π2

∫
d4xTr (∗FμνF

μν) (8.90)

A direct calculation shows that q = n for the n-instanton solution and
q = −n for the n-anti-instanton solution. There is no known exact solu-
tion for n instantons and n′ anti-instantons. It is not possible to change
the Pontryagin index by a smooth deformation of the gauge field. Since
perturbative calculations always start with Aμ = 0 and q = 0, the instan-
tons and anti-instantons make topologically distinct contributions to the
functional integral.

When computing the partition function at T = 0 (useful for calculat-
ing vacuum correlation functions), the most straightforward approach is
to treat the instantons and anti-instantons as individual, noninteracting
objects (the dilute gas approximation, DGA). Only instantons with q = 1
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and anti-instantons with q = −1 are included. One-loop quantum correc-
tions can be included by writing

Aμ = Acl
μ + A′

μ

where Acl
μ is the classical solution, expanding the Lagrangian in powers

of A′
μ and dropping terms cubic and quartic in A′

μ. That is, the quantum
fluctuations must be calculated in the presence of a background instan-
ton (or anti-instanton) field. For SU(N), the SU(2) instantons must be
embedded in the appropriate fashion. The calculations of t’Hooft [22],
in particular, are a tour de force of mathematical physics. The result is
simple and elegant. It is (assuming no state mixing)

ln ZDGA = 2CNV β

∫ ∞

0

dλ

λ5

(
4π2

g2

)2N

exp
(
−8π2

ḡ2

)
(8.91)

We make the following remarks.

1 The exponential of the classical action is evident.
2 The factor V β is the total spacetime volume.
3 The factor 2 arises because both instantons and anti-instantons are

included.
4 The factor CN is group-theoretic in origin. In the Pauli–Villars regular-

ization scheme,

CN =
4
π2

exp [−0.433 − 0.292(N − 2 −Nf)]
(N − 1)!(N − 2)!

(8.92)

5 Integration over scale size λ must be done. The power −5 of λ arises
from the scale size and from the four components of the position coor-
dinate. It also is required so that ln Z is dimensionless.

6 Quantum fluctuations amount to replacing the coupling constant g2

with the renormalization-group running coupling

ḡ2 =
24π2

(11N − 2Nf) ln(1/λΛR)
(8.93)

in the exponential factor, although this replacement is presumed to
happen (at the next order) in the pre-exponential factor as well. Here
ΛR is the QCD scale parameter in the Pauli–Villars scheme.

7 There should be an additional factor in ln ZDGA, which is∏
f

(mfλ)

for each light quark (mf < λ−1) flavor. Light quarks greatly suppress
instantons.
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8 The integral over λ does not exist: it diverges for large λ. Thus one
must go beyond the dilute gas approximation in the QCD vacuum and
confront the infrared confinement problem.

The way to avoid point 8 is to focus on a physical circumstance which
provides a natural cutoff on instanton size λ. For example, we could
consider computing instanton-induced corrections to the process e+e− →
hadron jets at high energy. A cutoff would then be supplied by the center-
of-mass energy

√
s; the dominant contribution should come from instan-

ton scale sizes λ ≈ 1/
√
s. Another circumstance, of interest to us, is the

contribution of instantons to the thermodynamic potential of a high-
temperature quark–gluon plasma. At high temperatures, color electric
fields should be screened just as in QED plasma. The temperature should
provide an infrared cutoff on instanton sizes.

It is possible to generalize these solutions to finite temperature. We
still work in Euclidean space but x4 is replaced by the variable τ . The
instanton solutions must now be periodic in τ with period β. This is
accomplished by making the field φ periodic [23]. The n = 1 solution goes
over into

φ = 1 + λ2
∞∑

k=−∞

[
(x − y1)2 + (τ − τ1 − kβ)2

]−1

= 1 +
πTλ2

|x − y1|
sinh(2πT |x − y1|)

cosh(2πT |x − y1|) − cos[2πT (τ − τ1)]
(8.94)

Here, y1 and 0 ≤ τ1 ≤ β represent the position of the instanton, while
the summation over k replicates it periodically along the imaginary time
axis. Surprisingly, the finite-temperature instanton and anti-instanton
have exactly the same classical action, 8π2/g2, as the T = 0 instanton
and anti-instanton.

It is necessary to compute the one-loop quantum correction in the back-
ground field of an instanton or anti-instanton at finite temperature. This
is a formidable task but has been done by Pisarski and Yaffe [24]. The
result is that the integrand in (8.91) is multiplied by a cutoff factor

exp
[−1

3(2N + Nf)π2T 2λ2
]

(8.95)

at large λ. This means that the λ integration is now both infrared and
ultraviolet convergent. Finite temperature suppresses large instantons as
expected. The lack of appearance of the coupling constant in the cutoff is
simply understood as follows. At T = 0, quantum corrections replace the
coupling constant in the classical action with the renormalization-group
running coupling. Therefore we may postulate that at finite temperature
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the running coupling would be replaced by the static screened charge

8π2

ḡ2
=

8π2

g2
+
(

11N
6

− Nf

3

)
ln
(

q2

M2

)
+

8π2m2
el

g2q2
(8.96)

where m2
el is given by (8.49). The screening factor (8.95) is reproduced by

the m2
el/g

2 term in (8.96) if we make the replacement q2 → 4/λ2.
Instanton effects are greatest in a world without light quarks, on

account of point 7 above. Then the contribution to the pressure is

PDGA = 2CN

∫ ∞

0

dλ

λ5

(
4π2

ḡ2

)2N

exp
(
−8π2

ḡ2
− 2

3
N(πTλ)2

)
(8.97)

which can be integrated to give

PDGA = T 4

(
ΛR

T

)11N/3 2N∑
l=0

al(N)
[
ln
(

T

ΛR

)]l
(8.98)

The coefficients al(N) depend on N and must be computed numerically.
The most noteworthy feature of PDGA is that it decreases dramatically
with increasing temperature. For instance, for SU(3) it falls as Λ11

R /T 7,
modulo logarithms. Comparison of these results with the perturbation
theory results is left as an exercise.

Extensive numerical studies have been performed of an instanton-liquid
description of QCD at zero and finite temperature. The reader is referred
to the review of Schäfer and Shuryak [25].

8.7 Infrared problems

It would seem that if only we had the strength and willpower, we could
continue to calculate corrections to P and Πμν to arbitrary order in g.
However, a barrier that arises at order g6 for P and at order g4 for Πμν

was identified by Lindé [26].
Let us investigate the infrared convergence of the (l + 1)-loop diagram

(l > 0)

1 2 · · · � � + 1

There are 2l three-gluon vertices and 3l propagators. The dominant
infrared behavior arises from the n = 0 mode sums. To estimate, we dis-
pense with the complicated tensorial structure of the propagator and the
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vertex and write

g2l

(
T

∫
d3p

)l+1

p2l (p2 + m2)−3l (8.99)

The first and third factors arise from the vertices, the second factor from
the loop integration, and the last factor from the propagators. We have
introduced a possible static infrared cutoff m. We may wish to identify
m with the “electric mass” m2

el = F (0,0) or with the “magnetic mass”
m2

mag = G(0,0). In any case, (8.99) is of order

g2lT 4 for l = 1, 2
g6T 4 ln(T/m) for l = 3
g6T 4(g2T/m)l−3 for l > 3

(8.100)

We have placed an ultraviolet cutoff T on the momentum integration.
This cutoff should arise automatically when summing over all modes n.

The interesting aspect of (8.100) is that if m = 0 and l > 2, then the
diagram is infrared divergent. Now it may happen that when all diagrams
of the same order are added together the coefficients of the infrared diver-
gent parts are zero, although there is no symmetry to suggest that this is
the case. The possibility is difficult to verify or deny, owing to the com-
plexity of the diagrams. If we take m = mel ∼ gT then no problem arises.
At one-loop order, mmag vanishes in all gauges; the next possibility is that
mmag ∼ g2T . Substitution in (8.100) then suggests that all loops with l >
3 contribute to order g6! It is not known how to sum all such diagrams,
thus making it impractical even in principle to calculate analytically the
coefficient of the order-g6 term in P .

The same difficulty arises if we attempt to compute the static infrared
limit of the gluon self-energy. For example, the diagram

1 2 · · · � � + 1

at q0 = 0, q → 0 is of order

g4T 2 ln(T/m) for l = 1
g4T 2(g2T/m)l−1 for l > 1 (8.101)

So, the infrared problem arises for Πμν at order g4. Suppose, for the
purpose of illustration, that m2

mag = cg4T 2. Then (8.101) suggests that to
compute c we must sum an infinite set of diagrams. The constant c would
then arise self-consistently. The magnetic contribution to the sum of ring
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diagrams would be proportional to m3
magT ∼ g6T 4. This is another way of

viewing the qualitatively different infrared effects that may arise at order
g6 in the pressure.

The static infrared problem in the above diagrams occurs when the
momentum p ≤ g2T . Another way to see this is to examine the fac-
tor [p2 + G(0, p)]−1 in the propagator. This changes sign as p → 0; in
TAG, G(0, p) → −(5/16)g2NTp and for the case of an arbitrary COVG,
G(0, p) → −{[8 + (ρ + 1)2]/64}g2NTp.

The resolution of this problem, as suggested by Braaten [27], involves
effective-field-theory methods coupled with lattice gauge calculations.
However, it probably does not have much quantitative impact on ther-
modynamic functions like P at extremely high temperatures since it first
occurs at order g6 and g(T ) → 0 as T → ∞.

8.8 Strange quark matter

Strange particles, like kaons and hyperons, do not play any role in daily
life; that is to say, they are not stable particles and they are not found in
atomic nuclei. Generally, they are only produced in high-energy reactions,
and subsequently decay into nonstrange particles via the weak interac-
tions. Could the situation be different in cold and dense quark matter?
For cold neutron matter the baryon density is approximately

n = 2
∫

d3p

(2π)3
θ(pF − p) =

p3
F

3π2
(8.102)

where the Fermi momentum is p2
F = μ2 −m2

N . One may estimate the den-
sity at which neutrons overlap in coordinate space by multiplying this
density by the volume of a nucleon, taking the nucleon radius to be 0.8
fm. Although very crude, this estimate determines the critical chemi-
cal potential as 1050 MeV, where a qualitative change in the nature of
hadronic matter ought to occur. Since each quark carries one-third of a
baryon charge, the quark chemical potential would be 350 MeV. This is
larger than the generally accepted strange quark mass (see Table 8.2)
and so allows for the possibility of the existence of strange quarks even
when T = 0. Strange quarks might be produced and eventually come to
equilibrium via the weak interactions d ↔ u + e + ν̄e, s ↔ u + e + ν̄e, and
s + u ↔ u + d , provided that the circumstances are right. Indeed, it may
very well be energetically favorable for some u and d quarks to be con-
verted into s quarks at high density. The situation would be analogous
to the presence of neutrons in nuclei. In free space, a neutron decays
weakly into a proton, an electron, and an antineutrino. That does not
happen in radioactively stable nuclei or in nuclear matter, because the
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Pauli exclusion principle forbids the addition of a proton with an energy
below the Fermi energy.

Let us assume chemical equilibrium under the weak interactions among
u, d, s quarks and electrons. Then the aforementioned reactions imply that

μu + μe = μd = μs (8.103)

For the present discussion the neutrinos may be neglected. We require
that bulk matter be electrically neutral. Then we have the constraint

2
3nu − 1

3nd − 1
3ns − ne = 0 (8.104)

The densities are functions of the chemical potentials. Together, (8.103)
and (8.104) allow only one independent chemical potential.

For simplicity, first analyze the thermodynamics neglecting perturba-
tive interactions among the quarks. For the large chemical potentials of
interest it is reasonable to set me = mu = md = 0. However, ms is not so
small and must be kept nonzero. The thermodynamic potential is a sum
of contributions from each species:

Ωe = − μ4
e

12π2
Ωu = − μ4

u

4π2
Ωd = − μ4

d

4π2

Ωs = − 1
4π2

[
μs

√
μ2
s −m2

s

(
μ2
s − 2.5m2

s

)
+ 1.5m4

s ln

(
μs +

√
μ2
s −m2

s

ms

)] (8.105)

The energy density carried by the fermions is added to that associated
with the vacuum, sometimes referred to as the MIT bag model constant,
B, yielding a total energy density

ε =
∑
i

(Ωi + μini) + B (8.106)

The baryon number density is

nB = 1
3(nu + nd + ns) (8.107)

The quark matter is in stable mechanical equilibrium when P = 0. Includ-
ing the bag pressure, this means

P =
∑
i

Pi −B = −
∑
i

Ωi −B = 0 (8.108)

With the set of equations above, all parameters can be calculated for a
given choice of ms and B. The result of such calculations is shown in
Figure 8.2.
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Fig. 8.2. Contours of fixed energy per baryon (in MeV) for strange quark matter
in the B1/4−ms plane; B is the bag model constant.

It is known that nonstrange quark matter is unbound. It must have an
energy per baryon of at least 930 MeV + Δ in order that ordinary atomic
nuclei do not decay into nonstrange quark matter, which has never been
observed. A detailed calculation suggests Δ = 4 MeV [28]. A straightfor-
ward calculation then leads to a minimum value Bmin = (145 MeV)4: this
is the minimum value of the bag constant needed for atomic nuclei to be
stable (in the T = 0 case, and neglecting interaction between the quarks).
Considering Figure 8.2, normal atomic nuclei do not exist for values of
B < Bmin. To the left of the 939 MeV contour, strange quark matter would
be stable against decay into nucleons. The analysis outlined above is for
degenerate, noninteracting, quark matter in bulk. Calculations including
exchange corrections to order αs have also been done. Farhi and Jaffe [28]
found that the inclusion of exchange interactions up to order αs effectively
lowers Bmin to smaller values.

The question arises of why ordinary nuclei have not decayed into strange
quark matter, if it is more stable? The answer is that the conversion of
many u and d quarks into s quarks requires a very high order of the weak
interaction; thus the probability for this to happen is essentially zero.
It is for this reason that nuclei may have been mistakenly taken to be
the ground state of hadronic matter. Searches for strange quark matter
in terrestrial experiments and in astrophysical observations have been
ongoing. The effects of finite temperature and of finite size on the stability
have been evaluated [29]. The fact that strange matter might be self-
bound is in itself a fascinating proposition. The theoretical uncertainties
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surrounding it will surely decrease as our ability to perform numerical
lattice gauge calculations at finite density grows.

8.9 Color superconductivity

The experimental discovery of superconductivity by Kamerlingh Onnes
in 1911 was totally unexpected. It defied fundamental theoretical under-
standing until the Nobel-prize-winning work of Bardeen, Cooper, and
Schrieffer (BCS) in 1957. The discovery of high-Tc materials in 1986 was
also totally unexpected; its theoretical understanding is still a topic of
research. Superconductivity has many applications nowadays, primarily
in magnets used in research and in medicine. Conventional superconduc-
tivity arises from the pairing of electrons with equal but nearly oppo-
site momentum near the Fermi surface. This pairing occurs because of
a very weak attraction originating in phonon exchange, despite the fact
that electrons experience a repulsive Coulomb interaction. This is one
of the reasons why it took so long to work out a fundamental theoret-
ical description of superconductivity. In QCD the situation is different.
In a cold quark gas, single-gluon exchange is attractive for two quarks in
a state that is antisymmetric in color, the 3̄ channel. The possibility of
color superconductivity therefore exists, and indeed it happens.

Color superconductivity was first studied by Barrois [30] and Frautschi
[31]. Further studies were reported by Bailin and Love [32], but it was
not until 1998 that the field exploded in a flood of research papers led by
Alford, Rajagopal, and Wilczek [33], and Rapp et al. [34]. These studies
can be categorized into one of two classes: weak coupling methods using
the fundamental QCD Lagrangian, valid at asymptotically high densities;
and phenomenological methods using four-quark interactions, some moti-
vated by instantons, which are intended for application at densities not
much greater than those in ordinary atomic nuclei.

In order to allow for the pairing of quarks, we follow the path pio-
neered by Nambu and by Gorkov [35]. An eight-component Dirac field is
introduced as

Ψ =
(
ψ, ψ̄T

)
where T denotes the transpose. The inverse propagator is an 8 × 8 matrix
in Dirac space:

G−1(p) = G−1
0 (p) + Σ(p) =

( p−m + μγ0 Δ̄
Δ ( p + m− μγ0)T

)
(8.109)

Here Δ̄ = γ0Δ†γ0 and Δ is an object with color, flavor, and Dirac indices,
which have been suppressed. Setting Δ = 0 yields the free propagator
for this eight-component field. The self-energy contribution to the block
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diagonal components is neglected in order to focus on the coupling term,
which gives rise to a gap and to superconductivity. In this section the
chemical potential is separated out explicitly and is not subsumed into
p0.

In order to demonstrate the existence of superconductivity at high den-
sity we first focus on two flavors of massless u and d quarks with com-
mon chemical potential μ. This is referred to as the 2SC phase. The
assumptions that are usually made are: (i) the gap matrix is antisym-
metric in both flavor and color, which is the channel in which single-
gluon exchange is attractive; (ii) condensation occurs in the channel with
zero angular momentum, J = 0; (iii) the gap has positive parity, which is
favored by the relatively weak instanton-induced interactions; (iv) chiral
symmetry-breaking condensates coupling left- and right-handed quarks
are neglected. Given these assumptions, the gap matrix takes the form

Δab
ij (p) = (λ2)

ab (τ2)ij C γ5 [Δ+(p)P+(p) + Δ−(p)P−(p)] (8.110)

where C = iγ0γ2 is essentially the charge conjugation operator and makes
the operand into a scalar rather than a pseudoscalar; a, b are color indices,
i, j are flavor indices, and Dirac indices are suppressed. The operators P+

and P− project onto particles and antiparticles, respectively:

P±(p) = 1
2(1 ± γ0γ · p̂) (8.111)

Thus Δ+ describes the modification of the propagator due to particle–
particle pairing, whereas Δ− describes that due to antiparticle–
antiparticle pairing. Particles and antiparticles are in this situation dis-
tinguished by the sign of the chemical potential.

The self-energy satisfies the Schwinger–Dyson equation,

Σ(k) = −g2T
∑
n

∫
d3p

(2π)3
Γa
μ(k, p)G(p)Γb

ν(k, p)Dμν
ab (k − p) (8.112)

which is written in Minkowski space; the factor Γa
μ(k, p) comes from the

fully dressed quark–gluon vertex. At very high densities, where the run-
ning coupling becomes arbitrarily small, Γa

μ(k, p) can be replaced by the
bare vertex:

Γa
μ = −

(
1
2λ

aγμ 0
0 −(1

2λ
aγμ)T

)
(8.113)

Then the Schwinger–Dyson equation determines the gap function:

Δ(k) = g2T
∑
n

∫
d3p

(2π)3

(
γμ

λa

2

)
T

G21(p)
(
γν

λa

2

)
Dμν(k − p) (8.114)
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The 2, 1 component of the quark propagator has entered here. With the
given ansatz for the gap matrix, (8.110), we get

G21(p) = −λ2 τ2 C γ5

[
Δ+(p)P−(p)

p2
0 − (|p| − μ)2 − Δ2

+(p)

+
Δ−(p)P+(p)

p2
0 − (|p| + μ)2 − Δ2−(p)

]
(8.115)

The flavor factor τ2 cancels on both sides of the gap equation; so does the
color factor λ2, because(

1
2λ

a
)
T
λ2

(
1
2λ

a
)

= −N + 1
2N

λ2

After substitution one finds a pair of coupled gap equations,

Δ±(k) = −g2

3
T
∑
n

∫
d3p

(2π)3
Dμν(k − p)

×
{

Tr [γμP−(p)γνP±(k)]
Δ+(p)

p2
0 − (|p| − μ)2 − Δ2

+(p)

+ Tr [γμP+(p)γνP∓(k)]
Δ−(p)

p2
0 − (|p| + μ)2 − Δ2−(p)

}
(8.116)

to be solved for the gaps Δ±. In order to take into account static or
dynamic screening of the color fields, the one-loop dressed gluon propa-
gator in a covariant gauge is used, as given in Section 8.5.

For the scattering of quarks near the Fermi surface, which is relevant
for determining the gaps, the energy transfer is negligible compared with
the momentum transfer. With q ≡ k − p, this means that |q0| � |q|. Then
q0 may be taken to zero wherever possible in the numerators of the gap
equations, but not in the denominators since there may be a near singu-
larity in the infrared. The Landau- and Coulomb-gauge gluon propagators
give the same answer in this limit:

Δ±(k) =
g2

3
T
∑
n

∫
d3p

(2π)3

×
{

Δ±(p)
p2
0 − (|p| ∓ μ)2 − Δ2±(p)

(
3 − k̂ · p̂
q2 −G(q)

+
1 + k̂ · p̂
q2 − F (q)

)

+
Δ∓(p)

p2
0 − (|p| ± μ)2 − Δ2∓(p)

(
1 + k̂ · p̂
q2 −G(q)

+
1 − k̂ · p̂
q2 − F (q)

)}
(8.117)

https://doi.org/10.1017/9781009401968 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968


8.9 Color superconductivity 169

These gaps are gauge independent only in this kinematic limit. This is a
consequence of the fact that the gaps are determined by the scattering of
quarks that are almost on-shell. Of course, any physical observable must
be gauge independent. If one is working to higher order in the interactions,
the approximations made above would not be acceptable.

Only the first term in the gap equation has a singularity on the Fermi
surface, and so we keep it but drop the second term. This gives rise to
a single integral equation to be solved for Δ ≡ Δ+, the gap for quasi-
particles and their holes near the Fermi surface (we are not interested in
the gap for the antiparticles). In order to solve the integral equation for
the gap we make a further physically motivated approximation. Since the
participating quarks are those on or very near the Fermi surface, they
all have essentially the Fermi momentum. Therefore we neglect the very
weak three-momentum dependence of the gap and write it as Δ(k0). We
also write p = pF + l, where pF is on the Fermi surface and l is per-
pendicular to it. For very large chemical potential and vanishingly small
temperature it is adequate to use l � μ and write the integration mea-
sure as μ2dl d(cos θ)dφ; furthermore, |q| = |k − p| ≈ √

2μ(1 − cos θ). The
Matsubara sum can be replaced by an integral over Euclidean momen-
tum p4 (see (3.71)). The integral over φ is trivial, and the integral over
l can be done by contour integration, picking up the pole of the diquark
propagator:

Δ(k4) =
g2μ2

12π2

∫ ∞

−∞
dp4

∫ 1

−1
d cos θ

Δ(p4)√
p2
4 + Δ2(p4)

×
[

3 − cos θ
q2
4 + 2μ2(1 − cos θ) + G(q)

+
1 + cos θ

q2
4 + 2μ2(1 − cos θ) + F (q)

]
(8.118)

Here F and G are evaluated with q4 = k4 − p4 and |q| =
√

2μ(1 − cos θ).
In principle this gap equation should now be solved with no further
approximations.

To get an idea of how the solution depends on the parameters we use
the approximate forms for F and G,

F (q) = m2
el G(q) = i

πq4
4|q|m

2
el (8.119)

in the limit 0 ≤ q4 � |q|. This means that the electric part of the inter-
action is screened on the momentum scale qel = mel while the magnetic
part is screened on the scale qmag = (πm2

elΔ/4)3/2. Integration over the
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angle θ gives the simplified gap equation

Δ(k4) =
g2

18π2

∫
dp4

Δ(p4)√
p2
4 + Δ2(p4)

×
[
ln
(

1 +
32μ3

πm2
el|k4 − p4|

)
+

3
2

ln
(

1 +
4μ2

m2
el

)]
(8.120)

This integral equation can be converted to a differential equation and
solved in the small-g approximation. The asymptotic solution is

Δ(k4) ≈ Δ0 sin
[

g

3
√

2π
ln
(
cμ

k4

)]
k4 > Δ0 (8.121)

where

Δ0 = 2cμ exp
(
− 3π2

√
2g

)
2c =

512
π

(
μ

mel

)5

= 512π4g−5 (Nf = 2)

The amazing feature about this result is that the gap depends exponen-
tially on 1/g, not on 1/g2 as it does in ordinary superconductivity. This
feature emerges from the longer-range nature of the color magnetic field
compared with the color electric field. This result was first obtained by
Son [36]. It has important implications for the numerical value of the gap,
and the critical temperature, since g should be small compared to unity
for the whole analysis to make sense.

Equation (8.120) is an approximation of (8.118). Numerical solution of
the latter equation for small g yields a gap that is well described by (8.121)
but with an overall coefficient that is smaller by a factor 0.28. However,
there are several approximations that would need to be relaxed in order to
obtain an accurate value of the coefficient of g−5 exp(−3π2/

√
2g) for the

gap. These include the diagonal contribution to the diquark self-energy
(which modifies the quasiparticle dispersion relation), a renormalization-
group improvement to obtain the proper choice of scale at which to eval-
uate the running coupling g → ḡ(μ), and the use of dressed vertices in
the Schwinger–Dyson equation. The first two of these have been done
individually, and the third not at all. If these effects are ignored, Δ0 at
first decreases with increasing μ, reaches a minimum of about 10 MeV at
μ = 1 TeV, and then increases logarithmically with μ. A plot of Δ0 versus
μ (Figure 8.3) gives the scale of the gap, although its absolute magnitude
is uncertain by a factor 2–4, increasingly so as μ decreases.
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Fig. 8.3. The gap for two-flavor color superconductivity.

When color superconductivity occurs, the thermodynamic potential is
lowered when compared with the case where pairing is absent. One may
readily write an approximate expression for the thermodynamic potential
that reproduces the Schwinger–Dyson equation used to obtain the gap
equations. It is [37]

Ω = Ω0 +
1
2
T
∑
n

∫
d3p

(2π)3
Tr
[
ln
(G
G 0

)
− GG−1

0 + 1
]

+
1
4
T 2
∑
n,n′

∫
d3p d3p′

(2π)6
Γa
μ(p, p′)G(p)Γb

ν(p
′, p)G(p′)Dμν

ab (p′ − p)

(8.122)

where Ω0 is the potential in the absence of pairing. Treating Ω as a func-
tional of G and requiring that it be an extremum results in G−1 − G−1

0 = Σ.
When evaluated at the extremum, the shift in the potential (relative to
no pairing) is

δΩ =
1
2
T
∑
n

∫
d3p

(2π)3
Tr
[
ln
(G
G 0

)
− 1

2
GG−1

0 +
1
2

]
(8.123)

Using the explicit form of the propagator and integrating over spatial
momentum, the zero-temperature shift in the energy density is

δΩ = 4
μ2

π2

∫
dp4

[√
p2
4 + Δ2(p4) − p4 − Δ2(p4)

2
√

p2
4 + Δ2(p4)

]
(8.124)
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This expression requires numerical solution, but a very good approxima-
tion is

δΩ(2SC) = −4
(
μ2Δ2

0

4π2

)
(8.125)

This was first obtained by Miransky, Shovkovy, and Wijewardhana [38].
The overall factor 4 comes from the pairing of four quarks in the 2SC
state.

Now we turn to the case of three flavors of massless quarks. Numerous
studies have shown that the energetically most favorable state is one in
which rotations of SU(3) color and SU(3) flavor are locked together. This
is referred to as color–flavor locking (CFL) [39]. The simplest ansatz for
the gap matrix is

Δab
ij (p) = (λI)

ab (λI)ij C γ5 [Δ+(p)P+(p) + Δ−(p)P−(p)] (8.126)

where λI is one of the three antisymmetric SU(3) matrices. The analysis
then closely parallels the case of 2SC. It turns out that there are eight
color–flavor combinations of quarks with gap Δ/21/3 and one with gap
2Δ/21/3, where Δ is the same function as in 2SC. To logarithmic accuracy
the CFL phase is favored over the 2SC phase at asymptotically high
density, as long as m2

s � 2μΔ0:

δΩ(CFL) = − 12
22/3

(
μ2Δ2

0

4π2

)
(8.127)

For these weak coupling estimates to be valid, one may require for example
that g < 0.8. This translates to μ > 100 GeV, a density not relevant for
any known terrestrial, astrophysical, or cosmological environment. What
is of most interest for neutron stars and high-energy heavy ion collisions
is the region of μ in the range from several hundred MeV to several
GeV (remember that μ is one-third of the baryon chemical potential)
and temperatures up to several hundred MeV. In this region of phase
space, weak-coupling calculations may be a guide but cannot provide
quantitative predictions. Therefore model studies have been done using
the Nambu–Jona–Lasinio (NJL) model and instanton models for quark
interactions. Figure 8.4 shows four likely phase diagrams depending on
the number of quark flavors and the values of their masses. Panel (a)
shows Nf = 2 flavors of massless quarks. At low density and temperature
there is a nuclear liquid–gas phase transition, to be discussed in Chapter
11: a curve showing a line of first-order phase transition terminates in a
second-order transition at the dot. A second curve separates hadronic and
nuclear matter from quark–gluon plasma (QGP) and cold quark matter;
the phase transition is second order above a critical point indicated by
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CSCgas
matter
nuclear

2nd

hadrons

QGP

(a) T

1st

liquid

m m

(b)

2nd

1st

T

T

m

(c) T

m

2SC

CFL

(d)

Fig. 8.4. A model study of the phase diagram (T as a function of μ) for strongly
interacting matter. The two upper panels are for two flavors of quarks; in (a)
both quarks are massless whereas in (b) their masses have a nonzero common
value. The two lower panels are for three flavors of quarks. In (c) they all are
massless, in (d) the up and down quark masses are equal and the strange quark
is given a heavier mass. (From Schäfer [40].)

the dot and first order below it. Color superconductivity (CSC) exists at
high density and small temperatures and is separated from an unpaired
quark–gluon plasma by a third curve, a line of second-order phase
transition.

Panel (b) is like panel (a) except that the up and down quark masses
are given a nonzero common value. In this case the line of first-order phase
transition terminates at the critical point; there are paths along which one
can go from nuclear or hadronic matter to quark–gluon plasma without
undergoing a phase transition.

Panel (c) shows a scenario for three massless quark flavors. There is
a line of first-order phase transition starting at μ = 0 and extending to
infinite density. At a given density, there is a high-temperature phase of
quark–gluon plasma and a low-temperature phase which is either nuclear
or hadronic or a CFL superconductor. Whether there is a sharp transition
between dense nuclear matter and the CFL phase is unclear, as indicated
by the dotted line.
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Panel (d) shows a scenario for equal nonzero up and down quark masses
and a heavier strange quark mass. The main difference between this panel
and panel (b) is that, for a given temperature, the 2SC phase is favored
at first and then the CFL phase is favored as the density increases. The
non-superconducting phases and their phase transitions will be addressed
more extensively in later chapters. The structure of strongly interacting
matter is very rich and interesting!

8.10 Exercises

8.1 Prove that the QCD field strength tensor is not invariant under an
infinitesimal gauge transformation, but that its square is.

8.2 Verify (8.26) by either of the two methods suggested.
8.3 Solve the renormalization-group equation for the covariant gauge

parameter ρ̄. Use (8.17), (8.18) with the one-loop results (8.22),
(8.28).

8.4 Make graphs of (8.31) and (8.33), and then plot equations (8.34) to
see how good an approximation they are.

8.5 Evaluate at least one of the non-quark two-loop diagrams for the
pressure and show that it contributes to (8.45) as stated.

8.6 In the calculation of the pressure at order g4 with fermions, enumer-
ate all the diagrams that contribute and determine their individual
combinatoric factors.

8.7 When evaluating the static (k0 = 0) limit of the gluon polarization
tensor Πμν , one encounters integrals of the type∫ ∞

0
dx
(

1
eax − 1

)
ln
(

1 + x

|1 − x|
)

(E8.1)

Derive the asymptotic a → 0 expansion for this integral, which is
π2

2a
+ ln

( a

2π

)
+ γE + O(a) Hint: Divide the range of integration into

(0, 1) and (1, ∞). Expand the logarithm in the integrand for each
range appropriately and integrate term by term. Take the leading
terms for a → 0 and sum the resulting series.

8.8 (8.100) was determined on the basis of loop diagrams containing
only three-point vertices. Can you find diagrams containing only
four-point vertices which give the same behavior?

8.9 Plot the pressure of pure gluons to order g3, with g2 running with
T according to the one-loop β-function. How much do the results
change when the two-loop β-function is used instead?

8.10 Compare numerically the contribution to the pressure from instan-
tons to the perturbative contribution at order g2.

8.11 Calculate the dispersion relations for quarks in the 2SC phase.
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9
Resummation and hard thermal loops

We saw in the last chapter that QCD perturbation theory has problems
at finite temperature, when taken into the infrared domain. These prob-
lems are the cause of the breakdown of the perturbative expansion of the
pressure beyond O(g6). We shall see here that these divergences are also
responsible for the need to resum an infinite set of Feynman diagrams
in order to compute a physical quantity at a given order in the coupling
constant. These concepts were discussed before, in Chapter 3, when the
set of ring diagrams was evaluated. In order to make the discussion as
simple as possible, let us revisit the case of scalar λφ4 theory.

Recalling our evaluation of the one-loop self-energy diagram, we had

Π1 = 12λT
∑
n

∫
d3k

(2π)3
1

ω2
n + ω2

(9.1)

As previously the vacuum contribution is renormalized by a mass coun-
terterm and the complete self-energy, after analytic continuation to real
energies, at finite temperature and at first order in the coupling is

Πren
1 = 12λ

∫
d3k

(2π)3
1
ω

1
eβω − 1

(9.2)

In the high-temperature limit all masses are negligible, and then one can
write Π1 → λT 2. Therefore, at one-loop order thermal fluctuations gen-
erate a mass for the scalar field, meff =

√
λT . Notice that in the massless

limit the integral in (9.2) is dominated by momenta of the order of the
temperature, k ∼ T . In our high-temperature limit these momenta would
be referred to as “hard”. The effects of the thermal mass can be incorpo-
rated by defining an effective propagator which, in frequency–momentum

177
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space, would be given by

D∗(ωn,k) =
1

ω2
n + k2 + λT 2

(9.3)

This simple example tells us that if momenta are of the order of the
temperature, or hard, the self-energy correction to the propagator is a
perturbative correction and can be neglected. However, if the momentum
is “soft”, so that k ∼ √

λT , then the thermal mass term is as large as
the inverse bare propagator and certainly must be included. In this limit,
the correction is as big as the leading term. The previous discussion also
suggests that it is useful to define hard, k � T , and soft, k � √

λT , scales
of momenta. Here k means indiscriminately energy or momentum. An
instructive exercise consists of recalculating the self-energy, only this time
using the effective propagator defined above. The only change from the
previous evaluation of the self-energy is that now one has the energy
appropriate for a massive field, ω =

√
k2 + m2

eff . We examine the behavior
of the integrand, which is largely dictated by the distribution function,
and recall that meff/T =

√
λ. The contribution to the integral from hard

momenta is small and generates corrections of order λ to the self-energy.
The contribution to the integral from soft momenta allows the distribution
function to be approximated by NB(ω) ≈ T/ω. Keeping in mind that the
upper limit in this case is of order

√
λT , we get a contribution to Π of

order

Π ∼ λT

m2
eff

∫ √
λT

0
dk k2

The quantitative result is

m2
∗ = m2

eff

(
1 − 3meff

πT
+ · · ·

)
(9.4)

The improved effective mass is the same as meff to leading order but
also contains a correction of order

√
λ which is given entirely by the soft

momenta in the loop integral. Importantly, this correction is obtained if
one uses the effective propagator (9.3), which represents a resummation
of an infinite set of higher-order diagrams. It is instructive to note that
even though each of these diagrams is infrared divergent, their sum is
finite. We have encountered this situation previously in the form of the
ring diagrams in Chapter 3.

The scalar field application is considerably simpler than that of gauge
theories, but it conveys the essential part of the message: in order to cal-
culate systematically amplitudes with soft lines, it is necessary to resum
perturbation theory by including all possible hard thermal loops. We
shall see that, in general, this procedure involves effective propagators
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and vertices. In λφ4 theory, it is sufficient to consider only the effective
propagator as defined above. Since the coupling depends on the temper-
ature only logarithmically, the use of bare vertices is adequate. The case
of gauge theories is more involved technically because the self-energy is
generally energy and momentum dependent, and because there are ver-
tices that are energy and momentum dependent. Also, there is a rich set
of important physical scales in weakly coupled gauge theories. The next
section outlines how to pick out the contributions of hard thermal loops
from a diagram with soft external four-momenta.

9.1 Isolating the hard thermal loop contribution

We will concentrate here on one-loop diagrams and generalize later. We
follow the original treatment of Pisarski and Braaten [1, 2]. As discussed
previously, the evaluation of one-loop self-energies involves a sum over dis-
crete frequencies as well as an integral over three-momenta. This sum may
be evaluated using the following technique. Let us first define a Fourier-
transformed propagator with respect to ωn = 2nπT , for bosons, as

ΔB(τ,k) = T

∞∑
n=−∞

e−iωnτD0(ωn,k) (9.5)

The sum over discrete frequencies is easily done by using the contour
integration technique of Chapter 3. The result is

ΔB(τ,k) =
1

2|k|
{

[1 + NB(k)] e−|k|τ + NB(k)e|k|τ
}

(9.6)

where NB(k) = 1/ [exp(|k|/T ) − 1]. The inverse of (9.5) is

D0(ωn,k) =
∫ β

0
dτeiωnτΔB(τ,k) (9.7)

It is easy to verify that the boson propagator in imaginary time has the
following properties:

ΔB(τ − β,k) = ΔB(−τ,k) = ΔB(τ,k) (9.8)

A similar analysis for fermions, with ωn = (2n + 1)πT , yields the intuitive
result

ΔF(τ,k) = T
∞∑

n=−∞

e−iωnτ

ω2
n + k2

=
1

2|k|
{

[1 −NF(k)] e−|k|τ −NF(k)e|k|τ
}

(9.9)

where NF(k) = 1/ [exp(|k|/T ) + 1].
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The usefulness of this approach is easily illustrated for the case of one-
loop integrals. There, each internal propagator (we concentrate on bosons
for simplicity) is written as an integral over τ as in (9.7). Evaluating the
sum over discrete frequencies will create a delta function in τ . The overall
integral over imaginary time can be done directly. Then the contribution
of order T 2 is easy to pick out. A few examples will help to illustrate the
procedure.

In a tadpole self-energy one has to evaluate

T

∞∑
n=−∞

∫
d3k

(2π)3
D0(ωn,k) = T

∞∑
n=−∞

∫
d3k

(2π)3

∫ β

0
dτeiωnτΔB(τ,k)

=
∫

d3k

(2π)3
ΔB(τ = 0,k)

=
∫

d3k

(2π)3
1

2|k| [1 + 2NB(k)] (9.10)

The first term corresponds to the usual T = 0 ultraviolet divergence and
is removed by renormalization. Rewriting the result for the remaining
term we get

T

∞∑
n=−∞

∫
d3k

(2π)3
D0(ωn,k) ≈ 1

12
T 2 (9.11)

The approximation sign means that equality holds “in the hard thermal
loop (HTL) limit”. Here this is actually an exact result.

Another example is that of the photon self-energy in scalar QED. Let
us write the Lagrangian that governs the behavior of the scalar field φ
and of the photon field Aμ as

L = (Dμφ)∗Dμφ− 1
4
FμνF

μν − 1
2ρ

(∂μAμ)2 (9.12)

where ρ is the gauge-fixing parameter, discussed in Chapter 5. Recall that
Dμ = ∂μ + ieAμ. The Feynman diagrams that contribute to the first-order
self-energy are

+

In Euclidean space the photon self-energy is

Πμν(ωm,p) = −e2T
∑
n

∫
d3k

(2π)3
(2k + p)μ (2k + p)ν

(ω2
n + k2) [(ωm + ωn)2 + |p + k|2]

+ 2 δμν e2T
∑
n

∫
d3k

(2π)3
1

ω2
n + k2

(9.13)
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To facilitate the usage of noncovariant propagators, this may be written
as

Πμν(ωm,p) = −e2T
∑
n

∫
d3k

(2π)3
(k − q)μ(k − q)ν

(ω2
n + k2)

(
ω2
q + q2

)
+ 2δμνe2T

∑
n

∫
d3k

(2π)3
1

ω2
n + k2

(9.14)

where q = p − k and ωq = ωm − ωn.
Concentrating on the finite-temperature contributions, and recalling

that the temperature-independent divergent parts are regulated using the
same techniques that operate at zero temperature, we may write

Πμν = FPμν
L + GPμν

T (9.15)

which is now in Minkowski space. The analysis and the results are very
similar to those of electronic QED that were derived in Chapters 5 and
6. The quantities PL and PT are the familiar longitudinal and transverse
projection tensors. The scalar functions F and G are inferred as follows:

F = ΠμνPLμν , (9.16)

G =
1
2

ΠμνPTμν (9.17)

Note that the transversality of Πμν (kμΠμν
L = kμΠμν

T = 0) is manifest,
as required by current conservation. Writing F = (p2/p2) Π00 and using
(9.15) and the fact that the integral defining the scalar function will be
dominated by the hard momentum scale k ∼ T , we get

F ≈ e2T 2

3

(
1 − p2

0

p2

)[
1 − p0

2|p| ln
(
p0 + |p|
p0 − |p|

)]
(9.18)

where for this discussion p0 = iωm, and p2 = p2
0 − p2 = −(ω2

m + p2). Here
again the approximation sign is to be interpreted as meaning “in the HTL
limit”. Similarly, one may show that

G ≈ 1
2

(
e2T 2

3
− F

)
(9.19)

From this analysis of the HTL contribution in scalar QED, some new
aspects are immediately apparent. Unlike λφ4 theory, the self-energy is not
only temperature dependent but now also momentum dependent. Also,
the self-energy can develop an imaginary part when the kinematics are
such that |p| > p0 > −|p|. This situation corresponds to that of Landau
damping, where one particle is emitted from the thermal medium and
another is absorbed.

The reader will undoubtedly have noticed that writing propagators in
frequency–momentum space and then performing a Fourier transform to
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imaginary time is but another method of doing the frequency sums. In
some cases, it has advantages over the direct contour integral technique.
However, the trick turns out to be useful only for loop diagrams; for
tree-level diagrams little is gained by going over to the imaginary time–
momentum domain.

The examples considered here can be used to extract some rules for
the evaluation of the HTLs. Following Braaten and Pisarski, one might
generalize the procedure to the evaluation of N -point functions in one-
loop amplitudes for QCD at finite temperature. Before one proceeds to
the more general case, it is instructive to evaluate explicitly the HTL
contribution to the gluon self-energy. This calculation was first performed
by Kalashnikov and Klimov [3] and Weldon [4].

We shall perform the QCD calculation in the Coulomb gauge
(∇ · Aa = 0), with a as color index. Even though this gauge is a little
awkward for many applications, owing partly to the fact that it is nonco-
variant, it has certain advantages at finite temperature. We will see some
of those shortly. Of course, the result of a calculation of any physical quan-
tity should be gauge invariant. Recall that the bare gluon propagator in
the Coulomb gauge is (omitting the color indices)

Dμν = − 1
p2

Pμν
T − 1

p2
uμuν (9.20)

A gauge-fixing term (∇ · Aa)2/2ρ could be added but would not change
the analysis that follows. At one-loop order, the gluon self-energy is
obtained by computing the Feynman diagrams in the following figure:

+ + +

Note that the ghost propagator in the Coulomb gauge is 1/p2, omitting
color indices. Thus, ghost fields are static in the Coulomb gauge: they do
not propagate. The same is true of the longitudinal gluons, another con-
venient feature. Hence there are advantages in using the Coulomb gauge
in an application like the one considered here. In gauges with propagating
unphysical degrees of freedom, the contributions from ghosts and longi-
tudinal gluons cancel each other only in the final stages of a calculation.
Therefore, the choice of the Coulomb gauge makes the computation of
the second diagram in the figure above unnecessary.

The first diagram in the figure generates a contribution to the self-
energy that is

Π = −g2N

2
T
∑
n

∫
d3k

(2π)3
ΓD ΓD (9.21)
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The prefactor is easily understood. The factor 1/2 comes from a combina-
tion of the coefficient in the perturbative expansion of the thermodynamic
potential, the numerical factors associated with the triple-gluon vertex,
and combinatorics. The factor N comes from a color trace. In the HTL
limit, the loop momentum constitutes a hard scale. In that limit, the
vertex functions can be rewritten as

≈ igfabc (gβγ 2kα − gαβ kγ − gγα kβ)

where k is the hard loop momentum. Inserting this vertex and using the
high-temperature limit, one obtains the HTL limit of the contribution of
the first self-energy diagram in frequency–momentum space:

Πμν(ωm,p) ≈ 4g2NT
∑
n

∫
d3k

(2π)3
kμkνD0(k)D0(p− k)

+ g2NT
∑
n

∫
d3k

(2π)3
δμiδνjDij(k) (9.22)

In a similar fashion one may compute the self-energy corresponding to
the four-gluon vertex and to the quark–antiquark loop. The sum of these
different contributions is written in Euclidean space as

Πμν(ωm,p) ≈ 4g2

(
N +

1
2
Nf

)(
T
∑
n

∫
d3k

(2π)3
kμkνD0(k)D0(p− k)

− 1
2
δμνT

∑
n

∫
d3k

(2π)3
D0(k)

)
(9.23)

The high-temperature limit of the gluon self-energy takes exactly the same
form as (9.18), (9.19) with the replacement of the overall factor e2T 2/3
by the square of the color electric mass m2

el. The latter is

m2
el =

1
3
g2

⎡⎣NT 2 +
1
2

∑
f

(
T 2 +

3
π2

μ2
f

)⎤⎦ (9.24)

where the sum refers to the quark flavors f , which may have differing
chemical potentials. The energy and momentum dependence of the gluon
self-energy, in this limit, is also identical to that of electronic QED, as
analyzed in Section 6.7. It follows that the functional form of the disper-
sion relation is the same as for photons, at least to lowest order in the
coupling constants.
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184 Resummation and hard thermal loops

Upon generalizing our result from self-energies to an arbitrary N -point
function, considerable progress is made by observing that the momentum-
independent term in (9.22) is specific to the self-energy topology. For
example, it will be absent in the HTL limit of the three-point functions.

Next consider the N -gluon amplitude in the Coulomb gauge. One of
the Feynman diagrams is shown in the following figure. (The complete
HTL calculation also needs a diagram with an internal quark loop.)

In the usual notation this N -point amplitude is proportional to

T
∑
n

∫
d3k

(2π)3
kμ1 · · · kμND0(k)D0(p1 − k) · · · D0(pN−1 − k) (9.25)

Insert the noncovariant propagators and do the frequency sum. One of
the resulting terms is∫

d3k
kμ1 · · · kμN

|k||p1 − k| · · · |pN−1 − k| [NB(k) −NB(p1 − k)]

× [(p0
1 − |k| + |p1 − k|) · · · (p0

N−1 − |k − pN−1| + |k|)]−1 (9.26)

The structure of the integrand can be understood as follows. The N
momenta in the first denominator come from the denominators of the
Fourier transform of the Euclidean propagators, (9.6); the N gluon
momenta in the numerator come from the triple-gluon coupling, which
is linear in momentum. The energy denominators come from integrat-
ing over the different imaginary time variables associated with the use
of (9.7). There are only N − 1 of them, as the first integral was used in
conjunction with the delta function generated by the frequency sum. As
argued previously, hard thermal loops occur when the integrating region
is hard, of order T . We may get an estimate of the magnitude of (9.26)
when the external momentum is soft, of order gT . In that limit

k ∼ T |pi − k| ∼ T |k| − |p − k| ∼ |p|
Now we use NB(k) −NB(p − k) ≈ |p| zdNB(k)/dk, with z = p̂ · k̂.
Putting all this together, and recalling that there is one power of the
coupling constant at each vertex, the amplitude for N external gluons is
gNT 2/|p|N−2. The tree-level diagram for the N -point gluon amplitude is
easier to estimate: it contains N − 2 vertices and N − 3 propagators. Its
magnitude is thus gN−2/|p|N−4. Clearly, when |p| ∼ gT in the one-loop
N -gluon amplitude, its magnitude is that of the tree-level contribution
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and therefore has to be included in a consistent calculation. Therefore a
resummation is required.

A set of rules for the power-counting of one-loop diagrams, first estab-
lished by Braaten and Pisarski, may be inferred from the above analysis.
They are summarized here for the case where all external momenta are
soft.

1 The measure of the integral over the loop momentum is of magnitude
T 3.

2 One propagator does not contribute an energy denominator since it is
used in the integral over the delta function in imaginary time. Thus,
there is a factor 1/T for the first propagator from the denominator
of (9.6), and a factor 1/gT for each additional propagator owing to
Landau damping contributions.

3 Each kμ in the numerator, from vertices or fermion propagators, is
replaced by T .

4 For loops with at least two propagators, if the latter represent fields
of the same statistics, an extra factor of p/T appears owing to the
cancellation of distribution functions.

Note that the N = 2 case does require separate consideration. This can
be seen upon examination of the tadpole diagram in the scalar QED exam-
ple, and also in the computation of the gluon self-energy in the Coulomb
gauge. It is now also clear why loops with ghost fields will not contribute
to the HTL term in the Coulomb gauge: because they are nonpropagat-
ing they cannot generate the term 1/gT associated with Landau damping.
More specifically, the transverse gluon propagator will have a contribution
1/T × 1/gT , whereas a field with propagator ∼ 1/k2 will have a contribu-
tion 1/T 2, suppressed by one power of g. It is also useful to note here that
these rules assume that the N -point functions are linear in the thermal
distribution functions, whereas from (9.6) it would appear that powers
of the distribution function would arise. This power would be the same
as the number of propagators. However, in the final result a cancellation
always yields a single power of NB or NF. This fact is most easily seen
when the frequency sum is performed by the technique of contour inte-
gration. Indeed, considering (3.40) one sees that each pole residue gets
multiplied by a single distribution function. Finally, we note that there is
no HTL amplitude with external ghost fields.

9.2 Hard thermal loops and Ward identities

In the case of a gauge theory we know that N -point functions are related
to (N − 1)-point functions by Ward identities. At high temperature,
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186 Resummation and hard thermal loops

where HTLs give the leading contribution, we shall verify that Ward iden-
tities are indeed satisfied. This is a useful check on the method.

As an exercise, we can first check whether the HTL limit of the photon
self-energy in scalar QED satisfies a Ward identity; verification is immedi-
ate, pμΠμν(ωm,p) = 0. The same observation can be made for the gluon
self-energy we obtained previously. It suffices to calculate explicitly three-
point and four-point functions in order to generalize to a given topology
at some order of the coupling. For example, the three-gluon amplitude
will receive contributions from a pure gluon loop and from a quark loop.
With the rules, the HTL limit of their sum can be obtained, and it is

Γμνσ ≈ − 8g2

(
N +

1
2
Nf

)
T

×
∑
n

∫
d3k

(2π)3
kμkνkσD0(k)D0(p1 − k)D0(p2 + k) (9.27)

Note that the momentum-labeling convention in the vertex is such that
p1 + p2 + p3 = 0. Similarly, the HTL limit of the two-quark one-gluon
vertex is obtained through the evaluation of

+

and is

Γμ
2q−1g ≈ −4g2CfγνT

∑
n

∫
d3k

(2π)3
kμkνD0(k)D0(p1 − k)D0(p2 + k) (9.28)

where Cf =
(
N2 − 1

)
/2N and N is the number of colors.

The Ward identities can be derived in a straightforward fashion from
the properties of the three-point and four-point functions in the HTL
limit. Besides the transversality condition already mentioned, they are

p3γΓαβγ(p1, p2, p3) = Παβ(p1) − Παβ(p2)

p3μΓμ
2q−1g(p1, p2, p3) = Σ(p1) − Σ(p2)

(9.29)

where Σ(p) is the high-temperature quark self-energy. Similarly, the four-
and three-point functions, in the HTL limit, are related by

p4δΓαβγδ(p1, p2, p3, p4) = Γαβγ(p1 + p4, p2, p3)
−Γαβγ(p1, p2 + p4, p3)

p4βΓαβ
2q−2g(p1, p2, p3, p4) = Γα

2q−1g(p1 + p4, p2, p3)
−Γα

2q−1g(p1, p2 + p4, p3)

(9.30)
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where a trace over the color indices of the two gluons has been taken. It
is now apparent that effective vertices can and will exist in cases where
no bare vertex is defined. For example, the 1PI vertex between a pair of
quarks and a pair of gluons, Γμν

2q−2g, will consist solely of one-loop HTL
contributions, as is obvious from the figure:

≈ + +

A consequence of the fact that hard thermal loops obey Ward identities
similar to those of tree amplitudes is that their generating functional is a
gauge-invariant functional of the quark and gauge fields.

9.3 Hard thermal loops and effective perturbation theory

We have seen that, owing to hard thermal loops, some Feynman diagrams
that are superficially higher order in the coupling constant will have the
same magnitude as tree-level diagrams in finite-temperature field theories.
We have also seen how to evaluate the HTL contributions. We can employ
this knowledge to resum HTLs into an effective theory. In this formalism
bare vertices and propagators will be replaced by effective vertices and
propagators, which are obtained via a HTL resummation.

Using the Schwinger–Dyson equation one may define an effective gluon
inverse propagator in terms of the bare one as

(D∗)−1
μν = p2gμν − pμpν + Π∗

μν (9.31)

where the self-energy is evaluated in the HTL limit. An equivalent expres-
sion exists for quarks, the inverse propagator being related to the self-
energy. The effective three-gluon vertex can be constructed similarly:

Γ∗μνσ(p1, p2, p3) = Γμνσ
0 (p1, p2, p3) + δΓμνσ(p1, p2, p3) (9.32)

where the finite-temperature contribution (the second term on the right-
hand side) is evaluated in the HTL limit. The contributions to the three-
point function, in a ghost-free gauge, are represented by

≈ + +

This procedure is generalized to more complicated topologies. As noted
in the previous section, HTL effective vertices can exist in the absence
of their bare counterparts. If all the external momenta are of order gT
then the HTL self-energies are of the same order as the bare inverse
propagators; the same statement holds true for vertices. Therefore, in
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188 Resummation and hard thermal loops

the evaluation of a loop contribution, propagators and vertices need to be
of the effective kind for the kinematical region where the loop momentum
is soft. An example is that of the one-loop quark self-energy

+

where the blobs denote effective quantities.
One might formalize the effective perturbation theory one step further

by starting with effective Lagrangians. One can show [5] that the effective
Lagrangian for gluonic hard thermal loops is

L = −1
2
m2

el Tr

[
Fμν(x)

∫
dΩ
4π

k̂ν k̂λ

(k̂ ·D)2
F μ
λ (x)

]
(9.33)

Here the trace runs over color indices, Fμν = F a
μνGa where the Ga are the

generators of the group, and k̂ = (−i, k̂) (in Minkowski space). The inte-
gration over solid angle refers to the direction k̂. Also, Dμ = ∂μ + igAμ is
the covariant derivative (Aμ = Aμ

aGa). Similarly the effective Lagrangian
for fermionic hard thermal loops is

L = m2
qψ̄(x)γμ

∫
dΩ
4π

k̂μ

k̂ ·Dψ(x) (9.34)

with

m2
q =

N2 − 1
16N

g2

(
T 2 +

μ2

π2

)
(9.35)

9.4 Spectral densities

It is interesting to know where the spectral weights are concentrated for
various operators within the hard thermal loop approximation. Here we
shall focus on the quark spectral densities since they will be used in Chap-
ter 14 to compute the rate of photon emission from the quark–gluon
plasma formed in high-energy heavy ion collisions.

The quark self-energy in the HTL limit may be immediately inferred
from the electron self-energy given in Section 6.8. The only difference is
the change in the numerical factor in the fermion–vector meson vertex.
The quark propagator is

G∗(p) = G∗
+(p)

γ0 − p̂ · γ
2

+ G∗
−(p)

γ0 + p̂ · γ
2

(9.36)
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where

G∗
±(p) =

{
−p0 ± |p| + m2

q

|p|
[
Q0

(
p0

|p|
)
∓Q1

(
p0

|p|
)]}−1

(9.37)

The functions Q0 and Q1 are the Legendre functions of the second kind,
namely

Q0(z) =
1
2

ln
(

1 + z

1 − z

)
Q1(z) = zQ0(z) − 1 (9.38)

The effective quark mass was given in (9.35). In the limit g → 0 we recover
the bare quark propagator.

It is a straightforward exercise to compute the spectral densities for the
functions G∗±. They are

ρ∗±(ω,p) =
ω2 − p2

2m2
q

[δ(ω − ω±(p)) + δ(ω + ω∓(p))] + β±(ω,p)θ(p2 − ω2)

(9.39)
with

β±(ω,p) =
1
2
m2

q(|p| ∓ ω)

({
|p|(ω ∓ |p|)−m2

q

[
Q0

(
ω

|p|
)
∓Q1

(
ω

|p|
)]}2

+
[
1
2
πm2

q

(
1 ∓ ω

|p|
)]2

)−1

(9.40)

The ω±(p) represent the two branches of the dispersion relation for
quarks, essentially as discussed in Section 6.8. They are, of course, deter-
mined by the poles of G∗±(ω,p). The functions β± represent branch cuts
that give rise to Landau damping, which is possible when |ω| < |p|.

9.5 Kinetic theory

The connection between kinetic theory and the HTL formalism is at first
sight surprising and mysterious. However, once we realize that small devi-
ations from local thermal equilibrium may be described by either kinetic
theory or by linear response theory, the connection may be viewed as
different manifestations of the same physics.

The connection can be initiated by considering the elementary example
of an ensemble of charged classical particles. Assuming that hard colli-
sions can be neglected, and that the particles thus interact only through
average electric and magnetic fields, one can write an equation for the
time evolution of the single-particle phase-space distribution f(x,p, t):

∂f

∂t
+ v · ∂f

∂x
+ F · ∂f

∂p
= 0 (9.41)
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190 Resummation and hard thermal loops

Here v is a velocity and F is the Lorentz force. Note that in general
the single-particle distribution function depends on time, on the posi-
tion and on the momentum. This transport-type equation can be derived
by requiring the total time derivative to vanish in the absence of hard
collisions: a statement of Liouville’s theorem. This equation is the colli-
sionless Boltzmann or Vlasov equation. The derivation is completed by
using the appropriate Lagrangian for electromagnetic interactions as well
as Hamilton’s equations. For an electromagnetic plasma in equilibrium
the distribution functions will not depend on the spacetime coordinates
and will be isotropic in momentum space. Keeping those facts in mind,
let us slightly perturb the distribution function f (0):

f(x,p, t) = f (0)(|p|) + δf(x,p, t) (9.42)

Then, to first order in the modification of the distribution function,(
∂

∂t
+ v · ∂

∂x

)
δf(x,p, t) = −eE · vdf (0)(|p|)

dε
(9.43)

where ε is the energy of the particle of charge e. Assuming that the
perturbation is switched on adiabatically, one may solve for the out-of-
equilibrium part of the distribution function:

δf(x,p, t) = −e
df (0)(|p|)

dε

∫ t

−∞
dt′e−η(t−t′)v · E(x − v(t− t′), t′) (9.44)

This leads to an induced current

jμind(x, t) = e

∫
d3p

(2π)3
vμ δf(x,p, t) (9.45)

where vμ = (1,v). Finally, relating the polarization tensor to the induced
current via

jμind(x) =
∫

d4yΠμν(x− y)Aν(y) (9.46)

one obtains the following results in frequency–momentum space:

Π00(ωm,p) = −e2T 2

3

(
1 −

∫
dΩ
4π

iωm

iωm − q · v̂
)

Πij(ωm,p) =
e2T 2

3

∫
dΩ
4π

iωmv̂iv̂j
iωm − q · v̂

(9.47)

We have made the assumption that the particles are massless, in which
case their velocity vector is a unit vector v̂. The integrals in (9.47) are then
over the orientation of the unit velocity vector. Remarkably, the result
above is in fact the HTL contribution to the one-loop photon polarization
tensor in QED. A direct calculation to show this is straightforward.
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An important feature emerges here that generalizes to both the quan-
tum domain and to nonabelian quantum field theories. This feature is
that the Vlasov equation is an effective equation of motion for the soft
modes of the plasma and corresponds to the fact that the hard thermal
loops are obtained by isolating the leading-order contributions to one-loop
diagrams with soft external lines. Put another way, the induced current
calculated from the solutions of the Vlasov equation generates directly
the HTL contribution.

Since in QED the HTL in the vacuum polarization tensor could be
obtained by using classical transport theory, one could attempt a similar
treatment for QCD. This approach appears promising, as HTLs represent
the interaction of energetic quanta with weak mean fields. The hard ther-
mal effects should then be driven by thermal fluctuations that can be cast
in a classical framework. The starting point consists of considering a set
of particles carrying nonabelian SU(N) color charge Qa. One may write
down the time evolution equations for the space-momentum coordinates
of those particles. An important difference arises immediately in QCD:
the particles may exchange color with the fields with which they interact.
There needs to be an equation of motion for the color quantum number.
The set (x, p,Qa) can be thought of as an augmented phase space. Note
that, except for Qa, the elements of this set are now four-vectors.

The dynamical evolution of these phase-space variables is dictated by S.
K. Wong’s equations [6]. They can be derived by starting with the Dirac
equation, suitably generalized to include QCD, finding the equations of
motion for the operators, and then letting � → 0. One obtains

m
dxμ

dτ
= pμ m

dpμ

dτ
= gQaFμν

a pν (9.48)

m
dQa

dτ
= −gfabcpμAb

μQ
c

As usual F a
μν is the field strength tensor, g is the strong coupling constant,

and the fabc are the structure constants of the group. These equations can
be generalized to include spin, but this is not important for the present
discussion. In the collisionless case, the proper-time total derivative of the
phase-space density should vanish: df(x, p,Q)/dτ = 0. Using the equa-
tions of motion presented above, one obtains the Boltzmann equation in
the absence of collisions,

pμ
(

∂

∂xμ
− gQaF

a
μν

∂

∂pν
− gfabcA

b
μQ

c ∂

∂Qa

)
f(x, p,Q) = 0 (9.49)

Together with the Yang–Mills equation, (DνF
μν)a = Jμa (where

the covariant derivative is Dac
μ = ∂μδ

ac + gfabcAb
μ), one obtains a
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self-consistent set of nonabelian Vlasov equations. The net current is
Jμa =

∑
jμa, where the sum runs over all species and spins. The space-

time coordinates are implicit. More explicitly,

jμa(x, p) = g

∫
dQpμQaf(x, p,Q) (9.50)

Physical states are guaranteed if the appropriate constraints are incor-
porated in the measure of the augmented phase space. In the limit of
vanishing masses,

dQ = d8Qδ(QaQa − q2) δ(dabcQaQbQc − q3) (9.51)

dP =
d4p

(2π)3
2θ(p0)δ(p2) (9.52)

The first equation is specific to SU(3) and ensures the invariance of the
Casimir constants. The dabc are the totally symmetric group constants.
The second equation makes positivity manifest along with the on-shell
requirement.

Specializing in small departures from equilibrium, one may write

f = f (0) + gf (1) + g2f (2) + · · · (9.53)

To first order in the coupling, the transport equation reduces to

pμ
(

∂

∂xμ
− gfabcAb

μQc
∂

∂Qa

)
f (1) = pμQaF

a
μν

∂

∂pν
f (0) (9.54)

Arguments that are phase-space variables are once again left implicit.
Integrating by parts, using the definition of the current at a given order

in terms of the distribution function, (9.50), and summing over the Nf

quarks, Nf antiquarks, and the N2 − 1 gluons and their physical spin
states, one gets

[p ·DJμ(x, p)]a = 2g2pμpνF a
ν0

d

dp0
[NNB(p0) + NfNF(p0)] (9.55)

Kelly et al. [7], as well as Taylor and S. M. H. Wong [8] have shown that
a solution of the above can be obtained in a functional form: Jμ(x) =
−δΓ(A)/δAμ = −GaδΓ(A)/δAa

μ. The generating functional is

Γ =
m2

el

2

∫
d4xAa

0(x)Aa
0(x) −

∫
dΩ

(2π)3
W (A) (9.56)

where an explicit expression for W is given in [8]. This generating func-
tional is consistent with the effective Lagrangians we wrote down earlier.

A field-theoretic procedure can also be invoked to derive the results
above. Following Blaizot and Iancu [9], the field equations of motion
may be obtained by functional differentiation of the nonabelian gener-
ating functional. However, by definition this procedure does not produce
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gauge-invariant equations of motion. Indeed, the original Lagrangian in
the action has to be gauge-fixed. This is not a problem, as physical results
will not depend on the choice of gauge. However, intermediate steps that
are gauge independent do permit a clearer physical interpretation. A
method that circumvents this annoyance is that of the background gauge
field [10], where the gauge field is split into a classical background field,
identifiable as a mean field, and a fluctuating quantum field. Then a mean
field approximation, where hard degrees of freedom interact with softer
mean fields, together with an extraction of terms of leading order in g, is
performed. Care has to be taken to preserve the gauge symmetry in those
procedures. As in the classical limit, one allows first-order fluctuations
in the density matrices, the Wigner transforms of which have many of
the properties of classical phase-space distributions. The transport equa-
tions thus obtained yield (9.55). Note that practical applications typically
involve the evaluation of quantities like the polarization tensor. This may
be obtained from the current in the case of weak fields or, equivalently,
in the linear response limit by a functional derivative of (9.46). Finally,
the formal manipulations in [9] have greatly clarified the physical nature
of hard thermal loops. As already mentioned, the high-temperature limit
does permit an ordering of scales. One starts with an identification of
plasma particles that have typical momenta of order T . Soft collective
degrees of freedom then appear, which carry the same quantum numbers
as the primordial constituents but which have typical momenta of the
order of gT . This scale separation allows for the derivation of a kinetic
equation for the plasma particles, the solution of which provides a gener-
ating functional for the hard thermal loops. Therefore, hard thermal loops
describe long-wavelength collective excitations of the thermal particles. A
natural consequence of this fact is that HTL perturbation theory is useful
for the evaluation of physical quantities that are only sensitive to scales
of the order of gT . Many other observables will be sensitive to scattering
processes whose treatment will go beyond hard thermal loops.

9.6 Transport coefficients

In Section 6.9 we discussed the general Kubo formulae for transport coef-
ficients. For completeness we quote here the values for the shear viscosity
and flavor diffusion constant for QCD at high temperature. They were
computed to lowest order in the gauge coupling but to all orders in the
logarithm of the coupling by Arnold, Moore and Yaffe [11]. For the pure
gauge theory without dynamical quarks the results are

D =
0.203

α2
s ln(0.580/αs)

1
T

η =
0.344

α2
s ln(0.608/αs)

T 3 (9.57)
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while for two flavors they are

D =
0.165

α2
s ln(0.497/αs)

1
T

η =
1.095

α2
s ln(0.521/αs)

T 3 (9.58)

and for three flavors of massless quarks they are

D =
0.150

α2
s ln(0.461/αs)

1
T

η =
1.351

α2
s ln(0.464/αs)

T 3 (9.59)

Here D refers to quark flavor diffusion. These QCD expressions have an
extra logarithmic factor arising from the Debye screening of the long-range
color Coulomb force.

9.7 Exercises

9.1 Derive (9.6) and (9.10).
9.2 Obtain the polarization tensor for QED in the HTL limit, starting

with the effective Lagrangian of (9.33)–(9.35).
9.3 Derive the formulae for the spectral densities in (9.39).
9.4 Derive the formulae for gluon spectral densities that are analogous

to those for quarks.
9.5 Verify that (9.44) satisfies (9.43).
9.6 Obtain the polarization tensor for QED in the HTL limit starting

with (9.47).
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10
Lattice gauge theory

Perturbation theory applied to QCD predicts that the normally strong
interactions among quarks and gluons become weak at high temperatures
and densities on account of asymptotic freedom. This leads to a state
known as quark–gluon plasma. The perturbative analysis of QCD was
the subject of the last two chapters. At low temperatures and densities
quarks and gluons are not observed individually but only as color-neutral
objects, hadrons, on account of confinement. Then hadrons are the rel-
evant degrees of freedom, just as atoms and molecules are the relevant
degrees of freedom in biological physics. Nuclear matter and hot hadronic
matter are the subjects of the next two chapters. The standard computa-
tional method for studying QCD in the transitional region is lattice gauge
theory.

Lattice gauge theory is a field of intellectual study in itself. It is not
possible in one chapter to cover it in all detail, not the least reason being
that it is numerically quite involved. We will introduce the basic theoret-
ical ideas and the main numerical results. As the field is evolving owing
to rapid increases in computational power, these results will no doubt be
superseded in the near future. Nevertheless, the main conclusions should
stand the test of time.

The formulation of nonabelian gauge theories on a spacetime lattice in
Euclidean space was introduced by Wilson [1] with the purpose of study-
ing quark confinement. The infinite-dimensional functional integral that
defines a quantum field theory becomes a finite-dimensional integral when
the lattice has a finite extent in space and time and is therefore unam-
biguously defined. It is natural to expect that there is a unique continuum
limit when the lattice spacing a goes to zero, at least for asymptotically
free theories. The argument is that the bare coupling g(a) becomes small
in this limit, and the long-distance properties of the theory should be
insensitive to the details of the ultraviolet cutoff introduced by the lattice.

195
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After Creutz [2] demonstrated that the functional integral of lattice gauge
theory could be evaluated with the help of Monte Carlo numerical tech-
niques, lattice gauge theory became the method of choice for the calcula-
tion of observables that are beyond the reach of perturbation theory. This
includes most properties of individual hadrons as well as their interactions
at low energies.

It is natural to apply the lattice technique to the study of deconfine-
ment and chiral symmetry restoration at finite temperature. The first
such studies were made by Polyakov [3] and by Susskind [4] using the
Hamiltonian formulation of lattice gauge theory. They could show that
deconfinement disappears at high temperature but were unable to prove
that this phenomenon persists in the continuum limit, nor could they
compute a critical temperature. This was first achieved in SU(2) gauge
theory by means of numerical calculations by McLerran and Svetitsky [5]
and by Kuti, Polónyi, and Szlachányi [6].

10.1 Abelian gauge theory

As a warm-up to full QCD let us consider how to define a Hamiltonian on
a discrete spatial lattice for a pure gauge theory that has Abelian gauge
theory as its continuum limit. The procedure is not unique since one can
always add terms to the discretized theory which vanish in the limit that
the lattice spacing goes to zero. In fact, this arbitrariness can be both a
boon and a bane, as we shall see.

Consider a cubic lattice with spacing a. Label each site of a lattice with
a vector x = (x1, x2, x3). There are six unit lattice vectors: n1, n2, n3,
n−1, n−2, n−3, where n1 points in the positive x1 direction, n−1 points
in the negative x1 direction, and so on. A directed link is defined by the
pair of vectors (x,n); it starts from the site x and goes to the neigh-
boring site x + an (see Figure 10.1). The lattice may be finite or infinite
in extent, meaning that there are either a finite or a countably infinite
number of degrees of freedom. A continuum field theory, by contrast, has
an uncountably infinite number of degrees of freedom no matter whether
the box is finite or infinite in extent.

It is natural to associate links with dynamical degrees of freedom. Let
us define this degree of freedom to be

U(x,n) = exp[iφ(x,n)] (10.1)

Each link has a mate: (x,n) ⇔ (x + an, −n). The link and its mate should
not have independent degrees of freedom associated with them, and so it
is natural to require that

U(x + an, −n) = U †(x,n) (10.2)
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Fig. 10.1. Neighboring lattice sites i and j connected by a directed link.

and so

φ(x + an, −n) = −φ(x,n) (10.3)

It is also natural to associate each link with an electric flux E(x,n).
Clearly we should require that

E(x + an, −n) = −E(x,n) (10.4)

The theory is quantized by demanding that E be the momentum canon-
ically conjugate to the variable φ:

[φ(x,n), E(x,n)] = i (10.5)

Since φ is an angle, E has integers for its spectrum of eigenvalues. We are
dealing with a compact U(1) gauge theory.

The electric contribution to the Hamiltonian Helectric must be propor-
tional to ∑

links

E2

2a

where the factor 1/a gives the term the proper dimension, and the factor
one-half is inserted for the conventional reasons of normalization.

The magnetic field energy is less obvious. The independent degrees of
freedom have already been defined and so it must be expressed in terms
of them. The coordinate φ is the natural starting point. One defines a
plaquette Γ to be a square made of four links connected head to tail (see
Figure 10.2). The variable U associated with this plaquette is

U(Γ) = U(i)U(j)U(k)U(l) = exp {i[φ(i) + φ(j) + φ(k) + (l)]} (10.6)
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Fig. 10.2. A plaquette.

where the four sides of the plaquette are labeled ijkl, with the head of l
connected to the tail of i. By going around in a closed loop like this, one
will obtain a curl in the limit a → 0.

The Hamiltonian is defined to be

H =
∑
links

g2E2

2a
−

∑
plaquettes

1
2ag2

[
U(Γ) + U †(Γ) − 2

]
(10.7)

Notice that a dimensionless coupling constant g has been used in this
definition of H. The fact that the coefficient of the electric and magnetic
field energies can depend on g2 should not be surprising. It does represent
the strength of interactions because the Hamiltonian is not quadratic in
the independent dynamical variables φ but has terms to all orders in φ.
The particular normalization is chosen, with hindsight, to reproduce the
Abelian theory in the continuum limit.

To calculate the continuum limit of the magnetic energy, consider a
single plaquette with corners labeled abcd. The quantity

Uab = eiφab (10.8)

is associated with the link ab. Define a vector potential Ai via

φab = g(xb − xa)iAi

(
xa + xb

2

)
(10.9)

We do the same for the four links comprising the plaquette, namely, ab,
bc, cd, da. In the limit that the lattice spacing becomes very small we can
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expand the exponentials in a power series:

Hmagnetic(Γ) = − 1
2ag2

[
U(Γ) + U †(Γ) − 2

]
= − 1

2ag2

[
i(φab + φbc + φcd + φda)

−1
2
(φab + φbc + φcd + φda)2 + · · · + c.c.

]

≈ 1
2a

[
(xb − xa)iAi

(
xa + xb

2

)
+ (xc − xb)iAi

(
xb + xc

2

)
+ (xd − xc)iAi

(
xc + xd

2

)
+ (xa − xd)iAi

(
xa + xd

2

)]2

(10.10)
Now Taylor-expand the vector potentials about the center of the pla-
quette. For example, if the link ab points in the direction n2 and the link
bc points in the direction n1 then

Ai

(
xa + xb

2

)
≈ Ai

(
xa + xb + xc + xd

4

)
− 1

2
a
∂Ai

∂x1

(
xa + xb + xc + xd

4

)
(10.11)

and similarly for the other terms. The result is that the magnetic Hamil-
tonian for this plaquette is

Hmagnetic(Γ) =
1
2
a3

(
∂A1

∂x2
− ∂A2

∂x1

)2

(10.12)

which is proportional to the square of the third component of the curl of
the vector potential, otherwise known as the magnetic field.

Summing over all plaquettes results in the continuum limit for the mag-
netic part of the Hamiltonian,

Hmagnetic =
1
2

∫
d3xB2(x) (10.13)

since a3
∑

x → ∫
d3x in the continuum limit. The physical electric field E

associated with the link ab is defined to be gn2E(xa,n2)/a2, which has
both the correct dimensions and direction. The continuum limit of the
electric part of the Hamiltonian is therefore

Helectric =
1
2

∫
d3xE2(x) (10.14)

The resulting continuum theory is a free-field theory in the absence of
electric charges. Note, however, that the original lattice theory is a fully
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interacting theory with interactions to all orders in the vector potential.
The range of these interactions is of the order of the lattice spacing a.

Since this is a Hamiltonian formulation, only physical states obeying
Gauss’s law should be included when calculating the partition function:

Z(β) =
∑

physical
statesψ

〈ψ|e−βH |ψ〉 (10.15)

These states |ψ〉 should satisfy∑
n

E(x,n)|ψ〉 = 0 (10.16)

for each site x, assuming that there are no electric charges in the system.
To impose Gauss’s law, we insert a factor

δ

(∑
n

E(x,n)

)
=
∫ π

−π

dα(x)
2π

exp

(
iα(x)

∑
n

E(x,n)

)
(10.17)

at each site. This will take care of the restriction to physical states auto-
matically.

Let us study the theory in the strong-coupling limit, g2 � 1. This is the
extreme opposite of the weak-coupling limit, where perturbation theory
can be applied. In strong coupling we can drop the magnetic energy and
keep only the electric. Imposing Gauss’s law by use of the Dirac delta
function leads to the expression

Z =
∏
x

∫ π

−π

dα(x)
2π

∏
links atx

(∑
E

exp
{
−βg2

2a
E2(x,n)

+ i[α(x) − α(x + n)]E(x,n)
})

(10.18)

Here and from now on E represents the eigenvalues (integers) of the oper-
ator. To understand the nature of the strong-coupling phase, insert a pair
of static immobile charges, one of charge g located at x = 0 and the other
of charge −g located at x = R. Then Gauss’s law becomes∑

n

E(0,n) = 1∑
n

E(R,n) = −1 (10.19)∑
n

E(x,n) = 0 for x = 0, R

This leads to an extra factor in Z of eiα(0)e−iα(R):

Z(β,R) = Z(β)
〈
eiα(0)e−iα(R)

〉
(10.20)
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The free energy of this configuration is

ΔF (β,R) = − [T lnZ(β,R) − T lnZ(β)] = −T ln
〈
eiα(0)e−iα(R)

〉
(10.21)

First consider the low-temperature limit, βg2/2a � 1. Then only the
eigenvalues E = 0,±1 matter and〈

eiα(0)e−iα(R)
〉

=
∏
x

∫ π

−π

dα(x)
2π

∏
links atx

{
ei[α(0)−α(R)] + e−βg2/2aei[α(x)−α(x+n)+α(0)−α(R)]

+ e−βg2/2aei[−α(x)+α(x+n)+α(0)−α(R)]
}

(10.22)

The first of the three exponentials integrates to zero. So do the second and
third, except for those paths that connect the two charges. For simplicity,
choose R to lie on an axis running through the origin. Then〈

eiα(0)e−iα(R)
〉

= 2
(
e−βg2/2a

)Nlinks(0,R)
= 2e−βg2R/2a2

(10.23)

where Nlinks(0, R) = R/a is the number of links connecting the charges.
Therefore

ΔF =
g2

2a2
R (10.24)

The potential energy is linear and thus confining.
The high-temperature limit, βg2/2a � 1, is left as an exercise. It should

be no surprise that the answer is a Coulombic potential,

ΔF = −g2

R
(10.25)

Since the low- and high-temperature limits have completely opposite
behavior, one should expect a phase transition separating them. The crit-
ical temperature is estimated as βcg

2/2a ≈ 1 or

Tc ≈ g2

2a
(10.26)

This depends very strongly on the lattice spacing. In fact, since this
is a quantum field theory, quantum corrections will cause the effective
coupling constant to depend on a, namely, g2(a) will replace g2 in the
estimate for the critical temperature. This being an Abelian theory it
does not have the property of asymptotic freedom. Therefore g2(a) will
grow with decreasing a. Hence Tc will grow without bound as a → 0. The
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low-temperature confining phase does not smoothly extrapolate to the
continuum limit but is separated from it by a phase transition; confine-
ment exists only in the discretized lattice version of the theory. This is
well and good since we know that QED is not a confining theory.

10.2 Nonabelian gauge theory

Both QCD and electroweak theory involve nonabelian gauge groups,
SU(3) in the former case and SU(2) in the latter. Essentially all modern
numerical calculations in these theories use the Lagrangian formulation,
not the Hamiltonian one. Calculations are done on a finite discrete lattice
of volume V = L3, with

L = Nsa (10.27)

where a is the lattice spacing and Ns is the number of sites in each of
the three spatial directions. The imaginary time variable is also discrete:
0 ≤ τ ≤ β as usual with

β =
1
T

= Nτa (10.28)

where Nτ is the number of sites in the imaginary time direction. The unit
directional vectors n in three spatial dimensions must be extended to unit
directional vectors nα in four Euclidean dimensions. It is then convenient
to define x4 = τ . The lattice spacings in the space and time directions
need not be the same, and sometimes they are chosen differently, but
equal spacing is the norm.

The notions of site, link, and plaquette all carry over from the lattice
version of the Abelian theory. The generalization of the link variable from
U(1), as given in (10.1), to SU(N) is straightforward, but for definiteness
we specialize to SU(2) for the rest of this section:

U(x;nα) = exp
[
iaσjA

j
α(x)

]
= u4I + σ · u (10.29)

Here the link begins at the site x = (x, x4) and goes in the direction
nα. The σj with j = 1, 2, 3 are the Pauli matrices while I is the identity
matrix. These link variables are elements of the group SU(2). In the con-
tinuum limit the Aj

α will be identified as 1/g times the four-vector poten-
tial. (It is conventional to factor out the coupling constant.) Compare
with (10.9). By the definition of the link variables there is a constraint

u2
4 + u2 = 1 (10.30)

This is a compact gauge group.
The action should be defined so that (i) it reduces to the continuum

expression, (ii) it is gauge invariant even on the lattice, and (iii) it is as
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simple as possible. Requirement (iii) means that an infinite number of
extra terms that all vanish in the continuum limit a → 0 could be added.
Actually it could be advantageous to add such extra terms if it means
that the continuum limit is approached more rapidly and hence more
efficiently in terms of computer time and memory. This goes under the
title of improved actions, and will be discussed in Section 10.4. Motivated
by the lattice action for the Abelian theory, the simplest possible action
for SU(2) is

S(U) =
4
g2

∑
plaquettes abcd

(
1 − 1

2TrUabUbcUcdUda

)
(10.31)

That this reduces to the proper continuum action is left as an exercise.
This action is invariant under the gauge transformation

U(x;nα) → V (x)U(x;nα)V −1(x + anα) (10.32)

where

V (x) = exp[iaσjΛj(x)] (10.33)

This invariance is obvious at a glance.
The functional integral expression for the partition function involves

integration over all possible field configurations:

Z =
∫ ∏

links ab

dUab exp[−S(U)] (10.34)

When integrating over the link variables U it must be remembered that
they are unitary matrices in the group SU(2) and therefore one must use
the appropriate Haar measure. One could integrate over the u0 and u
subject to the constraint (10.30), or one could integrate over three angles
in four-dimensional Euclidean space.

At this point perturbation theory could be used to compute physical
observables on the finite lattice at finite temperature. However, it is much
more interesting to attempt to evaluate the large but finite-dimensional
integral for Z using Monte Carlo techniques. The results of such numerical
work are the subject of Sections 10.4 and 10.5.

10.3 Fermions

Introducing fermionic fields on a lattice has been a challenge. The most
used techniques result in a multiplication of the number of fermion species
in the continuum limit and/or the breaking of chiral symmetry on the
lattice when the fermions are massless. Much technical work has been
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done to overcome these problems. In this section we introduce the reader
to the most commonly used techniques, as originally formulated.

The staggered-fermion approach was invented by Kogut and Susskind
[7]. In order to define Dirac fields ψ with finite derivatives in the contin-
uum limit, they introduced two separate two-component spinors residing
on alternate lattice sites. In the Hamiltonian formalism on a cubic lat-
tice, a lattice site x is defined to be even or odd according to whether
s ≡ (x1 + x2 + x3)/a is an even or odd integer. The upper two compo-
nents of a four-component Dirac field, ψupper, reside on even lattice sites
while the lower two components, ψlower, reside on odd lattice sites. The
Hamiltonian for free fermions is taken to be

H =
1
ia

∑
x,n

ψ†(x)σ · nψ(x + an) + m
∑
x

(−1)sψ†(x)ψ(x) (10.35)

Imposition of the canonical commutation relations{
ψα(x), ψ†

β(x′)
}

= δα,βδx,x′ (10.36)

leads to the equation of motion

i
∂ψ(x)
∂t

= [ψ(x), H]

=
1
ia

∑
n

σ · nψ(x + an) + m(−1)sψ(x)

=
1

2ia

∑
n

σ · n [ψ(x + an) − ψ(x − an)]

+ m(−1)sψ(x) (10.37)

In the continuum limit the finite differences become derivatives. Remem-
bering that the upper and lower components of ψ reside on even and odd
lattice sites, the equation of motion becomes

i
∂ψupper

∂t
= −iσ · ∇ψlower + mψupper

i
∂ψlower

∂t
= −iσ · ∇ψupper −mψlower

(10.38)

This is the Dirac equation for free fermions.
Coupling to the gauge field can be done in such a way as to render

the Hamiltonian gauge invariant. Inspection of (10.35) suggests that we
rotate the Dirac field according to

ψ(x) → V (x)ψ(x) (10.39)

The kinetic energy term in the free Hamiltonian that involves neighboring
sites x and x + anα requires us to use the parallel-transporter or link
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variable U to connect them in a gauge-invariant way:

H =
1
ia

∑
x,n

ψ†(x)σ · nU(x;n)ψ(x + an) + m
∑
x

(−1)sψ†(x)ψ(x)

(10.40)

Recalling (10.32) we see immediately that this Hamiltonian is minimally
coupled and gauge invariant. Taking the zero-lattice-spacing limit in the
usual way reproduces the correct continuum equations.

The staggered-fermion approach of Kogut and Susskind can also be
expressed in Lagrangian form and on a lattice. After some work one finds
the action

SKS
fermion =

1
a

∑
xx′

ψ̄(x)
[
DKS(x, x′) + amδ(x, x′)

]
ψ(x′) (10.41)

where in this expression ψ has only one Dirac component. The matrix is

DKS(x, x′)

=
1
2

3∑
j=1

sign(x, j)
[
δ(x + anj , x

′)U(x;nj) − δ(x, x′ + anj)U †(x′;nj)
]

+
1
2

[
δ(x + an4, x

′)U(x;n4)eaμ − δ(x, x′ + an4)U †(x′;n4)e−aμ
]
(10.42)

and the sign factor is given by

sign(x, j) = (−1)x4/a

⎧⎨⎩
1 if j = 1
(−1)x1/a if j = 2
(−1)(x1+x2)/a if j = 3

(10.43)

The delta functions appearing in (10.42) are Kronecker not Dirac. A chem-
ical potential μ has also been added. Integrating over the fermion field
gives the usual determinant of the operator:

Z =
∫ ∏

links ab

dUab exp[−S(U)] det
[
DKS(U) + am

]
(10.44)

where the action S(U) is due to the gauge fields alone. If one takes the
continuum limit with zero mass one finds not one but four species of
fermion. This is an illustration of the fermion doubling (better to say
multiplication) problem on the lattice. Sometimes the (Nf/4)th root of
the fermion determinant is taken to represent Nf species of fermion; for
example, Nf = 1 for one species.

Wilson [1] introduced fermions on the lattice in a different way. Every
lattice site is associated with a four-component Dirac field. The action is
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taken to be

SW
fermion = − 1

2a

∑
x,nα

ψ̄(x)γα [U(x;nα)ψ(x + anα)

−U †(x− anα;nα)ψ(x− anα)
]

+ m
∑
x

ψ̄(x)ψ(x)

(10.45)

This is gauge invariant and reduces to the correct action in the continuum
limit. For example, for free fermions U = 1 and the term

1
2a

[ψ(x + anα) − ψ(x− anα)] → ∂αψ(x) (10.46)

in the continuum limit. There is a corresponding matrix DW(U) that
replaces DKS(U) in (10.44). In this case one finds that the number of
species increases by 16 in the continuum limit and when the fermion
is massless. The reason is easy to see for free fermions. Instead of the
expression (2.94) for lnZ one finds the replacement (m = 0 and μ = 0)

ω2
n + p2 → 1

a2
sin2 (ap4) +

1
a2

3∑
i=1

sin2 (api) (10.47)

The lattice propagator has poles not only at zero momentum but also at
all the corners of the Brillouin zone, namely, pj = ±π/a, p4 = ±π/a. The
way out of this is to introduce another term in the action proportional to
aψ̄∂2

αψ that vanishes in the a → 0 limit. However, with any finite lattice
spacing chiral symmetry is broken, and so the chiral condensate cannot
serve as an order parameter on the lattice.

Specific calculations with quarks will be reviewed in Section 10.5.

10.4 Phase transitions in pure gauge theory

The best-understood lattice gauge theories are the pure gauge theories
without quarks. Extensive numerical calculations have been done for
SU(2) and SU(3). Results for the equation of state in the vicinity of Tc for
SU(3) are shown in Figure 10.3. The SU(3) theory undergoes a first-order
phase transition. It has been found that any SU(N) theory, with N equal
to or greater than 3, undergoes a first-order transition [8], while SU(2)
undergoes a second-order transition. This was predicted on the basis of
universality arguments [9]. The essential degrees of freedom below Tc may
be thought of as glueballs, while above Tc they may be thought of as glu-
ons. In either region the degrees of freedom certainly do interact amongst
themselves to a greater or lesser extent.

One must ask just how big a lattice ought to be in order to obtain
results that are truly representative of the continuum limit for temper-
atures of the order of one to several hundred MeV. The necessary size
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Fig. 10.3. The equation of state of pure SU(3) gauge theory with no quarks.
The results shown are extrapolations to the continuum limit, with an estimated
uncertainty of order ±0.1. The latent heat is about 1.5T 4

c . The data were taken
from [10].

may be estimated as follows. Hadrons, including glueballs, have a spatial
extent of the order of 1 fm. Thus the size of the system should be at
least 5 to 10 fm on a side in order to contain enough particles that the
thermodynamic limit is approximately attained. Because the boundary
conditions are usually chosen to be periodic in space, the effective size of
the box is somewhat reduced due to surface effects. Therefore we should
be conservative and require a box with sides of length 10 fm. At the other
end of the scale, a hadron has internal structure characterized by a length
of 0.1 fm. If changes in the hadronic structure, such as deconfinement, due
to finite temperature are to be seen then the lattice spacing should be no
larger than about 0.05 fm. Taken together, this implies that the lattice
should be at least 100 to 200 sites per spatial dimension. The temporal
dimension has length β = 1/T . Taking a lattice spacing of 0.05 fm and
a temperature of 200 MeV requires about 20 sites in the temporal direc-
tion. Numerical calculations with lattices of size up to Ns = 64 or 128 and
Nτ = 16 or 32 have been done. Extensive work on scaling with system size
shows that this is probably large enough to obtain reasonable results.

Rather than going to larger lattices, it can be advantageous to add
additional terms to the simplest actions described in the previous sections.
These terms vanish in the continuum limit, being higher order in a, but
can noticeably improve the approach to the continuum. For example,
suppose that the thermal average of some observable has the Taylor series
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expansion in the lattice spacing

〈O〉lattice
〈O〉continuum

= 1 +
∞∑
n=1

c2na
2n (10.48)

for the simplest lattice action. By the addition of judicious terms to the
action it is possible to cancel the term c2a

2, bringing about a faster con-
vergence to the continuum limit. Of course, the remaining coefficients
are likely to be modified as a result, c2n → c′2n. The modified coefficients
may be larger or smaller or even of opposite sign. One approach is to
add six planar link terms to the action, which is then called a tree-level
improved 1 × 2 action. Another approach is to change certain coefficients
in the action to correspond to the renormalization group; the action is
then termed RG-improved. Yet another approach is to recognize that the
coefficients c2n can be expanded in powers of g2. The coefficients in the
action can be adjusted to make c2n equal to zero to some order in g2; this
is the Symanzik improvement program [11].

If there is a deconfinement phase transition then the free energy of a
heavy quark–antiquark pair should grow linearly with separation below
Tc and be Debye screened above. This free energy can be calculated using
the Wilson line

W (x, β) = Tτ exp
(
i

∫ β

0
dτ λaA

a
4(x, τ)

)
(10.49)

and Polyakov loop

L(x) =
1
N

TrW (x, β) (10.50)

Here the λa are the Gell-Mann matrices for SU(3) (for SU(2) they would
be the Pauli matrices), Tr is the trace with respect to the indices of those
matrices, and Tτ denotes time ordering. This is useful because a static,
immovable, quark field evolves in imaginary time according to

ψ(x, τ) = W (x, τ)ψ(x, 0) (10.51)

which solves the Dirac equation. The free energy of a system that contains
one quark with color index c located at x and one antiquark with color
index c′ located at x′ is then determined by

exp(−βFqq̄) =
1
N2

∑
a,a′

∑
s

〈s|ψa(x, 0)ψc
a′(x′, 0)

× exp(−βH)ψ†
a(x, 0)ψc†

a′ (x′, 0)|s〉
=

1
N2

∑
a,a′

∑
s

〈s| exp(−βH)ψa(x, β)ψ†
a(x, 0)

×ψc†
a′ (x′, 0)ψc

a′(x′, 0)|s〉 (10.52)
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where the superscript c indicates the operation of charge conjugation. The
states |s〉 do not include any quarks; these must be created by the field
operators acting on |s〉. This can be expressed in terms of the Polyakov
loop

exp(−βFqq̄) = Tr
[
exp(−βH)L(x)L†(x′)

]
(10.53)

This is the free energy of the entire system of gluons plus quark and anti-
quark. To obtain the free energy ΔFqq̄ associated with the quark and anti-
quark only we must divide by the partition function Z = Tr exp(−βH)
for a system of gluons only, obtaining

exp(−βΔFqq̄) = 〈L(x)L†(x′)〉 (10.54)

The generalization to an assembly of Nq quarks and Nq̄ antiquarks is
straightforward:

exp
(−βΔFNqNq̄

)
= 〈L(x1) · · · L(xNq

)L†(x′
1) · · · L†(x′

Nq̄
)〉 (10.55)

The transcription of the Polyakov loop to the lattice is

L(x) =
1
N

Tr
Nτ−1∏
j=0

U(x, ja;n4) (10.56)

which is the trace of the product of the U matrices along the time axis.
The link variables U are required to be periodic in time, but the class

of allowable gauge transformations is not restricted to those that are peri-
odic. Among them is a special set of gauge transformations that obey

V (x, β) = V (x, 0)ei2πn/N (10.57)

where n is an integer. The action of the pure gauge theory is invariant too.
This is a global Z(N) symmetry. However, the Polyakov loop is changed:

L(x) → L(x) ei2πn/N (10.58)

and so is the free energy of a system of static quarks and antiquarks:

exp
(−βΔFNqNq̄

)→ exp
(−βΔFNqNq̄

)
ei2πn(Nq−Nq̄)/N (10.59)

Unless Nq −Nq̄ is an integral multiple of N , the free energy of this assem-
bly of quarks and antiquarks is infinite. This is one manifestation of quark
confinement. For SU(3) this means that the number of quarks minus anti-
quarks must be an integer multiple of 3, whereas for SU(2) it must be an
integer multiple of 2.

If the Z(N) symmetry of the pure gauge theory is spontaneously broken
then there ought to be N distinct possible values of 〈L〉, with

〈L〉 = ei2πn/NL0 n = 0, 1, . . . , N − 1 (10.60)
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Fig. 10.4. The average value of the renormalized Polyakov loop as a function
of temperature on lattices of spatial size Ns = 32. It is zero below a critical
temperature. Systematic errors are not included. It can go above unity because
it is normalized to the short-distance perturbative result on the lattice. The data
are from [12].

Therefore 〈L〉 is an order parameter analogous to the magnetization in a
Z(N) spin system. Numerical calculations with the latter systems show
a second-order phase transition for N = 2 and a first-order transition for
N ≥ 3, in agreement with explicit calculations for SU(N) gauge theories.
Calculation of the mean value of L as a function of temperature for SU(3)
does indeed show the expected behavior of an order parameter, as may
be seen in Figure 10.4.

The static quark–antiquark free energy has contributions from the color
singlet and octet potentials:

exp(−βΔF1,1(r, T )) = 1
9 exp[−βΔF1(r, T )] + 8

9 exp[−βΔF8(r, T )]

(10.61)

The octet is repulsive and the singlet is attractive. The latter is usually
of most interest. It can be separated out via

exp[−βΔF1(r, T )] = 1
3 Tr〈W (x, β)W †(0, β)〉 (10.62)

This requires us to fix the gauge in order to obtain a physically relevant
observable. Monte Carlo calculations for the color-singlet potential at var-
ious temperatures near Tc are shown in Figure 10.5. At large values of the
separation r the free energy is independent of separation, indicating that
the linear confining potential characteristic of the low-temperature phase
is screened.
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Fig. 10.5. The free energy of a heavy quark–antiquark pair in the color-singlet
state as a function of separation for various temperatures. The calculations were
done for Ns = 32 and Nτ = 4, 8, and 16. The data are from [13]. The dotted line
represents a zero-temperature potential V (r) = −4αs/3r + σr with αs = 0.18.

In the pure gauge theories all physical observables are expressed in
terms of the lattice spacing. The renormalization group relates the cou-
pling, the lattice spacing, and the scale parameter, ΛL. To two-loop order
the relationship is

aΛL =
1

[β0g2(a)]β1/2β2
0

exp
( −1

2β0g2(a)

)
(10.63)

where the coefficients β0 and β1 were given in (8.39). The scale parameter
ΛL can be related to the scale parameters in other schemes, such as Λ̄MS.

The best approach to obtaining physically relevant numbers from lat-
tice calculations is to express the results as dimensionless ratios. Then
the explicit dependence on the lattice spacing drops out, and hopefully
the sensitivity to nonzero a is reduced. For example, pure SU(3) gauge
theory at T = 0 does not have the usual assortment of hadrons, such as
pions and nucleons. It only has glueballs. A relevant ratio then would be
Tc/

√
σ, where σ is the string tension, which may be obtained from the

asymptotic part of the color singlet potential at T = 0. An average of
several existing calculations yields Tc/

√
σ = 0.632 ± 0.002. Now, there is

no absolute argument that says that the string tension in quarkless SU(3)
must be the same as in the real world with its six flavors of quarks with
various masses. Still, one needs some scale to compare with and it might
as well be the string tension. From the phenomenology of heavy quark
systems and from the observed linear Regge trajectories it is known that
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√
σ ≈ 420 MeV. In this case Tc ≈ 265 MeV. If one chose a different com-

parison scheme then one would undoubtedly get a different number for the
critical temperature in MeV because the relationship among observables
depends on the number of quarks and their masses.

10.5 Lattice QCD

Inclusion of quarks on the lattice intensifies the numerical difficulty
tremendously. A straightforward evaluation of the fermion determinant
involves (N3

s Nτ )! terms. Since most entries in the fermion matrix are
zero, clever techniques can be used to reduce this number significantly,
but the task is still formidable. As in the pure gauge theory, additional
terms can be added to the fermion part of the action that quicken the
approach to the continuum, albeit at the expense of computational time.

The quark masses used in lattice calculations to date are not constants
but scale with either the lattice spacing, am = constant, or with the
temperature, m/T = constant. In principle the values of the up, down,
and strange quark masses should be adjusted to yield the experimen-
tally observed values of the pion and kaon masses. Then all other hadron
masses, and all calculations done at finite temperature, would be absolute
predictions of the theory. However, it turns out that the computational
time grows quickly with decreasing quark mass, so that this goal has not
been achieved yet.

Figure 10.6 shows the energy density versus temperature for two flavors
of light quarks, two flavors of light quarks and one heavier quark, and three
flavors of light quarks. Light and heavy mean mlight = 0.4T and mheavy =
T , roughly corresponding to up and down quarks and strange quarks.
There is a big jump in the energy density centered at a temperature
defined to be Tc. Finite size and lattice spacing (Nτ = 4) prevent one
from concluding whether there is a first- or second-order phase transition
or only a very rapid crossover. Extrapolation to the physical value of
the ratios of pion to rho and omega vector meson masses suggests that
Tc = 172 ± 9 MeV for two light quarks, where the quoted uncertainty is
statistical only. The systematic uncertainty is comparable in magnitude.
The value of Tc is reduced by 15 to 20 MeV for a world of three light
quarks.

The Polyakov loop cannot be used as an order parameter when dynami-
cal quarks are included because the quark part of the action is not invari-
ant under Z(3) transformations. This can be understood intuitively by
remembering that the Polyakov loop is used to measure the free energy of
any configuration of static quarks and antiquarks. When a quark and anti-
quark are pulled apart the potential ceases to be linear in the separation,
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Fig. 10.6. Energy density in units of T 4 as a function of T/Tc for two flavors
of light quarks, two flavors of light quarks and one flavor of heavier quark, and
three flavors of light quarks. The lattice size is 163 × 4. The data are from [14].

because the string can break owing to the creation of a light dynami-
cal quark and antiquark. So what then could the order parameter be? If
some of the quarks have zero mass then the theory has chiral symmetry,
and the quark condensate 〈ψ̄ψ〉 serves as an order parameter. Figure 10.7
shows the temperature dependence of this condensate for a sequence of
ever decreasing light quark masses, for two light flavors and one heavier
flavor. The quark condensate goes to zero if the light quark mass is light
enough, but only decreases monotonically without ever reaching zero for
more massive light quarks. This is also reflected in the hysteresis behavior
when the system is numerically cooled and heated and cooled again by
Monte Carlo.

To study the effects of varying the number of quark flavors and their
masses, Pisarski and Wilczek [16] constructed an effective Lagrangian
for an order-parameter field taken to be Φij = f q̄i(1 + γ5)qj , where f
is a constant. The Lagrangian should reflect the symmetries of the
QCD Lagrangian. For Nf flavors of massless quarks the symmetry
group is

Gf = U(1)A × SU(Nf) × SU(Nf) → G′
f = Z(Nf)A × SU(Nf) × SU(Nf)

Here the classical axial U(1)A symmetry is broken to Z(Nf)A symme-
try, owing to the quantum axial anomaly. The form of the effective
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Fig. 10.7. The quark condensate, measured in lattice units, versus temperature.
The strange quark mass is fixed in such a way that the mass of the φ meson takes
its physical value as calculated on the lattice. The lattice size is 163 × 8. The
data are from [15].

(renormalizable) Lagrangian is

Leff = 1
2 Tr

(
∂μΦ†∂μΦ

)
− 1

2m
2
Φ Tr

(
Φ†Φ

)
− 1

3π
2g1

[
Tr
(
Φ†Φ

)]2 − 1
3π

2g2 Tr
[(

Φ†Φ
)2
]

+ c
(
det Φ† + det Φ

)
+ Tr

[
M
(
Φ† + Φ

)]
(10.64)

The determinants originate in the anomaly and are sometimes associated
with instanton effects. In hadronic phenomenology they are necessary to
give the η′ its large observed mass. The last term involving the matrix M
represents the effect of nonzero quark masses. Pisarski and Wilczek then
used universality to infer the behavior of the QCD system from studies
of simpler systems with the same symmetry. Those systems were studied
using an ε expansion in 4 − ε dimensions. Assuming that all quarks are
massless, they found that for Nf = 1 there is no true phase transition, for
Nf = 2 the phase transition may be first or second order depending on
the strength of the anomaly at Tc as reflected in the coefficient c, and for
Nf ≥ 3 the phase transition is first order.

The likely phase diagram in the ms versus mu = md plane is shown in
Figure 10.8. When all quarks are infinitely heavy it is as if they do not
exist at the temperatures of interest, and there is a first-order deconfin-
ing phase transition as in the pure SU(3) gauge theory. When all three

https://doi.org/10.1017/9781009401968 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968


10.5 Lattice QCD 215

Fig. 10.8. A possible phase diagram for QCD in the strange quark mass versus
light quark mass plane. The lower left-hand corner exhibits a first-order chiral-
symmetry phase transition, the upper right-hand corner a deconfinement phase
transition. These are separated from an intermediate region of rapid crossover
between phases.

flavors are massless there is a first-order chiral-symmetry-restoring phase
transition. When the strange quark is heavy and the up and down quarks
have zero mass there is a second-order chiral-symmetry-restoring phase
transition. When all three flavors have masses of the order of several hun-
dred MeV, there is no true thermodynamic phase transition but only a
sharp crossover with a jump in the energy density over a small range
of temperatures. A variety of lattice calculations seem to support this
general picture, but it should still be considered merely as a reasonable
conjecture.

The application of lattice QCD to the study of finite-density matter is
in its infancy. The difficulty lies in the fact that the chemical potential
acts as a constant imaginary time component of the vector potential; see
(5.18), (5.19), and (10.42). As such the fermion determinant is complex.
This should not lead to a complex partition function; the imaginary part
must average to zero. However, it does mean that straightforward Monte
Carlo sampling techniques cannot be applied. Two interesting approaches
are (i) a Taylor series expansion in powers of (μB/T )2 and (ii) calculation
with an imaginary chemical potential followed by analytic continuation
to a real baryon chemical potential μB. The latter approach was followed
by de Forcrand and Philipsen. For two flavors of light quarks they found
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Fig. 10.9. A possible critical line for QCD. The solid curve represents a first-
order phase transition terminating at a second-order phase transition at the
critical endpoint labeled CE. The broken line represents a rapid crossover.

the critical line [17]

T

Tc
= 1 − 0.0056 ± 0.0004

(
μB

Tc

)2

(10.65)

and for three flavors of light quarks [18]

T

Tc
= 1 − 0.0068 ± 0.0001

(
μB

Tc

)2

(10.66)

The stated range of validity is |μB| < 500 MeV; the systematic uncertain-
ties are at least as large as the quoted statistical uncertainties. If these
are optimistically extrapolated to zero temperature, then taking Tc ≈ 160
MeV one gets μB ≈ 2 GeV. This is quite reasonable. The above relations
were shown not to be sensitive to the precise numerical value of the quark
mass. The critical line for Nf = 3 is shown in Figure 10.9. The lattice cal-
culations did not establish conclusively whether the critical line represents
a true phase transition or just a rapid crossover between hadronic matter
and quark–gluon plasma. If the quark masses are not small enough to
yield a first-order phase transition at zero baryon density but finite tem-
perature, there may exist a critical point along the critical line. At lower
baryon density there is a rapid crossover and at higher baryon density
there is a first-order phase transition. This would connect nicely with the
color superconductivity analysis; see Figure 8.4. At the present time the
existence of a critical point is not well established.
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10.6 Exercises

10.1 Show that (10.5) leads to the correct commutation relation
between the vector potential and the electric field in the contin-
uum limit.

10.2 Derive the Coulomb potential (10.25) in the high-temperature
limit of the lattice gauge theory.

10.3 Show that (10.31) is gauge invariant.
10.4 Calculate the continuum limit of (10.31).
10.5 Consider a free neutral boson on a N3

s Nτ lattice of spacing a in
all four directions in the limit Ns � Nτ � 1. Since the action is
quadratic, the functional integral expression for the partition func-
tion can be evaluated exactly. Following the analysis in Chapter
2 show that the propagator can be written as

D−1(p, p4) =
4
a2

sin2
(ap4

2

)
+

4
a2

3∑
i=1

sin2
(api

2

)
+ m2

where −π/a ≤ p4 ≤ π/a and −π/a ≤ pi ≤ π/a, which defines the
Brillouin zone. This reduces to the usual scalar propagator in the
a → 0 limit. This propagator has only one minimum, which is
located at p = 0, p4 = 0.

10.6 Using periodic boundary conditions in the spatial directions, and
antiperiodic boundary conditions in the temporal direction, com-
pute the partition function for massless staggered fermions in the
limit of large Ns and Nτ .

10.7 Repeat Exercise 10.5 for Wilson fermions.
10.8 Show formally that the thermodynamic identities are obeyed with

the action (10.42). This implies that the chemical potential in
(10.42) has been implemented correctly.

10.9 Work out the details leading from (10.51) to (10.52).
10.10 Derive the result (10.60), which holds when Z(N) symmetry is

spontaneously broken.
10.11 Construct a function Pfit(T ) that parametrizes the results of the

pure SU(3) lattice results. Be sure to compare with entropy and
energy densities too.

10.12 Are there other terms that could be added to (10.64) for two
flavors of massless quarks? If so, what are they?
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11
Dense nuclear matter

One aspect of nuclear physics is the study of nuclear matter. Up until the
mid 1970s, nearly all studies used a nonrelativistic potential to describe
the nucleon–nucleon interaction. The results were not entirely satisfactory.
It was difficult to obtain simultaneously the saturation density (about
0.153 nucleons per fm3) and the binding energy (about 16.3 MeV per
nucleon with the Coulomb force turned off) in a microscopic nonrel-
ativistic approach. Part of the discrepancy was ascribed to three-body
interactions. However, relativity can also play a small but significant role
at normal nuclear matter density. The importance of relativity may be
judged by comparing the Fermi momentum pF with the nucleon mass.
The baryon density is

n =
2p3

F

3π2
(11.1)

At normal nuclear density pF = 259 MeV, and at four times normal
nuclear density pF = 411 MeV. These should be compared with the vac-
uum nucleon mass mN = 939 MeV and the Fermi kinetic energy

KF = mN

[
(1 − v2

F)−1/2 − 1
]

= 1
2mNv2

F + 3
8mNv4

F + · · · (11.2)

Although one might think that the relativistic correction at normal
nuclear density, which is of order v4

F and numerically about 2 MeV,
is rather small, still it is not insignificant compared with the binding
energy of 16.3 MeV. Of course, at higher densities, relativity certainly
cannot be ignored. As we shall learn, relativity plays an even greater
role in the interactions among nucleons. The relativistic approach to
nuclear matter was pioneered by Johnson and Teller [1], Duerr [2], and
Walecka [3].
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Fig. 11.1. Model of the nucleon–nucleon potential illustrating long-range attrac-
tion and short-range repulsion. The parameters are given in the text.

11.1 Walecka model

The force between nucleons is conventionally thought of as mediated by
the exchange of mesons. The long-range part of the nuclear force comes
from one-pion exchange. Its range is 1/mπ = 1.4 fm. However, this aver-
ages to zero unless parity is broken. The force mediated by exchange of the
ρ meson vanishes in isospin-symmetric matter (equal numbers of protons
and neutrons); the dominant one-meson exchanges in isospin-symmetric
nuclear matter come from the omega meson (ω) and a scalar meson (σ).
The ω is a vector meson, is electrically neutral, and has a mass of about
783 MeV. The σ meson represents a very broad resonance in ππ scatter-
ing at 500–600 MeV. The exchange of the electrically neutral σ is usually
thought of as simulating some part of two-pion exchange. With single-ω
and single-σ exchange, the static nonrelativistic potential between two
nucleons is the sum of two Yukawa interactions:

V (r) =
g2
ω

4π
e−mωr

r
− g2

σ

4π
e−mσr

r
(11.3)

If gω > gσ and mω > mσ then the potential looks like that shown in Figure
11.1. It is attractive at long distances and repulsive at short distances and
so has the structure necessary to bind nuclear matter.

The Lagrangian that contains the Yukawa couplings of the nucleon to
the ω and to the σ is

LW = ψ̄(i ∂ −mN + gσσ − gω ω)ψ
+ 1

2

(
∂μσ∂

μσ −m2
σσ

2
)− 1

4F
μνFμν + 1

2m
2
ωωμω

μ (11.4)
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where

Fμν = ∂μων − ∂νωμ

Now of course we know that baryons and mesons are not elementary
point particles. They are composite structures of quarks and gluons. The
idea of an effective-nuclear-field theory is to write down a Lagrangian
that contains the low-lying baryons and mesons as relativistic fields. This
allows us to use the standard machinery of relativity, quantum mechanics,
and statistical mechanics. This approach will break down if we attempt
to probe the theory at very short distances, say a few tenths of a fermi,
since then the quarks and gluons must manifest themselves.

Let us investigate the properties of dense nuclear matter using the
Lagrangian LW. The partition function is

Z =
∫ [

dψ̄p

]
[dψp]

[
dψ̄n

]
[dψn] [dσ] [dωμ]

× exp
(∫ β

0
dτ

∫
d3x
(
LW + μpψ

†
pψp + μnψ

†
nψn

))
(11.5)

where μp and μn are the proton and neutron chemical potentials. For
isospin-symmetric matter μp = μn and for pure neutron matter μp = 0,
μn = 0 (although the presence of electrons in a neutron star allows μp =
0). For the remainder of this section, we concentrate on symmetric matter
and write μ = μn = μp.

The nucleons act as sources in the meson field equations. This sug-
gests that a net baryon density will generate scalar and vector meson
condensates. This can be checked by allowing σ and ωμ to have nonzero
expectation values. Thus we write

σ = σ̄ + σ′

ωμ = δμ0 ω̄0 + ω′
μ

(11.6)

where the bar indicates the ensemble average value of the field and the
prime indicates the fluctuation about the average. (Note that ω̄i = 0 on
account of rotational symmetry.) In the mean field approximation, one
neglects fluctuations in the meson fields. This means that the nucleons
are taken to move independently in the mean fields σ̄ and ω̄0, which them-
selves are generated self-consistently by the nucleons. Based on the success
of the nuclear shell model, we anticipate that this will provide a reason-
able first-order estimate of the properties of dense nuclear matter. The
Lagrangian LW is commonly referred to as the Walecka Lagrangian, and
when used in conjunction with the mean field approximation is referred
to as the Walecka model.
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The partition function may be evaluated exactly in the mean field
approximation because the functional integral is just a product of Gaus-
sian integrals. The argument of the exponential in (11.5) is thus approx-
imated by

ψ̄ [i ∂ − (mN − gσσ̄) + (μ− gωω̄0)γ0]ψ − 1
2m

2
σσ̄

2 + 1
2m

2
ωω̄

2
0 (11.7)

This means that the nucleon develops an effective mass

m∗
N = mN − gσσ̄ (11.8)

and an effective chemical potential

μ∗ = μ− gωω̄0 (11.9)

Using (11.5) together with (11.7), we obtain the pressure as

P (μ, T ) = PFG(μ∗, T ) − 1
2m

2
σσ̄

2 + 1
2m

2
ωω̄

2
0 (11.10)

where PFG is the Fermi-gas expression for nucleons with the quoted effec-
tive mass and chemical potential.

We now must determine the mean fields σ̄ and ω̄0. If we allow σ̄ and
ω̄0 to vary, the equilibrium configuration will be attained when P is an
extremum. Thus

σ̄ = −
(

gσ
m2

σ

)
∂PFG

∂m∗
N

(11.11)

ω̄0 =
(

gω
m2

ω

)
∂PFG

∂μ∗ (11.12)

Of these, the vector condensate can be determined directly in terms of
the baryon density n:

ω̄0 =
gω
m2

ω

n (11.13)

A quick calculation utilizing (2.99) shows that the scalar condensate is
proportional to the scalar density ns:

σ̄ =
gσ
m2

σ

ns (11.14)

where

ns ≡ 4
∫

d3p

(2π)3
m∗

N

E∗

(
1

eβ(E∗−μ∗) + 1
+

1
eβ(E∗+μ∗) + 1

)
E∗ =

√
p2 + m∗2

N

(11.15)
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Equation (11.14) is a self-consistent equation to be solved for m∗
N , as may

be seen from the alternate form

m∗
N = mN −

(
g2
σ

m2
σ

)
ns (11.16)

Now let us focus on cold nuclear matter and delay the discussion of
finite temperature to a later section. Using the above equations and the
standard thermodynamic identities, we have

P =
1

4π2

[
2
3
E∗

Fp
3
F −m∗2

NE∗
FpF + m∗4

N ln
(
E∗

F + pF

m∗
N

)]
+

1
2

(
g2
ω

m2
ω

)
n2 − 1

2

(
g2
σ

m2
σ

)
n2

s (11.17)

ε =
1

4π2

[
2E∗3

F pF −m∗2
NE∗

FpF −m∗4
N ln

(
E∗

F + pF

m∗
N

)]
+

1
2

(
g2
ω

m2
ω

)
n2 +

1
2

(
g2
σ

m2
σ

)
n2

s

where

n =
2

3π2
p3
F

E∗
F = μ∗ =

√
p2
F + m∗2

N

m∗
N = mN −

(
g2
σ

m2
σ

)
ns

ns =
m∗

N

π2

[
EFpF −m∗2

N ln
(
E∗

F + pF

m∗
N

)]

In these equations it is natural to take the Fermi momentum pF as the
one independent variable. Notice that this equation of state is given essen-
tially in analytic form with only the equation for m∗

N to be solved self-
consistently.

Before investigating the equation of state in detail, it is worthwhile to
consider the extremes of low and high density. At low density pF → 0,
and we recover the equation of state of a nonrelativistic ideal Fermi gas.

https://doi.org/10.1017/9781009401968 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968


224 Dense nuclear matter

The quantities in (11.17) have the following limits:

P → 2
15π2

p5
F

mN

ε →
(
mN +

3
10

p2
F

mN

)
n

m∗
N → mN

ns → n

(11.18)

At high density, pF → ∞, the effective nucleon mass goes to zero:

m∗
N → mN

1 + (g2
σ/π

2)(p2
F/m

2
σ)

(11.19)

The pressure and energy density are dominated by the vector mean field:

P → ε → 1
2

(
g2
ω

m2
ω

)
n2 (11.20)

Thus the speed of sound, c2s = ∂P/∂ε, approaches the speed of light at
very high density. This is to be compared with the speed in sound in a
massless Fermi gas, which is 1/

√
3.

In these equations there are only two parameters at our disposal, g2
ω/m

2
ω

and g2
σ/m

2
σ. The nucleon mass is mN = 939 MeV and the vector meson

mass is mω = 783 MeV. For definiteness we take mσ = 550 MeV, corre-
sponding to the scalar–isoscalar resonance in π−π scattering. Then the
choice of couplings g2

ω/4π = 14.717 and g2
σ/4π = 9.537 leads to a binding

energy of 16.3 MeV per nucleon and a saturation density of 0.153 nucle-
ons per fm3. The curve of energy per nucleon versus density is shown in
Figure 11.2. The energy per nucleon rises rather dramatically with den-
sity. In fact the compressibility of nuclear matter at saturation density
turns out to be

K ≡ p2
F

d2(ε/n)
dp2

F

= 563 MeV (11.21)

The generally accepted value, based on measurements of the isoscalar
giant monopole resonance in heavy nuclei, is 250 ± 30 MeV [4–7]. The
Walecka model predicts m∗

N = 0.57mN , which is somewhat smaller than
some estimated values of the effective nucleon mass at nuclear satura-
tion density [8] but quite consistent with others [9, 10]. Nevertheless, we
should not expect to fit a large body of nuclear-matter properties to high
accuracy for several reasons: (i) the Lagrangian LW is too simple to rep-
resent accurately the complicated nuclear forces, and (ii) the mean field
approximation neglects nucleon–nucleon correlations.
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Fig. 11.2. The average energy per nucleon minus the nucleon mass as a function
of the baryon density in the mean field approximation to the Walecka model.

One may ask whether the numerical values obtained for the two Yukawa
couplings are reasonable. Fitting nucleon–nucleon phase shifts up to 300
MeV typically yields similar values. For example, Machleidt, Holinde,
and Elstor [11] used a boson-exchange model employing the π, ρ, ω, and
σ mesons, and found that g2

ω/4π = 20 and g2
σ/4π = 9.2. This agreement

is satisfactory considering that the Yukawa couplings used in the mean
field approach are really effective couplings that are fine-tuned to mimic
all the many-body effects not included. Fine-tuning is actually required
in the Walecka model, where the delicate cancelation between short-range
vector repulsion and medium-range scalar attraction is really a relativistic
effect. This may be seen in the following way. In the nonrelativistic mean
field approximation the average potential energy felt by a nucleon is

〈V 〉 = n

∫
d3r V (r) (11.22)

The average kinetic energy is (3/5)(p2
F/2mN ). Since n ∝ p3

F this means
that

∫
d3r V (r) > 0 for the energy to be bounded from below. Hence both

the average kinetic and potential energies must be positive at all densities,
and an equilibrium bound state cannot arise. Relativity plays an impor-
tant role in the sense that the baryon (vector) density and the scalar
density are not the same; they differ by a velocity factor m∗

N/E∗ in the
relevant integrands at zero temperature. In this vein it is illustrative to
expand the energy per nucleon as a power series in the Fermi velocity
at T = 0. The difference between the scalar and baryon densities shows
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Fig. 11.3. The nuclear optical potential as a function of momentum at nuclear
saturation density in the Walecka model.

up at order v5
F, which is just one power more than the first relativistic

correction to the kinetic energy. See, for example, Serot and Walecka [12].
The nuclear optical potential U is defined by

E(p, pF) =
√

p2 + m2
N + U(p, pF) (11.23)

Here E is the single-particle energy of a nucleon. The optical potential
is both density and momentum dependent. From (11.10), (11.14), and
(11.16),

E(p, pF) =
√

p2 + m∗2
N +

(
g2
ω

m2
ω

)
n (11.24)

The optical potential at saturation density is plotted in Figure 11.3.
Various phenomenological optical potentials of this form are widely used
in interpreting proton–nucleus scattering [13] and nucleus–nucleus scat-
tering [14, 15] at energies of several hundred MeV. The optical potential
in the Walecka model rises too rapidly at high momentum compared with
the data. Such disagreement should not be a surprise, for the reasons
given above.

11.2 Loop corrections

The mean field used in the previous section has two great advantages: it is
relativistically and thermodynamically self-consistent, neither of which is
a trivial achievement. By fine-tuning only two input parameters, the bind-
ing energy and the density of cold isospin-symmetric nuclear matter, one
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may extrapolate to both lower and higher densities, to isospin-asymmetric
matter (after the ρ meson is included, see Chapter 16), and to moderate
temperatures. However, the coupling constants are large, of the order of
10, making a convergent loop expansion highly unlikely. Both one-loop
and two-loop corrections have been computed in the Walecka model, and
we shall present the results in this section. The two-loop corrections, in
particular, are very large, as expected. However, nucleons are composite
objects, constructed from quarks and gluons. Therefore any effective the-
ory using baryons and mesons as the degrees of freedom will necessarily
bring form factors into play. It will turn out that with reasonable choices
of the form factors, the sum of the two-loop contributions to the energy
per nucleon is surprisingly small. This does not, of course, imply that
other physical observables are also small.

11.2.1 Relativistic Hartree

The Walecka model is renormalizable even though it has a massive vector
boson because it couples to the conserved baryon current. Regarding the
scalar boson, the Walecka model truncates the Lagrangian at order σ2.
However, all terms that keep the theory renormalizable and respect the
symmetries can and should be kept. This means powers of σ up to and
including 4. In fact, these are required in order to cancel divergences
coming from the shift in the zero-point energy of the nucleons. Relative
to the vacuum, the shift in the zero-point energy is [16]

εZP(m∗
N ) = −2

∫
d3p

(2π)3

(√
p2 + m∗2

N −
√
p2 + m2

N

)
−

4∑
n=1

cn
n!

σn

(11.25)
The coefficients cn of the counterterms are dependent upon the regular-
ization scheme. In momentum-cutoff schemes they diverge as the cutoff
goes to infinity, and in dimensional regularization schemes they diverge
as four dimensions are approached. The minimal procedure is to choose
the cn so as to cancel the first four powers of σ arising from the inte-
gration over momentum. (Recall that m∗

N = mN − gσσ̄.) Although this
procedure is not unique, it has the feature of minimizing the many-body
forces arising from this vacuum correction. The result is

εZP(m∗
N ) = − 1

4π2

[
m∗4

N ln
(
m∗

N

mN

)
+ m3

N (mN −m∗
N ) − 7

2
m2

N (mN−m∗
N )2

+
13
3
mN (mN −m∗

N )3 − 25
12

(mN −m∗
N )4
]

(11.26)

This formula assumes an isospin degeneracy factor 2.
The pressure and energy density in the one-loop relativistic Hartree

approximation are related to those in the relativistic mean field
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approximation by

PRH = PMF − εZP

εRH = εMF + εZP

(11.27)

This equation of state is also thermodynamically consistent. Minimizing
the energy at fixed density leads to a modification of the mean field self-
consistency condition for the scalar condensate, namely

m∗
N = mN −

(
g2
σ

m2
σ

)
ns +

g2
σ

m2
σ

1
π2

[
m∗3

N ln
(
m∗

N

mN

)
−m2

N (mN −m∗
N )

− 5
2
mN (mN −m∗

N )2 − 11
6

(mN −m∗
N )3
]

(11.28)

A small change to the parameters in (11.4) again reproduces the satura-
tion density and binding energy of nuclear matter. Numerical results will
be shown in the next subsection, where we consider two-loop contribu-
tions.

11.2.2 Two loops

Two-loop contributions to the partition function can be performed in the
usual fashion. The general form is

lnZ2 = −1
2

∑
n1n2

∫
d3p1

(2π)3
d3p2

(2π)3
Tr [G(p1)Γ(p1, p2, k) G(p2)Γ(p2, p1, k)D(k)]

(11.29)

Here G is the nucleon propagator, D is the boson propagator (for either
the scalar or vector meson), Γ is the relevant vertex, and k = p1 − p2.
Lorentz and Dirac indices are suppressed.

These contributions have been evaluated at zero temperature by Furn-
stahl, Perry, and Serot [17]. The two-loop diagram has several physical
contributions. One contribution originates from the exchange of momen-
tum between two nucleons in the Fermi sea. A second contribution comes
from the Lamb shift, the change in the properties of a nucleon as it prop-
agates in the medium. The third contribution is a shift in the zero-point
vacuum fluctuations owing to the presence of nuclear matter. Unfortu-
nately the results cannot be expressed in terms of elementary functions
because the nucleon and meson masses are all nonzero. The diagrams are
as follows:

=⇒ + +
vacuum
fluctuations
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Fig. 11.4. The energy per nucleon as a function of density. The solid curve
labeled RHA is the relativistic Hartree approximation. The solid curve labeled
TOTAL includes the exchange, Lamb shift, and two-loop vacuum fluctuations
as well. Point vertices are used.

Figure 11.4 shows the equation of state in the relativistic Hartree
approximation (RHA). In this figure the values of the parameters are
g2
σ/4π = 4.32, mσ = 458 MeV, g2

ω/4π = 8.18, and mω = 783 MeV. Also
shown are the contributions from the exchange term, the Lamb shift, and
the vacuum fluctuations. They are computed as if they were perturba-
tions, with no change in the numerical values of the coupling constants.
The exchange term is relatively modest but the Lamb shift and the vac-
uum fluctuations are enormous. When all are added, the binding energy
changes to nearly 400 MeV from 16 MeV at a density of 3.7 times the
empirical value. The two-loop contributions are not perturbatively small,
quite the contrary. This is not unexpected, owing to the large values of the
coupling constants. Undoubtedly higher-loop contributions are important
too, and the whole calculational scheme breaks down.

11.2.3 Form factors

The integrals in the two-loop terms receive contributions from internal
momenta as high as 5 GeV. But nucleons and mesons are not point
particles. Their finite spatial size should soften these contributions sig-
nificantly. Prakash, Ellis, and Kapusta [18] introduced form factors at
both vertices with the philosophy that they do not arise from interactions
within the confines of the Walecka model. The origin of these form fac-
tors runs deeper, back to the quark and gluon substructure of hadrons.
Of course, the full meson–nucleon vertex function will include dressings
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from the hadronic degrees of freedom too. A consistent treatment of form
factors is not yet available. In general, they will involve several scalar
functions, the number of which depends on the Lorentz structure of the
vertex. Each one may depend on the invariants p2

1, p
2
2, and k2. The min-

imal assumption is that the scalar and vector form factors are functions
of k2 only and have the simple monopole form

f(k2) =
1

1 − k2/Λ2
(11.30)

when k2 < 0 (spacelike) and where Λ is a cutoff of order 1 GeV. Then the
vertices to be used in the two loop diagrams are just the point vertices
multiplied by f(k2).

Three comments are in order. First, the selection of relativistic
monopole form factors with a cutoff of this order is consistent with the
relativistic dipole structure of the on-shell nucleon electromagnetic form
factor. In that case, one monopole factor arises from the finite size of the
nucleon while the other arises from the ρmeson propagator in the context
of the vector-meson-dominance model [19]. Second, if one were to include
the off-mass-shell p2

1 and p2
2 dependences as well then it might be possi-

ble to get an even greater suppression of the two-loop contributions than
that displayed in Figure 11.5. Third, since the vector meson couples to the
baryon current there is a generalized type of Ward identity. This identity
is different from that in QED because in the strong-interaction case the
vector–current coupling is nonlocal. Since the form factor f(k2) is taken
to be intrinsic to the nucleon rather than generated by the Yukawa inter-
actions of the nucleons with the meson fields, there is no inconsistency in
using the mean field propagators in the loop expansion. To lowest order
in gσ and gω the identity must be such that it is satisfied by the free-field
form of the nucleon and meson propagators.

Multiplying the bare point-particle vertices by f(k2), it can easily be
shown that the energy density is obtained from the identity

ε =
Λ2

Λ2 −m2

{
Λ2

Λ2 −m2

[
εpt(m2) − εpt(Λ2)

]
+

dεpt(Λ2)
d ln Λ2

}
(11.31)

Here m is the mass of the exchanged meson and εpt is the two-loop energy
density with point vertices.

Figure 11.5 shows what happens when form factors are inserted at
each vertex with the cutoff chosen as 1 GeV for both the scalar and
vector meson vertices. There is a tremendous reduction compared with
the case of point vertices. Near the equilibrium density, both the scalar
and vector meson exchange terms are reduced by 10%–15%. For the Lamb
shift the reduction is by a factor 5 for scalar mesons and by a factor 10
for the vector mesons. The vacuum fluctuation contributions are reduced
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Fig. 11.5. The same as Figure 11.4 except that form factors with Λ = 1 GeV
have been used at each vertex.

by similar amounts. Because the exchange terms are generally positive
while the other two are negative in the density range shown in the figure,
the final result is a reduction in the two-loop contribution by a factor of
more than 100. Now the largest contribution is the exchange, followed
by the Lamb shift and vacuum fluctuations. This is satisfying, in the
sense that the exchange term survives in the quantum nonrelativistic limit
whereas the Lamb shift and vacuum fluctuations are truly field theoretic
in origin. With the form factors included, the two-loop contributions really
are perturbative additions to the relativistic Hartree equation of state. A
minimization of the Hartree equation plus two-loop contributions with
respect to the effective nucleon mass at each density gives results nearly
identical to those neglecting the two-loop contributions.

As the cutoff Λ increases, the two-loop contributions increase in mag-
nitude, of course. When Λ is increased to 1.5 GeV the binding energy is
increased by 11 MeV and the equilibrium density increases by about 30%.
A small change in the coupling constants will restore the location of the
empirical minimum in the equation of state.

It still remains a great challenge in strong-interaction physics to under-
stand in detail the nature and structure of these form factors. The point
of view presented here is that form factors represent the quark and gluon
substructure of hadrons and cannot be calculated within the bound-
aries of hadronic degrees of freedom alone; one unfortunate consequence
is that this renders the theory unrenormalizable. This is not the only
point of view to which one may subscribe. For example, Serot and Tang
[20] computed the effects of vertex corrections within the Walecka model
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itself instead of using imposed form factors. Whatever the point of view,
however, it seems that the relativistic Hartree approximation, or even
the mean field approximation, may not be an unreasonable approach
to parametrizing the nuclear equation of state. It is consistent with our
empirical knowledge near the equilibrium point and with relativity and
the thermodynamic identities.

11.3 Three- and four-body interactions

The Lagrangian given in (11.5) represents a renormalizable theory. Even
though a low-energy effective theory need not be renormalizable (form
factors should cut off unphysical short distance contributions) one may
desire to keep this property. Then one may add the cubic and quartic
terms −1

3bmN (gσσ)3 − 1
4c(gσσ)4 to the Lagrangian. Just as σ2 represents

a two-body interaction, σ3 represents a three-body interaction (a vertex
with three σ lines emanating from it and attached to external nucleon
lines) and σ4 represents a four-body interaction (a vertex with four σ
lines emanating from it and attached to external nucleon lines). It has
been found that a phenomenological three-body interaction is necessary
to describe bound nuclear matter in a nonrelativistic-potential approach.
There is less information available on a microscopic four-body interaction.

In the relativistic mean field approach, the cubic and quartic terms can
be used to fit more of the empirically known properties of nuclear matter.
These include the following:

the saturation density [4]

n0 = 0.153 fm−3 (11.32)

the binding energy [4]
ε

n
−mN = −16.3 MeV (11.33)

the Landau mass [8]

mL =
√
m∗2

N + p2
F = 0.83mN (11.34)

the compressibility [4–7]

K = p2
F

d2

dp2
F

( ε
n

)
= 250 MeV (11.35)

Of these, the compressibility has the greatest uncertainty, approximately
±30 MeV. With the freedom of two additional parameters, b and c, in the
Lagrangian it is possible to fit all four of the above numbers.

The consequences of adding the cubic and quartic terms are to add to
the energy density the quantity 1

3bmN (gσσ̄)3 + 1
4c(gσσ̄)4 and to subtract
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Fig. 11.6. The average energy per nucleon minus the nucleon mass as a function
of baryon density in the mean field approximation when three- and four-body
forces are included.

the same amount from the pressure. The self-consistency condition for
the mean scalar field that replaces (11.14) is

m2
σσ̄ + bmNg3

σσ̄
2 + cg4

σσ̄
3 = gσns (11.36)

where once again ns is the scalar density. One deduces from a numerical
calculation that g2

σ/4π = 6.003, g2
ω/4π = 5.948, b = 7.950 × 10−3, and c =

6.952 × 10−4. The resulting equation of state is plotted in Figure 11.6.
This may be viewed as a means of quantifying the nuclear equation of
state in such a way that known nuclear properties are fitted at saturation
density and also that the extrapolation to both lower and higher densities
is consistent with the principles of relativity and is thermodynamically
consistent.

11.4 Liquid–gas phase transition

It is generally true that any system of fermions that is self-bound, in three
space dimensions, will undergo a liquid–gas phase transition. This phase
transition is essentially of the Van der Waals type. The reason for a phase
transition is easy to understand intuitively. First, consider nuclear mat-
ter at T = 0 and density n < n0. The binding energy curves of Figures
11.2 and 11.6 suggest that it is energetically favorable for the nucleons to
form isolated clumps or droplets with a local density n0 rather than to
be distributed homogeneously throughout space. The space surrounding
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the isolated droplets is simply a vacuum. As the temperature is turned up
from zero, two things happen. Nucleons within a droplet have an increased
kinetic energy owing to the finite temperature, and so the droplet swells
in size and is reduced in local density. Finite temperature also means
that the droplets will evaporate nucleons into what was formerly the vac-
uum. Thus we have a phase mixture: isolated droplets of nuclear liquid
with local density nL < n0 are surrounded by a nuclear gas with density
nG < nL. As T increases, nG increases and nL decreases. Eventually, at
some temperature Tc we reach a critical point where nG = nL and the
distinction between liquid and gas disappears.

The liquid–gas phase transition is readily studied in the relativistic
mean field model of nuclear matter with cubic and quartic interactions.
The equation of state is

P (μ, T ) = PFG + 1
2

(
g2
ω

m2
ω

)
n2 − 1

2m
2
σσ̄

2 − 1
3bmN (gσσ)3 − 1

4cmN (gσσ)4

(11.37)

where

PFG = 4T
∫

d3p

(2π)3
[
ln
(
1 + e−β(E∗−μ∗)

)
+ ln

(
1 + e−β(E∗+μ∗)

)]
n = 4

∫
d3p

(2π)3

(
1

eβ(E∗−μ∗) + 1
− 1

eβ(E∗+μ∗) + 1

)
ns = 4

∫
d3p

(2π)3
m∗

N

E∗

(
1

eβ(E∗−μ∗) + 1
+

1
eβ(E∗+μ∗) + 1

)
E∗ =

√
p2 + m∗2

N

gσns = m2
σσ̄ + bmNg3

σσ̄
2 + cg4

σσ̄
3

m∗
N = mN − gσσ̄

μ∗ = μ−
(

g2
ω

m2
ω

)
n (11.38)

From these it is possible to verify the thermodynamic identity n =
∂P (μ, T )/∂μ, and to compute the entropy density and energy density
according to s = ∂P (μ, T )/∂T , ε = −P + Ts + μn. Strictly speaking, the
contribution of thermal mesons should be added. However, for the tem-
peratures of interest here, T < 30 MeV, the σ and ω mesons contribute
very little since T � mσ,mω.

Some isotherms of pressure versus density are plotted in Figure 11.7.
Consider moving along the T = 10 MeV isotherm. For very small n, 0 <
n < nA, only the gas phase is present. When n > nD, only the liquid
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Fig. 11.7. Isotherms of pressure versus baryon density in the mean field approx-
imation with the inclusion of three- and four-body forces. The horizontal line
is the Maxwell construction for phase equilibrium. The critical temperature is
16.4 MeV.

phase is present. The points A and D are defined by the condition that
they have the same value of the chemical potential μ. The straight line
connecting A and D is the Maxwell construction. For densities nA < n <
nD the equilibrium configuration is a mixture of the liquid phase (with
local density nD) and the gas phase (with local density nA). The reason is
that the Gibbs criterion of equal P , T , and μ is satisfied. From A to B it
is possible for the system to remain in the gas phase, but it is metastable
and will not survive indefinitely. Similarly the liquid phase is metastable
from C to D. The portion of the curve between B and C is unstable.
Recall the stability condition [21] ∂P (n, T )/∂n > 0. If the inequality does
not hold then the isothermal speed of sound is imaginary and isothermal
perturbations will grow exponentially.

For T < Tc, the phase transition is first order. At Tc, the points A, B, C,
D merge into one point, an inflection point, also called the critical point.
At the critical point, the line of first-order phase transitions terminates in
a second-order one. For T > Tc, there is no distinction between gas and
liquid and no phase transition.

The critical temperature in this model is 16.4 MeV. Other models of
nuclear matter typically yield Tc in the range 14–19 MeV [22–25]. Gen-
erally, Tc is a monotonically increasing function of the compressibility
K.
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There have been attempts, which have met with some success, to find
experimental evidence of a nuclear liquid–gas phase transition in heavy
ion collisions. Unlike in the theory, in the experiments the Coulomb force
cannot be turned off and this complicates the analysis. Interested readers
are referred to the reviews by Csernai and Kapusta [26] and by Das Gupta,
Mekjian, and Tsang [27].

11.5 Summary

The relativistic field theories used to describe dense nuclear matter can
only be effective because nucleons and mesons are composite objects, con-
structed in a complicated way from quark and gluon fields. Nevertheless,
nucleons and mesons are the relevant degrees of freedom for densities up
to perhaps four to eight times nuclear saturation density and temper-
atures less than about 150 MeV. One should not think of the effective
Lagrangians as providing a fundamental theory that must be solved to
all orders in the coupling constants. On the contrary, this is bound to fail
because of the large numerical values of the coupling constants. Explicit
two-loop calculations with point vertices show just how large these contri-
butions can be. Inserting physically plausible form factors at the vertices
softens these contributions considerably, resulting in only minor correc-
tions to the relativistic mean field or relativistic Hartree approximations.
The practical view, which we espouse, is that the relativistic mean field
approximation is the simplest way to parametrize the nuclear equation of
state. It does so in a way that embodies as much of our empirical knowl-
edge as possible (binding energy and density, compressibility, etc.) while
being consistent with special relativity and the thermodynamic identi-
ties. The approach is flexible enough to allow such additional degrees of
freedom and additional interaction terms as are necessary to bring about
agreement with new data on nuclear matter properties.

In this brief introduction to the subject of dense nuclear matter, we
have focused on relatively simple, renormalizable, Lagrangians with only
a vector meson and a scalar meson. Much work has been and continues to
be done with theories involving more mesonic degrees of freedom, such as
ρ mesons, pions, and kaons, and more baryonic degrees of freedom, such
as hyperons and delta resonances. An extension of this sort is presented
in Chapter 16 for the purpose of obtaining the equation of state to be
used in computing the structure of neutron stars. Since these theories are
effective-field theories there is no reason why they should be restricted to
normalizable interactions. In principle, all low-lying degrees of freedom
and all interactions consistent with the symmetries of QCD ought to be
allowed. Such low-energy expansions have been worked out by Furnstahl,
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Serot, and Tang [28]. Not only must the effective Lagrangian be con-
sistent with the symmetries of QCD, so also must the approximations
one employs to calculate the properties of nuclear matter. The problem
of the pion self-energy in nuclear matter [29, 30] is a good illustration
of how chiral symmetry can be violated by the mean field approximation
when used in conjunction with certain representations of the pion–nucleon
interaction.

11.6 Exercises

11.1 Evaluate the integrals that result in (11.17).
11.2 Calculate

∫
d3r V (r) using (11.3) and evaluate it numerically with

the parameters of the Walecka model. Show that the nonrelativistic
limit of the Walecka equation of state is equivalent to the sum of the
average kinetic and potential energies calculated directly from the
nonrelativistic Hamiltonian in the mean field approximation.

11.3 Verify the Hugenholtz–Van Hove theorem [31], which states that the
single-particle energy at the Fermi surface equals the binding energy
per nucleon at saturation density, for the Walecka model.

11.4 Derive the formula (11.31).
11.5 Calculate the nuclear optical potential with the inclusion of three-

and four-body interactions. Compare the result with the cited liter-
ature on the optical potential used in proton–nucleus and nucleus–
nucleus scattering experiments.

11.6 Estimate the dependence of the critical temperature and density
of the nuclear liquid–gas phase transition on the binding energy,
compressibility and other nuclear matter properties as follows. Near
the saturation point of cold nuclear matter the energy per nucleon
may be parametrized as

E0(n) =
K

18

(
n

n0
− 1
)2

−B

where B = 16.3 MeV is the binding energy. If the thermal excitation
energy is taken to be that of a degenerate Fermi gas then the pressure
may be written as

P (n, T ) =
K

9
n2

n0

(
n

n0
− 1
)

+
1
3

(
2π
3

)2/3

mn1/3T 2

See [32] for more details, especially regarding the entropy.
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12
Hot hadronic matter

We know that QCD is the formal theory of the strong interaction. In prin-
ciple, its solution should yield the complete particle spectrum as well as
produce the interaction terms that regulate how different particle species
interact. However, this complete solution is at present impossible, partly
owing to the fact that at the scale of the lighter degrees of freedom QCD is
strongly coupled. To describe the interaction and the properties of hot and
dense hadronic ensembles, one must turn to effective approaches. They
vary in character and in philosophy. In this chapter, we shall discuss some
of these techniques. They comprise effective Lagrangian theories, which
aim to represent in a simple way the dynamical content of a theory in the
low-energy limit. The heavier fields are integrated out, leaving a set of
constants to be determined by experiment. In the specific case of QCD,
the choice of low-energy effective Lagrangian is dictated by general sym-
metry principles, and chiral symmetry will be seen to play a special role.

A remarkably successful effective Lagrangian approach to low-energy
QCD is that of chiral perturbation theory. We consider this first and
study its finite-temperature behavior. Next, we will use the fact that the
spectrum of strongly interacting particles is quite well known experimen-
tally to outline a technique that enables an evaluation of in-medium self-
energies directly from experimental data input. The rest of the chapter
will be devoted to a discussion of the Weinberg sum rules at nonzero tem-
peratures [1] and to investigations of the characteristics of the linear and
nonlinear σ models [2].

12.1 Chiral perturbation theory

Chiral perturbation theory draws its power from the observation that
the light pseudoscalar degrees of freedom in the spectrum of the con-
fined sector of QCD can be explained in terms of a spontaneously broken

240
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12.1 Chiral perturbation theory 241

symmetry. Let us first elaborate how and why this statement is true. Con-
sider for example the QCD Lagrangian for massless quarks, assuming a
generic quark field, ψ, for simplicity:

L = iψ̄ Dψ (12.1)

Based on a comparison with the QCD scale, the massless approximation
is a good one for u and d quarks, is less so for s quarks, and is simply
bad for c, t, and b (see Table 8.2). The free-particle Dirac equation for
massless fermions is

kψ = 0 (12.2)

Using the fact that {γμ, γ5} = 0, a solution is also γ5ψ. Consequently, two
solutions are ψL/R = 1

2 (1 ∓ γ5)ψ, and this establishes γ5 as a chirality
operator: γ5ψL/R = ∓ ψL/R. The subscripts L and R refer to the left-
and right-handed solutions, respectively. Finally, this labeling is made
more explicit by manipulating the free massless-particle Dirac equation
(12.2) into the form

σ · k̂ψ = ±γ5ψ (12.3)

where γ5γ0γ = σ. Therefore, for right-handed solutions, the helicity and
the sign of the energy (identified by the ± symbols) are correlated, whereas
they are anticorrelated for left-handed solutions.

One can then rewrite (12.1) as

L = iψ̄L DψL + iψ̄R DψR (12.4)

and it is seen that the L and R sectors decouple. Consequently, symmetry
transformations of the type

ψL/R → exp

⎛⎝−i
∑
j

αj
L/Rλ

j

⎞⎠ψL/R (12.5)

will leave the Lagrangian invariant. Note that it is also invariant with
respect to U(1)A, but there is an anomaly which we will not discuss here.
In the case of SU(2), the matrices λj are Pauli matrices and ψL/R are

the chiral projections of the light
(
u
d

)
doublet. Similarly, for SU(3) the

matrices λj are then the Gell-Mann matrices and the chiral projections
involved are those obtained from the u, d, and s fields. The elements
αj
L/R are the components of arbitrary constant vectors. Using the case of

SU(2) as an example, the invariance of the Lagrangian under the sym-
metry transformations (12.5) is usually labeled chiral SU(2), SU(2)L ×
SU(2)R, or SU(2)V × SU(2)A; in the latter case, we have defined αj

V/A =
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(αj
R ± αj

L)/2. Thus, in the case of SU(2), if chiral symmetry were real-
ized in the conventional fashion in Nature then one would expect to have
three time-independent vector charges and three time-independent axial
charges. Since those charges are proportional to number operators, this
leads to the prediction of parity doublets (owing to the transformation
properties of γ5), which are not observed. What has gone wrong? It turns
out that this is another case where a symmetry of the Lagrangian is bro-
ken by the ground state of the theory. As we have seen in Chapter 7, this
leads to the appearance of Goldstone bosons.

In the case at hand the breaking is dynamical, meaning that the Noether
current associated with the axial sector is not divergenceless but receives
contributions from quantum corrections. This was discussed early on by
Adler and by Bell and Jackiw [3]. Another puzzling fact is that there is
indeed a triplet of light particles, the pions, but these are not massless.
This is to be understood in terms of the fact that our original assumption
that the quarks have no bare mass is in fact incorrect. If u and d quarks
were strictly massless, the pion would be a genuine Goldstone boson, with
mπ = 0. To first order in the explicit symmetry breaking, the finite pion
mass can be traced back to the u and d quark condensates [4].

The aim of chiral perturbation theory is to provide an effective theory
that possesses the symmetries of the complete theory, QCD, and is appli-
cable at low energies where the exact theory is strongly coupled. Then
the effective theory of QCD is formulated in terms of the lightest hadron
fields, the pions. Bearing in mind that the chiral symmetry is not manifest
in the ground state of QCD, there is a procedure to implement a sponta-
neously broken symmetry in a quantum field theory [5]. In the special case
of chiral symmetry, a convenient way to collect the Goldstone fields is the
exponential parametrization. For SU(3) it is U(φ) = exp

(
i
∑8

1 λaφ
a/F

)
,

λa being a Gell-Mann matrix and F a constant. Specifically,

1√
2

8∑
a=1

λaφ
a =

⎛⎜⎜⎝
1√
2
π0 + 1√

6
η8 π+ K+

π− − 1√
2
π0 + 1√

6
η8 K0

K− K̄0 − 2√
6
η8

⎞⎟⎟⎠ (12.6)

Strictly speaking, the Lagrangian of the standard model is not chirally
invariant. The chiral symmetry of the strong interactions is broken by the
electroweak interaction owing to the quark Yukawa coupling, which gen-
erates nonzero quark masses. The basic assumption of chiral perturbation
theory is that the chiral limit is a viable starting point for a perturba-
tive expansion. This expansion is in fact a double expansion, in powers
of both the momentum and the quark masses. The Goldstone bosons will
decouple from each other in the low-energy limit.
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An elegant technique that enables one to calculate Green’s functions
of quark currents is that associated with the introduction of external
fields. Following Gasser and Leutwyler [6], the chirally invariant QCD
Lagrangian is extended by coupling the quarks to external Hermitian
matrix fields s(x), p(x), vμ(x), and aμ(x):

L = LQCD + ψ̄γμ(vμ + aμγ5)ψ − ψ̄(s− ipγ5)ψ (12.7)

The external fields transform under parity as a scalar, a pseudoscalar,
a vector, and an axial vector, respectively. They are color-neutral 3 × 3
matrices, where the matrix character with respect to the flavor indices
u, d, and s can be illustrated, for example, by the vector field

vμ = vμ0 +
8∑

j=1

1
2λjv

μ
j (12.8)

As before, chiral fields can be defined: rμ = vμ + aμ, lμ = vμ − aμ.
The usual QCD Lagrangian is recovered in the limit p = vμ = aμ = 0

and s = diag(mu,md,ms). The physically relevant Green’s functions are
functional derivatives of the usual zero-temperature generating functional
Z(s, p, v, a). For example,

〈0|ψ̄(x)ψ(x)|0〉 = i
δ lnZ

δs0(x)

∣∣∣∣
p=v=a=0, s=m

(12.9)

where, as in the vector example above, the subscript 0 identifies the singlet
component. Similarly, various currents can be obtained directly from the
Lagrangian, such as the left-handed current jl,aμ (x) derived from ∂L/∂lμa .

Inclusion of the external fields transforms the global chiral symmetry
to a local one. The invariance requirements are now contained in the
following set of transformation rules. For any gR/L in SU(3) such that

ψR → gRψR (12.10)
ψL → gLψL

the invariance is preserved if the external fields transform as gauge fields,

rμ → gRrμg
†
R + igR∂μg

†
R

lμ → gLlμg
†
L + igL∂μg

†
L (12.11)

s + ip → gR(s + ip)g†L

and if U → gRUg†L. The covariant derivative which, by definition, has the
same transformation properties as the object on which it is acting, is
DμU = ∂μU − irμU + iUlμ.

We are now in a position to formulate the basic premises of chiral
perturbation theory. At zero temperature, one can write a generating
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functional of QCD as

Z(s, p, v, a) =
∫

[dAμ
a ][dψ̄][dψ] exp

(
i

∫
d4xL

)
(12.12)

For simplicity, the possible ghost fields have been omitted. At low energy,
the propagating modes are the Goldstone modes. In the language of effec-
tive field theory, all the heavy degrees of freedom are integrated out and
are absorbed into the parameters of the effective action. Specifically,

Z(s, p, v, a) =
∫

[dU ] exp
(
i

∫
d4xLeff

)
(12.13)

One starts by constructing an effective Lagrangian in terms of derivatives
and of the external fields. The limit where the external fields vanish is
that of low-energy QCD. Whereas it is plausible that this procedure does
reproduce the Green’s functions of QCD at low energy, its formal validity
has not been proven here. This was done by Leutwyler [7].

Searching for an interaction that would constitute the leading-order
term in a momentum expansion, one realizes that that there are no candi-
dates with the required invariance properties that have no derivatives and
no external fields. In fact, the only candidate is Tr(UU †) = 3, which is sim-
ply a constant. The most general chirally invariant effective Lagrangian
with the minimum number of derivatives is

L2 = 1
4F

2 Tr(DμUDμU † + χU † + χ†U) (12.14)

where χ = 2B(s + ip). Thus at this order there are two parameters, F
and B. Observe that in order to reproduce the kinetic term in the free-
pion Lagrangian, the constant F above needs to be the same as that
in the definition of the field matrix, U(φ) (just above (12.6)). The two
constants F and B are related to the pion decay constant and to the
quark condensate, up to chiral corrections [6]:

fπ = F + O(mq)
(12.15)〈0|ūu|0〉 = −F 2B + O(mq)

Using our definition for U(φ) and setting the external scalar field s equal to
the quark mass matrix, one can read off from L2 the pseudoscalar meson
masses, again up to leading order in chiral corrections. For example,

m2
π = 2m̄B

m2
K+ = (mu + ms)B (12.16)

m2
K0 = (md + ms)B

with m̄ = 1
2(mu + md). Those relations are consistent with the chiral

counting rules, which stipulate the dimensions of the operators and of
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the fields in the chiral expansion in terms of the momentum k:

U : O(1)
DμU, vμ, aμ : O(k)

s, p : O(k2)

With these rules, the meaning of the subscript in L2 is clear. The effective
Lagrangian is then expanded up to order k4 [6].

We now formulate the problem at finite temperature and calculate the
pressure of a pion gas using chiral perturbation theory. The symmetry
requirements will translate into exact statements for the coefficients of
the expansion in powers of the temperature. Furthermore, we shall make
use of the fact that pions are considerably less massive than any of their
other SU(3) partners. Therefore these lighter degrees of freedom will be
excited first and should play a leading role: we then restrict our discussion
to SU(2). We can rewrite L2 in terms of the nonlinear σ model:

L2 = 1
4F

2Tr[∂μU∂μU † −M2(U + U †)] (12.17)

with M2 = (mu + md)B. The effective Lagrangian to order k4 is written
down by identifying all the independent terms to this order that have
the required symmetry properties (Lorentz invariance, P , C, and chiral
symmetry):

L4 = −1
4 l1 [Tr(∂μU∂μU †)]2 − 1

4 l2 Tr(∂μU∂μU †) Tr(∂μU∂μU †)
+ 1

8 l4M
2 Tr(∂μU∂μU †) Tr(U + U †)

− 1
16(l3 + l4)M4 Tr(U + U †) − h1M

4 (12.18)

The contact term h1 is a vacuum contribution, and isospin-breaking effects
are ignored. The evaluation of the finite-temperature contribution to the
thermodynamic potential proceeds as in preceding chapters, only now the
chiral effective Lagrangian is used:

Z ≈
∫

periodic
[dU ] exp

(∫ β

0
dτ

∫
d3x (L2 + L4)

)
(12.19)

The complete expansion in loop topologies that yield terms up to T 8

was worked out by Gerber and Leutwyler [8].A few of those diagrams are
shown in Figure 12.1. The diagrams so obtained fall into three categories.

1 Those that generate temperature-independent contributions. These
only renormalize the vacuum contribution.

2 The genuine temperature-dependent terms that will generate the ther-
mal pressure. These are shown in Figure 12.1.
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Fig. 12.1. Some of the diagrams that occur in the finite-temperature expansion
of the thermodynamic potential in chiral perturbation theory, up to order T 8.
The labeling of the vertices refers to the order of the chiral Lagrangian that
provided the vertex.

3 Up to O(T 8), the thermodynamic potential will contain some diagrams
with vertices coming from chiral Lagrangians of order higher than 4.
These temperature-dependent contributions renormalize the bare mass
M in the free-gas term, in such a way that

M → M1

with

M1 = M2 + 2l3
M4

F 2
+ c0

M6

F 4
(12.20)

where c0 is a constant.

The divergences present in the zero-temperature theory are isolated using
dimensional regularization then subtracted away by appropriate counter-
terms. At low temperatures, the pressure will be of order exp(−mπ/T ).
Using this prescription in the expansion of the pressure enables identifi-
cation of the physical pion mass with parameters of the theory:

m2
π = M2 + (2l3 + λ)

M4

F 2
+ c

M6

F 4
+ O(M8) (12.21)

The constant c is a linear combination of some regularization counter-
terms and l3. When the physical pion mass is used in the theory, the
parametrical dependence on counterterms disappears. Also, λ isolates the
pole appearing when d → 4 in the zero-temperature part of the bare-mass
coordinate-space propagator, D(x), when its argument vanishes:

lim
x→0

D(x) = 2M2λ
(12.22)

λ =
1
2

(4π)−d/2 Γ(1 − d/2)Md−4
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Putting all these ingredients together, the pressure can be written as
[8]

P =3P0+
4
π3

aT 4h2
3 +

24
π3

T 6h5

(
8T 2h5 + m2

πh3

)(
b− I

π3F 4

)
+ O(T 10)

(12.23)
The first term is the pressure of a noninteracting Bose gas of pions (the
factor 3 arising from the three charged states of the pion) with

P0 =
4
π2

T 4h5

(mπ

T

)
(12.24)

The functions hn(m/T ) are discussed in the Appendix. It is amusing to
note that h3 is proportional to the field fluctuations of noninteracting
bosons:

〈φ2〉 =
∂P0(T,m)

∂m2
=
∫

d3k

(2π)3
1
ω

1
eβω − 1

=
T 2

π2
h3

(m
T

)
(12.25)

The dimensionless function I(mπ/T ) in (12.23) represents a three-
dimensional integral that must be calculated numerically. Its low-
temperature limit is

I(x) = 0.6x−1 + O(x−2)

while the high-temperature limit is

I(x) = −5
8

lnx + 0.6360 + 0.1289x2 + O(x3)

Some constants, such as c in (12.21), are absent in the final result as
they are absorbed into the physical pion mass. The two constants that do
appear explicitly in the pressure, a and b, are functions of the renormalized
Lagrangian parameters:

a = − 3M2

32πF 2
+

5M4

128π3F 4

(
l̄1 + 2l̄2 − 3

10
l̄3 +

9
8

)
(12.26)

b =
1

16π3F 4

(
l̄1 + 4l̄2 − 29

24

)
where

li = γi

(
λ +

1
32π2

l̄i

)
γ1 =

1
3

γ2 =
2
3

γ3 = −1
2

γ4 = 2 (12.27)

The quantity λ, defined in (12.21), contains the singularity.
It is extremely satisfying to verify that the expression for the pressure,

derived in finite-temperature chiral perturbation theory, agrees with a
treatment based on the virial expansion [8]. This represents an important
consistency check.
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12.2 Self-energy from experimental data

At this point, it is clear that any quantum field in interaction with other
fields will see its vacuum properties modified. A rigorous formalism for
calculating these changes was set up in the previous chapters and, given
an interaction Lagrangian, it mainly consists of calculating an in-medium
self-energy. This can in turn be related to in-medium masses and decay
widths, through the real and imaginary parts, respectively. Up to now we
have seen that a satisfactory way of organizing the perturbation expansion
was to follow the topology of the multiloop diagrams. However, this pro-
cedure becomes questionable when large coupling constants are involved,
as the very validity of the perturbation expansion is called into ques-
tion. Owing to asymptotic freedom, QCD in its nonperturbative sector
will involve just such large constants, and a calculation of hadronic prop-
erties from first principles becomes prohibitively difficult. Nevertheless,
data does exist on the scattering of the different QCD bound states
among themselves. As those measurements carry some information on
the underlying interaction, it should be possible to infer from them how
the fundamental characteristics of a specific field get changed in a strongly
interacting medium. Relying on experimental measurements to the extent
that they are available will help to develop a procedure that is as model
independent as possible. A method that is applicable to dilute media is
described in what follows.

For a particle of type a traversing a medium with a de Broglie wave-
length less than the interparticle spacing of target particles of type b,
there is a direct proportionality between the scattering amplitude and
the energy. The dispersion relation of a boson is determined by

E2 = m2 + p2 + Π (12.28)

In the nonrelativistic limit we may wish to express the energy in terms of
an optical potential U as

E = m +
p2

2m
+ U (12.29)

The optical potential will in general have both real and imaginary parts.
This leads to real and imaginary parts of the energy: E = ER − iΓ/2. The
imaginary part is related to the mean free path 1/ρσ, where σ is
the scattering cross section and ρ is the density of scatterers, and to
the velocity, as Γ = vρσ. Using the forward scattering amplitude f and
the optical theorem pσ = 4πf gives

ImΠ = 2m ImU = −4πρ Im f (12.30)
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In the low-energy limit the mean potential energy of the particle is

ReU = ρ

∫
d3xV (x) (12.31)

where V is the two-body potential. In this limit the Born approximation
gives

Re f = −m

2π

∫
d3xV (x) (12.32)

Hence both the real and imaginary parts fit a simple formula,

Π = −4πρf (12.33)

This formula has a wider range of applicability than this derivation might
suggest; it is the leading term in a multiple-scattering expansion [9].

The generalization to target particles that are moving, and to relativis-
tic kinematics, is straightforward. For meson a scattering from hadron b
in the medium, the contribution to the self-energy is:

Πab(E, p) = −4π
∫

d3k

(2π)3
nb(ω)

√
s

ω
f

(cm)
ab (s)

= − 1
2πp

∫ ∞

mb

dω nb(ω)
∫ s+

s−

ds
√
sf

(cm)
ab (s) (12.34)

where E and p are the energy and momentum of the particle, ω2 = m2
b +

k2,

s± = E2 − p2 + m2
b + 2(Eω ± pk) (12.35)

nb is either a Bose–Einstein or Fermi–Dirac occupation number, and fab
is the forward scattering amplitude. The normalization of the amplitude
corresponds to the standard form of the optical theorem,

σ =
4π
qcm

Im f (cm)(s) (12.36)

where qcm is the momentum in the cm frame. The dispersion relation is
determined by the poles of the propagator after summing over all target
species and including the vacuum contribution to the self-energy:

E2 −m2
a − p2 − Πvac

a (E, p) −
∑
b

Πab(E, p) = 0 (12.37)

The applicability of (12.34) is limited to those cases where interference
between sequential scatterings is negligible.

Taking various limits of (12.34) is instructive. First of all, we note that
the cross section is invariant under longitudinal boosts. It is convenient to
know how the scattering amplitude transforms. They are related to each

https://doi.org/10.1017/9781009401968 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968


250 Hot hadronic matter

other as follows.

maf
(a’s rest frame)
ab = mbf

(b’s rest frame)
ab =

√
sf

(cm)
ab (12.38)

In the limit that the target particles b move nonrelativistically we can
approximate ω in the first line of (12.34) by mb, in which case

Πab = −4πf (b’s rest frame)
ab ρb (12.39)

where ρb is the spatial density. Next consider the chiral limit when
pions serve as the target particles, relevant for low-temperature baryon-
free matter. From (12.38)

√
sf

(cm)
aπ = maf

(a’s rest frame)
aπ . Since f

(a’s rest frame)
aπ

involves two derivative couplings of the pion to the massive state a
(Adler’s theorem) one sees from (12.34) that Πaπ ∼ T 4. Finally, if the
self-energy is evaluated in the rest frame of a it is possible to do all the
integrations but one:

Πab(E, p) = −m2
aT

πp

∫ ∞

mb

dω ln
(

1 − exp(−ω+/T )
1 − exp(−ω−/T )

)
f

(a’s rest frame)
ab (ω)

(12.40)

Here ω± = (Eω ± pk)/ma. This assumes that b is a boson; a similar for-
mula ensues if it is a fermion.

As a specific application, we will estimate the ρ meson dispersion rela-
tion for finite temperature and baryon density and for momenta up to 1
GeV/c. This is of special interest, as vector mesons can couple directly
to the photon [10] and therefore the in-medium modification of vector
meson properties can in principle be inferred from the measurement of
electromagnetic observables. This direct conversion of a vector meson to
a photon (real or virtual) is often referred to as vector meson dominance
(VMD). The low-energy part of the ρ meson scattering amplitude will
be dominated by coupling to resonances. The physical context assumed
here is that ρ mesons are formed during the last stage of the evolution
of hadronic matter created in a heavy ion collision. The matter there is
approximated as a weakly interacting gas of pions and nucleons. This
stage is formed when the local temperature is of the order of 100 to 150
MeV and when the local baryon density is of the order of the normal
nucleon density in a nucleus. The main ingredients of the calculation are
ρπ and ρN forward scattering amplitudes and total cross sections.

We will consider the momentum p to be real and evaluate the scattering
amplitudes on-shell, that is, evaluate the self-energy at E =

√
p2 + m2

ρ.
In this case (12.37) takes the form

E2 = m2
ρ + p2 + Πvac

ρ + Πρπ(p) + ΠρN (p) (12.41)
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Since the self-energy has real and imaginary parts, so does E(p) =
ER(p) − iΓ(p)/2. In the narrow-width approximation the dispersion rela-
tion is determined from

E2
R(p) = p2 + m2

ρ + ReΠρπ(p) + ReΠρN (p)
(12.42)

Γ(p) = −[ImΠvac
ρ + ImΠρπ(p) + ImΠρN (p)

]
/ER(p)

The width of the ρ meson in vacuum, Γvac
ρ = −ImΠvac

ρ /mρ, is 150 MeV.
We can also define a mass shift and an optical potential:

Δmρ(p) =
√
m2

ρ + ReΠρπ(p) + ReΠρN (p) −mρ

(12.43)
U(p) = ER(p) −

√
m2

ρ + p2

These will be evaluated for temperatures of 100 and 150 MeV and nucleon
densities of 0, 1, and 2 times the normal nuclear matter density (0.155
nucleons per fm3). Recall that one needs a Bose–Einstein distribution
for pions and a Fermi–Dirac distribution for nucleons. The pion chemical
potentials are zero and the nucleon chemical potentials are 745 and 820
MeV for densities of 1 and 2 times normal at T = 100 MeV, and 540
and 645 MeV at T = 150 MeV. Antinucleons are not considered here. For
a ρ meson scattering from a particle a and going to a resonance R, the
forward scattering amplitude can be written in its usual nonrelativistic
form, in the center of mass:

f cm
ρa (s) =

1
2qcm

∑
R

WR
ρa

ΓR→ρa

MR −√
s− 1

2 iΓR
− qcmrρaP

4πs
(1 + exp−iπαP)

sinπαP
sαP

(12.44)

In familiar notation, the subscript P refers to the Pomeron,
√
s is the

total cm energy and the magnitude of the cm momentum is

qcm =
1

2
√
s

√
[s− (mρ + ma)2][s− (mρ −ma)2] (12.45)

The statistical averaging factor for spin and isospin is

WR
ρa =

(2sR + 1)
(2sρ + 1)(2sa + 1)

(2tR + 1)
(2tρ + 1)(2ta + 1)

(12.46)

The second part of the forward scattering amplitude is a nonresonant
background contribution, a description of which goes beyond this text.
See, for example, Collins [11] for a detailed discussion. It suffices here to
state that the parameters are determined by high-energy scattering phe-
nomenology. Also, the real and imaginary parts of the scattering ampli-
tude are related by a dispersion relation. This constraint turns out to be
better satisfied in the presence of the background term [12].
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Fig. 12.2. The vector meson mass shift as a function of momentum for various
temperatures and nucleon densities nN (expressed in units of equilibrium nuclear
matter density).

For the case of ρN scattering, the intermediate resonance can be one of
several species of N∗ or Δ resonances. One then needs to know the width
of that resonance in the channel where there is a ρ meson and a nucleon.
Because of kinematical constraints, this width is often not measured, but
the radiative decays often are. These can be related to the width one is
after, using the VMD relationship of the scattering amplitudes:

fγN = 4πα

(
1
g2
ρ

fρN +
1
g2
ω

fωN +
1
g2
φ

fφN

)
(12.47)

where α is the fine structure constant. From measurements of φ photopro-
duction, the last term is small and can be neglected. In the spirit of the
quark model, one further assumes that fωN ≈ fρN . This assumption may
in fact be examined more closely [13] The direct vector-meson–photon
coupling can be deduced from V → l+l− measurements. With these ingre-
dients, the widths in the ρN channel can be directly extracted from the
radiative decay widths. The details of the procedure outlined here, along
with specific parameter values and relevant references, can be found in
Eletsky et al. [12] Note that the calculation of the real and imaginary
parts of the in-medium self-energy of any species can proceed in the same
way, provided that enough experimental data can map its interaction with
other fields. The mass shift and width of the ρ meson, as defined in (12.43)
and (12.42), are shown in Figures 12.2 and 12.3 for different temperatures
and densities (nN is in units of n0, the equilibrium nuclear matter den-
sity). The width is systematically larger at larger temperatures and den-
sities. The change in mass is numerically less important. Any interaction
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Fig. 12.3. The vector meson width as a function of momentum for various tem-
peratures and densities.

Fig. 12.4. The imaginary part of the vector meson propagator as a function of
invariant mass at a momentum 300 MeV and temperature 150 MeV.

will contribute to a larger width, but the real part of the self-energy can
be less affected owing to cancellations between different channels. The
information in the mass shift and in the width is also contained in a plot
of the imaginary part of the ρ propagator, shown in Figure 12.4, and is
directly related to the in-medium spectral density. Note that since the
thermal medium constitutes a preferred rest frame (that in which tem-
perature is defined), the self-energy in general depends on the energy and
the momentum separately. Alternatively, one may fix the momentum at
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a specific value (300 MeV here) and study the self-energy as a function
of invariant mass, since E =

√
p2 + M2.

Alternatively, a method complementary to the one presented here con-
sists of using effective hadronic Lagrangians (i.e., those whose basic sym-
metries are consistent with that of QCD), with parameters fitted to
measured properties [14–16]. Because they are both constrained by exper-
imental data, the two techniques should of course yield comparable results
unless ones deviates significantly from the on-shell condition for the vector
field.

12.3 Weinberg sum rules

Spectral sum rules were in use before the advent of QCD as the theory
of the strong interaction. Weinberg had in fact proposed two sum rules
based on current algebra, relating moments of the spectral density of
vector and axial-vector currents [17]. These relied on the validity of chiral
symmetry. It is instructive to revisit these sum rules in the language
of QCD and then to pursue a finite-temperature extension, in order to
explore the implications of the approach to chiral symmetry restoration
at finite temperature that follow from sum rules of the Weinberg type [1].
Note that the up and down quark masses are then implicitly assumed to
be zero, so that chiral symmetry is indeed exact.

12.3.1 Sum rules at zero temperature

One first defines vector and axial-vector currents (using an explicit nota-
tion for the current operators):

V a
μ = ψ̄γμ(τa/2)ψ (12.48)

Aa
μ = ψ̄γμγ5(τa/2)ψ (12.49)

where τa/2 is the isospin generator. With this normalization the current
algebra of charges obeys the equal-time commutation relations[

Qa
V , Q

b
V

]
= iεabcQc

V (12.50)[
Qa

V , Q
b
A

]
= iεabcQc

A (12.51)[
Qa

A, Q
b
A

]
= iεabcQc

V (12.52)

Each charge is the volume integral of the zeroth component of the
corresponding current operator. We now write the vector and axial-
vector spectral densities. They are positive definite quantities defined for
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positive s:

〈0|V μ
a (x)V ν

b (0)|0〉 = − δab

(2π)3

∫
d4p θ(p0) eip·x

(
gμν − pμpν

p2

)
ρV (s)

(12.53)

〈0|Aμ
a(x)Aν

b (0)|0〉 = − δab

(2π)3

∫
d4p θ(p0) eip·x

[(
gμν − pμpν

p2

)
ρA(s)

+f2
πδ(s)p

μpν
]

(12.54)

The dimension of the spectral densities is energy-squared. Note that the
pion contribution to the axial-vector correlator has been written out
explicitly in the second term in (12.54).

Imaginary time is used, so that all distances are space-like, or Euclidean:
x2 = t2 − r2 = −τ2. In this domain the spectral representation of the cor-
relation functions is as follows:

ΔDabμ
μ (τ) ≡ 〈0|Tτ

[
V aμ(x)V b

μ (0) − Aaμ(x)Ab
μ(0)

]
|0〉

= − δab

4π2τ

∫ ∞

0
ds

√
s
[
3ρV (s) − 3ρA(s) − s f2

πδ(s)
]
K1(

√
sτ)

(12.55)

and
ΔD00

ab(τ) ≡ 〈0|Tτ

[
V 0
a (x)V 0

b (0) − A0
a(x)A0

b(0)
] |0〉

= − δab
4π2τ

∫ ∞

0
ds

√
s
[
ρV (s) − ρA(s) − s f2

πδ(s)
]

×
[
K0(

√
sτ)√

sτ
+
(

2
sτ2

+ 1
)
K1(

√
sτ)
]

(12.56)

Notice that the integrands essentially involve the standard Feynman prop-
agator for a particle of mass m, which, in the Euclidean domain, is

D(m, τ)free scalar =
m

4π2τ
K1(mτ) (12.57)

Exponential decay of the Bessel function K1 at large values of the argu-
ment ensures the convergence of such integrals for any QCD correlation
functions, except probably at τ = 0.

Each sum rule will correspond to a particular term in the small-distance
asymptotic expansion of the correlation function. In the limit τ → 0 the
product of currents can be expanded according to the operator product
expansion (OPE), a very successful means of connecting vacuum expec-
tation values (VEVs) of quark and gluon operators with experimentally
observable hadronic properties. We will refer the reader to the original
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literature for a discussion of this powerful theoretical method, but a gen-
eral description can be given as follows. Consider for example the current–
current correlator in real time and its expansion:

i

∫
d4x eiq·xTt{ψ̄(x)γμψ(x), ψ̄(0)γνψ(0)} = (qμqν − q2gμν)

∑
d

Cd(q2)Od

(12.58)

The Od are local operators and the Cd(q2) are c-numbers called Wilson
coefficients. The operator expansion is organized according to dimension.
When considering a vacuum matrix element of the current–current corre-
lator, one might simply expect all operators except the unit operator to
have a vanishing expectation value. However, long-distance nonperturba-
tive effects will make this expectation unrealized. In principle, all vacuum
expectation values, often called vacuum condensates, should be calcula-
ble in lattice gauge theory. The initial terms in this expansion were first
computed perturbatively by Shifman, Vainshtein, and Zakharov [18]. For
the contracted polarization tensor the result is

Dabμ
μ (τ) ≡ 〈0|Tτ

[
V aμ(x)V b

μ (0)
]
|0〉

= − 3δab

π4τ6

(
1 +

αs(τ)
π

− 〈0| (gF c
μν

)2 |0〉τ4

3 × 27

−π2τ6

8
ln(μτ) 〈0|Oρ|0〉 + · · ·

)
(12.59)

where, in the argument of the logarithm, μ � 1/τ is the renormalization
scale, and Oρ is a complicated four-quark operator. There is a similar
expression for the correlator of two axial-vector currents but it has a
different four-quark operator Oa1 . For our purposes we only need their
difference, which is given below.

Since chiral symmetry breaking is a long-wavelength phenomenon, at
very short distances or at very high energies the difference between vector
and axial-vector correlators should go to zero. Indeed, taking this differ-
ence one finds that all terms except for the four-quark operators in (12.59)
drop out. One can now look for consequences of this statement for the
spectral density. Expanding the Bessel function in (12.55) for small values
of τ we get

ΔDabμ
μ (τ) = −3δab

4π2

∫ ∞

0
ds [ρV (s) − ρA(s)]

×
[

1
τ2

+
s

2
ln
(√

sτ

2
eγE−1/2

)
+ O(τ2, τ2 ln τ

)]
(12.60)
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where γE is Euler’s constant. The OPE has no power divergence in τ in
the difference ΔDabμ

μ . Therefore the coefficient of 1/τ2 in (12.60) must
vanish. This gives the second Weinberg sum rule (see below). In the OPE
framework it simply follows from the observation that the first covariant
operators which are not chirality blind are four-quark ones that have
dimension 6 or more. Similarly expanding (12.56) for small τ and applying
the observation of chirality blindness we get∫ ∞

0

ds

s

[
ρV (s) − ρA(s) − s f2

πδ(s)
]( 1

τ4
+

s

4τ2

)
= 0 (12.61)

The first and second terms in the last parentheses give

I
∫ ∞

0

ds

s
[ρV (s) − ρA(s)] = f2

π (12.62)

and

II
∫ ∞

0
ds [ρV (s) − ρA(s)] = 0 (12.63)

respectively. These are Weinberg’s first and second sum rules.
The phenomenological implications of the zero-temperature sum rules

have been discussed numerous times in the literature and we will therefore
not do so here.

12.3.2 Sum rules at finite temperature

Weinberg’s two sum rules can be extended to finite temperature using
essentially the same methods as he used without any specific reference to
QCD. As seen in other applications, earlier in this text, the introduction of
a thermal medium will complicate some expressions as Lorentz invariance
is no longer manifest. This preferred rest frame will cause functions that
previously depended only on

√
s to depend separately on energy and

momentum, and the number of Lorentz tensors will increase because there
is a new vector available, namely, the vector uμ = (1, 0, 0, 0) that specifies
the rest frame of the matter.

We now define the longitudinal and transverse spectral densities for the
vector current as

〈V μ
a (x)V ν

b (0)〉 =
δab

(2π)3

∫
d4p eip·x[1 + NB(p0)]

(
ρL
V P

μν
L + ρT

V P
μν
T

)
(12.64)

and for the axial-vector current as

〈Aμ
a(x)Aν

b (0)〉 =
δab

(2π)3

∫
d4p eip·x[1 + NB(p0)]

[
ρL
AP

μν
L + ρT

AP
μν
T

]
(12.65)
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In these expressions the angle brackets refer to the thermal average. The
longitudinal and transverse projection tensors were defined in Chapter 5.
These spectral densities are the ρn discussed in Section 6.2. In general
the spectral densities depend on p0 and p separately as well as on the
temperature (and chemical potential). In the vacuum we can always go
to the rest frame of a massive particle and in this frame there can be
no difference between longitudinal and transverse polarizations, so that
ρL = ρT = ρ. Since Pμν

L + Pμν
T = −(gμν − pμpν/p2), (12.64) and (12.65)

collapse to (12.53) and (12.54). The pion, being a massless Goldstone
boson, is special. It contributes to the longitudinal axial spectral density
and not to the transverse one. In fact, we could write

f2
πδ(p

2)pμpν = f2
πp

2δ(p2)Pμν
L (12.66)

This should not be done at finite temperature because the contribution of
the pion to the longitudinal spectral density cannot be assumed to be a
delta function in p2. In general the pion’s dispersion relation will be more
complicated and will develop a width at nonzero momentum. Therefore,
we do not try to separate out the pionic contribution but subsume it into
the spectral density ρL

A, without any loss of generality.
Following Weinberg, we define a three-point function by

−iεabcM
μνλ(q, p) =

∫
d4x d4y e−i(q·x+p·y)

〈
Tt

[
Aμ

a(x)Aν
b (y)V

λ
c (0)

]〉
(12.67)

We multiply both sides by qμ. On the right-hand side we can use

qμe−i(q·x+p·y) = i
∂

∂xμ
e−i(q·x+p·y) (12.68)

Both the vector and axial-vector currents are conserved. We assume that
we can integrate by parts and that the surface term is zero. The nonzero
contribution comes from

∂

∂xμ

{
Tt

[
Aμ

a(x)Aν
b (y)V

λ
c (0)

]}
= δ(x0−y0)

{
θ(x0)

[
A0

a(x), Aν
b (y)

]
V λ
c (0)+θ(−x0)V λ

c (0)
[
A0

a(x), Aν
b (y)

]}
+ δ(x0)

{
θ(y0)Aν

b (y)
[
A0

a(x), V λ
c (0)

]
+ θ(−y0)

[
A0

a(x), V λ
c (0)

]
Aν

b (y)
}

(12.69)

From this expression we see the need for knowledge of the equal-time
commutators. Consistently with the normalization of (12.50)–(12.52) we
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have

δ(z0)
[
A0

a(x), Aν
b (y)

]
= iεabdV

ν
d (x)δ(z) + Sνj

V ab(x)
∂

∂zj
δ(z)

δ(z0)
[
A0

a(x), V ν
b (y)

]
= iεabdA

ν
d(x)δ(z) + Sνj

Aab(x)
∂

∂zj
δ(z)

(12.70)

Here z = x− y and the S’s denote the Schwinger terms. These terms do
not vanish, in general, and they need to appear to guarantee the self-
consistency of the current algebra.

Consider now the contribution of the Schwinger terms to the thermal
average. Generically they will be of the form

〈SJ〉 = Z−1
∑
m,n

e−Kn/T 〈n|S|m〉〈m|J |n〉 (12.71)

where K = H − μN is the Hamiltonian minus the chemical potential
times the conserved particle number, the states are chosen to be eigen-
states of H, N , and isospin, and J is either the vector or the axial-vector
current. J has isospin 1, so we get zero if either (i) S is a c-number, or
(ii) S is an operator with no isospin-1 component. We shall assume that
one of these holds. Then

∂

∂xμ

〈
Tt

[
Aμ

a(x)Aν
b (y)V

λ
c (0)

]〉
= iεabdδ(x− y)

〈
Tt

[
V ν
d (x)V λ

c (0)
]〉

+ iεacdδ(x)
〈
Tt

[
Aν

b (y)A
λ
d(0)

]〉
(12.72)

It is now a simple matter to show that
1
2qμM

μνλ(q, p) = Dνλ
V (q + p) −Dνλ

A (p) (12.73)

where the D’s are the propagators for the currents; for example,

δabD
νλ
A (p) =

∫
d4y e−ip·y

〈
Tt

[
Aν

a(y)A
λ
b (0)

]〉
(12.74)

Similarly, one can show that
1
2(q + p)λMμνλ(q, p) = Dμν

A (q) −Dμν
A (p) (12.75)

These Ward identities have exactly the same form as at zero temperature
[17].

With a similar consideration of the three-point function

−iεabcN
μνλ(q, p) =

∫
d4x d4y e−i(q·x+p·y)

〈
Tt

[
V μ
a (x)V ν

b (y)V λ
c (0)

]〉
(12.76)

one can prove two more Ward identities,
1
2qμN

μνλ(q, p) = Dνλ
V (q + p) −Dνλ

V (p) (12.77)
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and

1
2(q + p)λNμνλ(q, p) = Dμν

V (q) −Dμν
V (p) (12.78)

Multiply (12.75) by (q + p)λ and (12.77) by qμ. Doing the same for the
other two Ward identities, one obtains the constraints

(q + p)λDνλ
V (q + p) = qλD

νλ
V (q) + pλD

νλ
V (p) = qλD

νλ
A (q) + pλD

νλ
A (p)
(12.79)

The equation above holds for all values of q and p. This implies

kλD
νλ
V (k) = kλD

νλ
A (k) = Cνλkλ (12.80)

where Cνλ is momentum independent (but can depend on temperature)
and is the same for the vector and axial-vector channels. By taking the
Fourier transform of these relations we can find the thermal averages of
the equal-time commutators,

δ(x0)
〈 [

V ν
a (x), V 0

b (0)
] 〉

= δ(x0)
〈 [

Aν
a(x), A0

b(0)
] 〉

= δabC
νλ ∂

∂xλ
δ(x)

(12.81)

The commutators above can be expressed in terms of the spectral densities
from (12.64) and (12.65). Taking their difference one obtains the finite-
temperature generalization of the first Weinberg sum rule,

I
∫ ∞

0

dω ω

ω2 − p2

[
ρL
V (ω,p) − ρL

A(ω,p)
]

= 0 (12.82)

Here (6.44) has been used to write the integral over positive ω only. Notice
that this sum rule involves only the longitudinal spectral densities and not
the transverse ones. At zero temperature the spectral densities depend
only on p2 = s = ω2 − p2. Then this equation reduces to (12.62) once we
remember to separate out the pion part of ρL

A, namely, sf2
πδ(s). At finite

temperature, the spectral densities in general will depend on ω and p
separately and not just on the combination s. Then this sum rule must
be satisfied at each value of the momentum.

For the second sum rule, we follow a method due to Das, Mathur, and
Okubo [19]. Omitting the index V or A the explicit expressions for the
time-ordered propagator are

D00(p0,p) = p2DL(p0,p) (12.83)
D0j(p0,p) = p0pjDL(p0,p) (12.84)

Dij(p0,p) =
(
δij − pipj

p2

)
DT(p0,p) +

pipj

p2
D′

L(p0,p) (12.85)
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where

DL(p0,p) = 2i
∫ ∞

−∞
dω ω

ω2 − p2

[
ρL(ω,p)

(ω + iε)2 − p2
0

]
[1 + NB(ω)] (12.86)

D′
L(p0,p) = 2i

∫ ∞

−∞
dω ω3

ω2 − p2

∣∣∣∣ ρL(ω,p)
(ω + iε)2 − p2

0

∣∣∣∣ [1 + NB(ω)] (12.87)

DT(p0,p) = 2i
∫ ∞

−∞
dω ω

∣∣∣∣ ρT(ω,p)
(ω + iε)2 − p2

0

∣∣∣∣ [1 + NB(ω)] (12.88)

and for the Schwinger term they are

C00 = C0j = Cj0 = 0 Cij(p) = δijDS(p) (12.89)

where

DS(p) = 2i
∫ ∞

−∞
dω ω

ω2 − p2
ρL(ω,p) [1 + NB(ω)] (12.90)

The first observation we can make concerns the thermally averaged
generic Schwinger term C. Since it is the same for the vector and the
axial-vector correlators, by (12.80), the factor DS(p) must be the same
as well. Equating them reproduces the first finite-temperature sum rule
(12.82).

The essence of the argument of Das, Mathur, and Okubo is that spon-
taneous chiral symmetry breaking is a low-energy phenomenon. At very
high energy it must disappear, at least in the limit that quark masses are
zero and chiral symmetry is exact. Thus the difference between the vector
and axial-vector propagators should go to zero at very high energy,

lim
p0→∞, pfixed

[
Dμν

V (p0,p) − Dμν
A (p0,p)

]
= 0 (12.91)

If we do this for the time–time or time–space components of the propaga-
tors, that is, for the DL, we again reproduce the first finite-temperature
sum rule. Expanding to the next order in 1/p2

0 we obtain a finite-
temperature generalization of the second zero-temperature sum rule,
which is

II-L
∫ ∞

0
dω ω

[
ρL
V (ω,p) − ρL

A(ω,p)
]

= 0 (12.92)

Like the first, this sum rule involves only the longitudinal spectral den-
sities, and so we call it II-L. Also like the first, it reduces to the original
Weinberg sum rule as the temperature and/or chemical potential go to
zero.

Next we consider the space–space components of the propagators.
Examination of the D′

L in the infinite-energy limit gives us the sum rule
II-L and nothing new. Examination of the DT in the infinite-energy limit
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gives us another sum rule, which we call II-T because it involves the
transverse spectral densities,

II-T
∫ ∞

0
dω ω

[
ρT
V (ω,p) − ρT

A(ω,p)
]

= 0 (12.93)

The finite-temperature sum rules II-L and II-T should become degenerate
at p = 0 because there ought not to be any difference between longitudinal
and transverse excitations at rest. The sum rule II-T then reduces to the
original second sum rule in the vacuum.

We want to emphasize that the sum rules derived in this section, I, II-L,
and II-T, must be satisfied for every value of the momentum. Furthermore,
our derivation is more general than QCD; any theory that satisfies the
assumptions we have made must obey these sum rules.

Low-temperature behavior

As we are taking the zero-quark-mass limit here the pion is massless below
any critical temperature for chiral symmetry restoration and/or decon-
finement, and thus at parametrically low temperatures the heat bath is
dominated by pions. In [20] the so-called Dey–Eletsky–Ioffe mixing theo-
rem was proven, which says that, to order T 2, there is no change in the
masses of vector and axial-vector mesons. What does change are the cou-
plings to the currents. The finite-temperature correlators can be described
by a mixing between the vector and axial-vector T = 0 correlators with a
temperature-dependent coefficient:

Dμν
V (p, T ) = (1 − ε)Dμν

V (p, 0) + εDμν
A (p, 0) (12.94)

Dμν
A (p, T ) = (1 − ε)Dμν

A (p, 0) + εDμν
V (p, 0) (12.95)

These are valid to first order in ε ≡ T 2/6f2
π . This implies the same mixing

of the spectral densities, namely,

ρV (p0,p, T ) = (1 − ε)ρV (s, 0) + ερA(s, 0) (12.96)
ρA(p0,p, T ) = (1 − ε)ρA(s, 0) + ερV (s, 0) (12.97)

with the appropriate longitudinal and transverse subscripts. The tem-
perature dependence of the pion decay coupling was thus proven to be
f2
π(T ) = (1 − ε)f2

π for small T , consistent with the prediction of chiral
perturbation theory [21]. Therefore, the finite-temperature sum rules
I (12.82), II-L (12.92), and II-T (12.93), reduce to the original zero-
temperature sum rules but with both sides of (12.62) and (12.63) mul-
tiplied by the factor 1 − 2ε. This satisfies the Dey–Eletsky–Ioffe mixing
theorem.
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The approach to chiral-symmetry restoration

Chiral transformations are rotations of the quark field with γ5, and they
may or may not have the SU(Nf) (isospin) generators. The corresponding
U(1)A and SU(Nf)A generators have different fates in QCD; the former
is explicitly violated by the anomaly, the latter is broken spontaneously
at low temperature and is restored at some critical temperature Tc, pro-
vided that the quark mass is strictly zero, as is assumed for the purposes
of the current discussion. The ρ and a1 currents are both unchanged by
the U(1)A transformation but are mixed under SU(Nf)A. Therefore, if this
symmetry is restored at high temperatures then there should be no differ-
ence between the vector and the axial-vector correlators. In this section
we speculate on exactly how this difference goes to zero with increasing
temperature. Generally, one may suggest many different scenarios. Let us
discuss the following three.

The simplest scenario is that the T -dependence factorizes. It means
that the vector and axial-vector spectral densities mix, without chang-
ing their shape, as in the low-temperature limit considered in the previ-
ous section, only with a more general function ε(T ). When the mixing
becomes maximal, ε = 1/2, chiral symmetry is restored. It is interest-
ing to see the temperature at which this occurs using the lowest-order
formula, ε = T 2/6f2

π . This estimate gives Tcomplete mixing =
√

3fπ ≈ 164
MeV, which is indeed roughly equal to the expected critical temperature
Tc.

The second scenario assumes that the ρ and a1 mesons retain their iden-
tities and dominate the correlation function. However, their parameters
change with temperature. In particular, the masses may move towards
each other [22] or go to zero [23]. At Tc they become degenerate, and
chiral symmetry is restored.

It is instructive then to look at the sum rules. Let us assume that vector
meson dominance is a good approximation for the spectral densities and
not worry about the continuum contribution for the time being. We focus
on zero momentum for the sake of simplicity. When a pole mass is defined
at finite temperature, it is usually defined as the energy of the excitation
at zero momentum.

The vector spectral density is (note that there is no difference between
the longitudinal and transverse cases at zero momentum)

sign(ω) ρV (ω) = − 1
π

m4
ρ

g2
ρ

Im
1

ω2 −m2
ρ − Πρ

R(ω) − iΠρ
I (ω)

(12.98)

where Πρ
R and Πρ

I are the real and imaginary parts of the ρ self-
energy at temperature T . In the narrow-width approximation this
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becomes

sign(ω) ρV (ω) =
m4

ρ

g2
ρ

δ
(
ω2 −m2

ρ − Πρ
R(ω)

)
(12.99)

The pole mass is determined self-consistently from m2
ρ(T ) = m2

ρ +
Πρ

R(mρ(T )). Then the spectral density can be rewritten as

sign(ω) ρV (ω) = Zρ(T )
m4

ρ

g2
ρ

δ
(
ω2 −m2

ρ(T )
)

(12.100)

where the temperature-dependent residue is

Z−1
ρ (T ) =

∣∣∣∣1 − d

dω2
Πρ

R(ω)
∣∣∣∣ (12.101)

The normalization is Zρ(0) = 1. Similarly

sign(ω) ρA(ω) = Za(T )
m4

a1

g2
a

δ
(
ω2 −m2

a1
(T )
)

+ Zπ(T )f2
πω

2δ
(
ω2
)

(12.102)
Substituting these spectral densities into the finite-temperature sum

rules I, II-L, and II-T tells us that the ρ and a1 residues are equal:

Zρ(T ) = Za(T ) (12.103)

and that the pion residue is

Zπ(T ) = 2Zρ(T )

(
m2

ρ

m2
ρ(T )

− m2
ρ

m2
a1

(T )

)
(12.104)

We expect that m2
a1

(T ) −m2
ρ(T ) → 0 as the temperature increases. Three

types of behavior can be distinguished: both the ρ and the a1 masses
decrease with T , both masses increase with T , or the ρ mass increases
while the a1 mass decreases with T . The sum rules do not appear to rule
out any of these possibilities. In any case, the result is that Zπ(T ) → 0
unless Zρ(T ) → ∞, which seems rather unphysical.

As distinct from the previous two scenarios, it may be that particles
are not well defined as we approach a chiral-symmetry-restoring phase
transition. That is, the imaginary part of the self-energy may become
larger with increasing temperature. This broadening would also decrease
the maximum peak value of the spectral density. Picturesquely, the vector
and axial-vector mesons melt away in a very broad distribution of strength
in the spectral densities.

Concluding this section, we say once more that the sum rules by them-
selves cannot of course tell which scenario is preferable. However, they
can be used to restrict significantly the parametrization of the spectral
densities at nonzero temperature.
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12.4 Linear and nonlinear σ models

The O(N) model as a quantum field theory in d + 1 dimensions [24] is a
basis or prototype for many interesting physical systems. The bosonic field
Φ has N components. When the Lagrangian is such that the vacuum state
exhibits spontaneous symmetry breaking, it is known as a sigma model.
This is the case of interest to us here. In d = 3 space dimensions the linear
sigma model has the potential

1
4λ
(
Φ2 − f2

π

)2
where λ is a positive coupling constant and fπ is the pion decay constant.
The model is renormalizable. In the limit λ → ∞ the potential goes over
to a delta-function constraint on the length of the field vector and is then
known as a nonlinear sigma model.

When N = 4 one has a model for the low-energy dynamics of quan-
tum chromodynamics (QCD). More explicitly, it is essentially the unique
description of the dynamics of very soft pions. This is basically due to
the isomorphism between the groups O(4) and SU(2) × SU(2), the latter
being the appropriate group for two flavors of massless quarks in QCD.
The linear sigma model, including the nucleon, goes back to the work of
Gell-Mann and Levy [25]. This subject has a vast literature.

As we have seen earlier in this chapter, much work has been done
on chiral perturbation theory that starts with the nonlinear sigma model
and adds higher-order, nonrenormalizable, terms to the Lagrangian; these
are determined by the dimensionality of the coefficients or field deriva-
tives [26]. The goal is to construct an effective Lagrangian that describes
the low-energy properties of QCD to the desired accuracy. This whole
program owes a considerable amount to the classic works of Weinberg
[27, 28]

Finally, the standard model of the electroweak interactions, due to
Weinberg, Salam, and Glashow, has an SU(2) doublet scalar Higgs field
responsible for spontaneous symmetry breaking. If one neglects spin-1
gauge fields then the Higgs sector is also an O(4) field theory.

Since both linear and nonlinear σ models are prototypical field theories
in many respects, one expects that much insight on the nature of the
chiral-restoring phase transition, for example, can be had by studying
those at finite temperature.

12.4.1 Linear σ model at finite temperature

The linear σ model Lagrangian is

L = 1
2(∂μΦ)2 − 1

4λ
(
Φ2 − f2

π

)2 (12.105)
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where λ is a positive coupling constant. The bosonic field Φ has N com-
ponents. Rather arbitrarily, we define the first N − 1 components to rep-
resent a pion field π and the last, Nth, component to represent the sigma
field. Since the O(N) symmetry is broken to an O(N − 1) symmetry at
low temperatures, we immediately allow for a sigma condensate v whose
value is temperature-dependent and yet to be determined. We write

Φi(x, t) = πi(x, t) i = 1, . . . , N − 1
(12.106)

ΦN (x, t) = v + σ(x, t)

In terms of these fields the Lagrangian is

L = 1
2 (∂μπ)2 + 1

2 (∂μσ)2 − 1
4λ
(
v2 − f2

π + 2vσ + σ2 + π2
)2 (12.107)

The action at finite temperature is obtained by rotating to imaginary
time, τ = it, and integrating τ from 0 to β = 1/T . The action is defined
as

S = −1
4λ
(
f2
π − v2

)2
βV

+
∫ β

0
dτ

∫
V
d3x
{

1
2

[
(∂μπ)2 − m̄2

ππ
2 + (∂μσ)2 − m̄2

σσ
2
]

+ 1
2λv

(
v2 − f2

π

)
σ − λvσ(π2 + σ2) − 1

4λ(σ2 + π2)2
}

(12.108)

where the effective masses are

m̄2
π = λ

(
v2 − f2

π

)
(12.109)

m̄2
σ = λ

(
3v2 − f2

π

)
At any temperature v is chosen such that 〈σ〉 = 0. This eliminates any
one-particle reducible (1PR) diagrams in perturbation theory, leaving only
one-particle irreducible (1PI) diagrams.

At zero temperature the potential is minimized when v = fπ. The pion
is massless and the σ particle has a mass of

√
2λfπ. The Goldstone theo-

rem is satisfied.
Lin and Serot [29] argued that the σ meson should not be identified

with the attractive s-wave interaction in the π − π interaction, which is
responsible for nuclear attraction. Rather, they argue that the σ meson
should have a mass which is at least 1 GeV if not more. This means that
λ is of order 50 or greater.
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The simplest approximation at finite temperature is the mean field
approximation. One allows for v to be temperature dependent; hence
the effective masses are temperature dependent as well. However, inter-
actions among the particles or collective excitations are neglected. The
pressure includes only the contribution of the condensate and of the ther-
mal motion of the independently moving particles. Thus

P =
T

V
lnZ = −λ

4
(
f2
π − v2

)2 + P0(T,mσ) + (N − 1)P0(T,mπ)

(12.110)
The pressure of a free relativistic boson gas can be written in two ways:

P0 = −T

∫
d3p

(2π)3
ln(1 − e−βω) =

∫
d3p

(2π)3
p2

3ω
1

eβω − 1
(12.111)

As pointed out earlier, this is a relatively simple but surprisingly power-
ful first approximation, which allows one to gain much insight into the
behavior of relativistic quantum field theories at high temperature.

One expects that, as the temperature is raised, thermal fluctuations
will tend to disorder the condensate field v, and at sufficiently high tem-
perature it may even disappear. If there is a second-order phase transition
then the correlation length should go to infinity, which is equivalent to
the effective σ mass going to zero. With such an expectation one may
expand the free-boson gas pressure about zero mass to obtain

P0(T,m) =
π2

90
T 4 − m2T 2

24
+

m3T

12π
+ · · · (12.112)

Since the masses are proportional to the square root of λ it is generally
inconsistent to retain the cubic term in m because there exist loop
diagrams which are not included in the mean field approximation but
which contribute to the same order in λ. Therefore we take

P (T, v) = N
π2

90
T 4 +

λ

2
v2

(
f2
π − N + 2

12
T 2

)
− λ

4
v4 (12.113)

where the pion and σ masses have been expressed in terms of λ, v, and
fπ. Maximizing the pressure with respect to v gives

v2 = f2
π − N + 2

12
T 2 (12.114)

This result is easily understood. Going back to (12.108), we can
differentiate lnZ with respect to v with the result that

v2 = f2
π − 3〈σ2〉 − 〈π2〉 (12.115)
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Fig. 12.5. The diagrams contributing to the one-loop pion self-energy, in the lin-
ear σ model. The broken lines represent the pion whereas the solid lines represent
the σ. The overall sign and combinatoric factors are shown. In the contributions
involving the pion four-point vertex, the signs = and = stand for cases where the
pion loop and the external field have the same, or different, quantum numbers.

as long as we choose 〈σ〉 = 0. For any free bosonic field φ with mass m,

〈φ2〉 =
∫

d3p

(2π)3
1
ω

1
eβω − 1

(12.116)

where ω =
√

p2 + m2. In the limit where the temperature is greater than
the mass, 〈φ2〉 → T 2/12. This yields (12.114) directly.

The condensate goes to zero at a critical temperature given by

T 2
c =

12
N + 2

f2
π (12.117)

Above this temperature thermal fluctuations are too large to allow a
nonzero condensate. It is a straightforward exercise to show that the
pressure and its first derivative are continuous at Tc but that the sec-
ond derivative is discontinuous. This is therefore a second-order phase
transition.

There are two major problems with the mean field approximation as
described. The first is that the pion has a negative mass-squared at every
temperature greater than zero. Not only is the Goldstone theorem not sat-
isfied, but there are tachyons as well! The sigma particle also gets a neg-
ative mass-squared at temperatures above

√
8/(N + 2) fπ < Tc. Recall-

ing the analysis in Section 7.3, this violation of basic physical principles
is resolved by recognizing that the finite-temperature corrections to the
squared masses are proportional to λT 2 and that one-loop self-energy cor-
rections, not included in the mean field analysis, are of the same order.
This can be understood from the following analysis.
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Fig. 12.6. The diagrams contributing to the one-loop σ self-energy.

At high temperatures, when the masses can be neglected in the loops,
the mean field result is obtained by combining (12.110) and (12.114):

m̄2
π = −N + 2

12
λT 2

(12.118)
m̄2

σ = 2λf2
π − N + 2

4
λT 2

The full one-loop self-energies for pions and the σ meson are shown in
Figures 12.5 and 12.6. If one chooses 〈σ〉 = 0 then there are no 1PR dia-
grams and the tadpoles should not be included; they are already included
in the temperature dependence of v. One may check this by fixing v = fπ
and then computing the tadpole contributions to the effective masses.
One gets precisely (12.118). The diagrams involving the four-point ver-
tices contribute an amount (N + 2)λT 2/12 to both the pion and σ meson
self-energies. When evaluated in the high-temperature approximation and
at low frequency and momentum the 1PI diagrams involving three-point
vertices may be neglected. (This follows from power counting. These dia-
grams involve two propagators instead of one, and so are only logarithmi-
cally divergent in the ultraviolet in the vacuum. The other diagrams are
quadratically divergent, which leads to a T 2 behavior at finite tempera-
ture.) When all contributions of order λT 2 are included, the pole positions
of the pion and σ meson propagators move, with the result that below Tc

m2
π = m̄2

π + Ππ = 0
(12.119)

m2
σ = m̄2

σ + Πσ = 2λf2
π

(
1 − T 2

T 2
c

)
and above Tc

m2
π = m2

σ = m2
Φ = −λf2

π + ΠΦ =
N + 2

12
λ
(
T 2 − T 2

c

)
(12.120)
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The Goldstone theorem is satisfied, there are no tachyons, and restoration
of the full symmetry of the Lagrangian above Tc is evident.

It must be recognized that the results (12.118)–(12.120) are valid to
order λ and cannot be extrapolated to λ → ∞. At low temperature,
where pions scatter from each other sequentially and there is essentially
no propagation off mass shell between scatterings because of the low par-
ticle density, one may take the point of view that λ is a parameter to be
adjusted to fit π–π scattering data and it does not matter how large λ
is. This point of view cannot be taken at high temperature, where the
pion number density is large, for then multiple scatterings will occur and
they cannot be factorized into independent scatterings. This means that
multiloop self-energy diagrams will be important at high temperature if
λ is not perturbatively small.

The second major problem is that long-wavelength fluctuations very
near the phase transition cannot be treated with perturbation theory
because the self-interacting boson fields become massless just at the tran-
sition. Although this is a well-known problem in the statistical mechanics
of second-order phase transitions, exactly how it affects the critical tem-
perature is not known for the linear σ model in 3 + 1 dimensions. The
result presented here must be accepted for what it is: a one-loop estimate
of the critical temperature.

12.4.2 Nonlinear σ model at finite temperature

The nonlinear σ model may be defined by the Lagrangian

L = 1
2 (∂μΦ)2 (12.121)

together with the constraint

f2
π = Φ2(x, t) (12.122)

The partition function is

Z =
∫

[dΦ] δ
(
f2
π − Φ2

)
exp

(∫ β

0
dτ

∫
d3xL

)
(12.123)

Because the length of the chiral field is fixed and cannot be changed by
thermal fluctuations it is often said that on the one hand chiral symmetry-
breaking is built into this model and therefore there can be no chiral-
symmetry-restoring phase transition. On the other hand, the linear sigma
model does undergo a symmetry-restoring phase transition. Taking the
quartic coupling constant λ to infinity essentially constrains the length
of the chiral field to be fπ, just as in the nonlinear model. The criti-
cal temperature, however, is independent of λ at least in the mean field
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approximation. So it would seem that the phase transition survives. If this
is true then one ought to be able to derive it entirely within the context
of the nonlinear model. That is what we shall do, although it involves a
lot more effort than the treatment of the linear model in the mean field
approximation. Since the only parameter in the model is fπ and we are
interested in temperatures comparable with it, we cannot make an expan-
sion in powers of T/fπ. The only other parameter is N , the number of
field components. This suggests an expansion in 1/N .

We begin by representing the field-constraining delta function by an
integral,

Z =
∫

[dΦ]
[
db′
]
exp

{∫ β

0
dτ

∫
d3x

[L + ib′
(
Φ2 − f2

π

)]}
(12.124)

As with the linear model, we define the first N − 1 components of Φ
to be the pion field and the last component to be the sigma field. We
allow for a zero-frequency and zero-momentum condensate of the sigma
field, referred to as v. Following Polyakov [30] we also separate out explic-
itly the zero-frequency and zero-momentum mode of the auxiliary field
b′. Integrating over all the other modes will give us an effective action
involving the constant part of the fields. We will then minimize the free
energy with respect to these constant parts, which gives us a saddle point
approximation. Integrating over fluctuations about the saddle point is
a finite-volume correction and of no consequence in the thermodynamic
limit. The Fourier expansions are

Φi(x, τ) = πi(x, τ) =

√
β

V

∑
n

∑
p

ei(x·p+ωnτ) π̃i(p, n)

ΦN (x, τ) = v + σ(x, τ) = v +

√
β

V

∑
n

∑
p

ei(x·p+ωnτ) σ̃(p, n)

b′(x, τ) = 1
2 im

2 + b(x, τ) = 1
2 im

2 + T

√
β

V

∑
n

∑
p

ei(x·p+νnτ) b̃(p, n)

(12.125)

One must remember to exclude the zero-frequency and zero-momentum
mode from the summations. The field Φ must be periodic in imaginary
time for the usual reasons, but there is no such requirement on the aux-
iliary field b, hence we must have ωn = 2πnT and νn = πnT . Since the
field b has dimensions of inverse length squared we have inserted another
factor of T so as to make its Fourier amplitude dimensionless, as is the
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case for the other fields. The action then becomes

S =
∫ β

0
dτ

∫
V
d3x

{
1
2

[
(∂μπ)2 −m2π2 + (∂μσ)2 −m2σ2

]
−ib

(
2vσ + π2 + σ2

)}
+ 1

2m
2
(
f2
π − v2

)
βV (12.126)

Note that terms linear in the fields integrate to zero because 〈πi〉 = 〈σ〉 =
〈b〉 = 0.

An effective action is derived by expanding exp(S) in powers of b and
integrating over the pion and σ fields. The term linear in b vanishes on
account of b̃(0, 0) ∝ 〈b〉 = 0. The term proportional to b2 is nonzero and
is exponentiated, thus summing a whole series of contributions. The term
proportional to b3 is also nonzero and it, too, may be exponentiated,
summing an infinite series of higher-order terms left out of the order-b2

exponentiation. After making the scaling b → b/
√

2N the effective action
becomes

Seff = − 1
2

∑
n

∑
p

(
ω2
n+p2+m2

)
[π̃(p, n) · π̃(−p,−n)+ σ̃(p, n)σ̃(−p,−n)]

− 1
2

∑
n

∑
p

(
Π(p, ωn, T,m)+

2
N

v2

ω2
n + p2 + m2

)
b̃(p, 2n)b̃(−p,−2n)

+ 1
2m

2
(
f2
π − v2

)
βV + O

(
b̃3√
N

)
(12.127)

Note that only even Matsubara frequencies contribute in the b-field:
νn = 2πnT . This may have been anticipated. There appears the one-loop
function

Π(p, ωn, T,m) = T
∑
l

∫
d3k

(2π)3
1

(ωn − ωl)2 + (p − k)2 + m2

1
ω2
l + k2 + m2

(12.128)
The effective action is an infinite series in b. The coefficients are frequency
and momentum dependent, arising from one-loop diagrams. In addition,
each successive term is suppressed by 1/

√
N compared with the previous

one. This is the large-N expansion.
The propagators for the π and σ fields are of the usual form,

D−1
0 (p, ωn,m) = ω2

n + p2 + m2 (12.129)

with an effective mass m yet to be determined. The propagator for the
b-field is more complicated:

D−1
b (p, ωn,m) = Π(p, ωn, T,m) +

2
N

v2

ω2
n + p2 + m2

(12.130)
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The value of the condensate v is not yet determined, either.
Keeping only the terms up to order b2 in Seff (the rest vanish in the

limit N → ∞) allows us to obtain an explicit expression for the partition
function and the pressure; this includes the next-to-leading order terms
in N :

P =
T

V
lnZ = 1

2m
2
(
f2
π − v2

)
− 1

2N T
∑
n

∫
d3p

(2π)3
ln
[
β2
(
ω2
n + p2 + m2

)]
− 1

2T
∑
n

∫
d3p

(2π)3
ln
(

Π(p, ωn, T,m) +
2
N

v2

ω2
n + p2 + m2

)
(12.131)

The second term in the argument of the last logarithm should and will be
set to zero at this order. It may be needed at higher order in the large-N
expansion to regulate infrared divergences.

The pressure is extremized with respect to the mass parameter m.
Therefore ∂P/∂m2 = 0. From the initial expression for Z this is seen to
be equivalent to the thermal average of the constraint:

f2
π = 〈Φ2〉 = v2 + 〈π2〉 + 〈σ2〉 (12.132)

If an approximation to the exact partition function is made, such as the
large-N expansion, this constraint should still be satisfied. It may, in fact,
single out a preferred value of m.

To leading order in N we may neglect the term involving Π entirely.
The pressure is then

P = 1
2m

2
(
f2
π − v2

)
+ N P0(T,m) (12.133)

The pressure must be a maximum with respect to variations in the con-
densate v. This means that

∂P

∂v
= −m2v = 0 (12.134)

which is equivalent to the condition 〈σ〉 = 0. There are two possibilities.

1 m = 0 There exist massless particles, or Goldstone bosons, and the
value of the condensate is determined by the thermally averaged con-
straint. This is the symmetry-broken phase.

2 v = 0 The thermally averaged constraint is satisfied by a nonzero
temperature-dependent mass. There are no Goldstone bosons. This is
the symmetry-restored phase.

Evidently there is a chiral-symmetry-restoring phase transition!
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In the leading order of the large-N approximation the particles are
represented by free fields with a potentially temperature-dependent mass
m. Again, we may use

∂P0(T,m)
∂m2

= 〈φ2〉 =
∫

d3p

(2π)3
1
ω

1
eβω − 1

(12.135)

with ω =
√
p2 + m2. Thus extremizing the pressure with respect to m2

is equivalent to satisfying the thermally averaged constraint

f2
π = v2 + 〈π2〉 + 〈σ2〉 (12.136)

Note however that the pion and σ fields have the same mass and therefore
〈π2〉 = (N − 1)〈σ2〉. Consider now the two different phases.

In the asymmetric, symmetry-broken, phase the mass is zero. The above
constraint is satisfied by a temperature-dependent condensate:

v2(T ) = f2
π − N T 2

12
(12.137)

This condensate goes to zero at a critical temperature

T 2
c =

12
N

f2
π (leading-N approximation) (12.138)

Exactly at Tc the thermally averaged constraint is satisfied by the fluctu-
ations of N massless degrees of freedom without the help of a condensate.

In the symmetric phase the condensate is zero. The constraint is satis-
fied by thermal fluctuations alone:

f2
π = N

∫
d3p

(2π)3
1
ω

1
eβω − 1

(12.139)

Thermal fluctuations decrease with increasing mass at fixed temperature.
The constraint is only satisfied by massless excitations at one tempera-
ture, namely, Tc. At temperatures T > Tc the mass must be greater than
zero. Near the critical temperature the mass should be small, and the
fluctuations may be expanded about m = 0 as

f2
π = NT 2

[
1
12

− m

4πT
− m2

8π2T 2
ln
( m

4πT

)
− m2

16π2T 2
+ · · ·

]
(12.140)

As T approaches Tc from above, the mass approaches zero as follows:

m(T ) =
π

3T
(
T 2 − T 2

c

)
+ · · · (12.141)

This is a second-order phase transition since there is no possibility of
metastable supercooled or superheated states.

The mass must grow faster than the temperature at very high tem-
peratures in order to keep the field fluctuations fixed and equal to f2

π .
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Asymptotically the particles move nonrelativistically. This allows us to
compute the fluctuations analytically. We get

f2
π = N

(
T

2π

)3/2 √
m e−m/T (12.142)

This is a transcendental equation for m(T ). It can also be written as

m = T ln

(
NT

2πfπ

√
mT

2πf2
π

)
(12.143)

Roughly, the solution behaves as follows:

m ∼ T ln
(
T 2

T 2
c

)
(12.144)

It is rather amusing that, at the leading order of the large-N approxi-
mation, the elementary excitations are massless below Tc, become massive
above Tc, and at asymptotically high temperatures move nonrelativisti-
cally.

The result to first order of the large-N expansion provides good insight
into the nature of the two-phase structure of the nonlinear σ model, but
it is not quite satisfactory for two reasons. First, it predicts N massless
Goldstone bosons in the broken-symmetry phase when in fact we know
there ought to be only N − 1. Second, the square of the critical temper-
ature is 12f2

π/N whereas it is 12f2
π/(N + 2) in the linear σ model in the

mean field approximation; we expect them to be the same in the limit
λ → ∞. Both these problems can be rectified by inclusion of the next-to-
leading-order term in N , which gives the contribution of the b-field.

It is natural to expect that the b-field will contribute essentially one
negative degree of freedom to the T 4 term in the pressure so as to give
N − 1 Goldstone bosons in the low-temperature phase. Therefore we move
one of the N degrees of freedom and put it together with the b-field
contribution as

P = 1
2m

2
(
f2
π − v2

)− 1
2(N − 1)T

∑
n

∫
d3p

(2π)3
ln
[
β2
(
ω2
n + p2 + m2

)]
−1

2T
∑
n

∫
d3p

(2π)3
ln
[
β2
(
ω2
n + p2 + m2

)
Π
]

(12.145)

The function Π(p, ωn, T,m) can be reduced to a one-dimensional integral:

Π =
1

8π2p

∫ ∞

0

dk k

ω
ln
(
k2 + pk + Λ2

k2 − pk + Λ2

)
1

eβω − 1
(12.146)
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where

Λ2 = Λ2(p, ωn,m) =
(ω2

n + p2)2 + 4m2ω2
n

4(ω2
n + p2)

(12.147)

but unfortunately Π cannot be simplified any further. In any case, to the
order in N to which we are working, the pressure is

P = 1
2m

2
(
f2
π − v2

)
+ (N − 1)P0(T,m) + PI(T,m) (12.148)

The pressure can be thought of, in the low-temperature phase, as due to
N − 1 Goldstone bosons with an interaction term PI.

Because of the logarithm, the main contribution to the interaction pres-
sure will come when Π is very small compared to unity. This corresponds
to very large values of the parameter Λ; in other words, to very high
momentum, Matsubara frequency, or mass. In this limit,

Π → 1
4π2Λ2

∫ ∞

0

dk k2

ω

1
eβω − 1

=
T 2

2π2Λ2
h3

(m
T

)
(12.149)

This may be considered as a high-energy approximation, and we shall
henceforth refer to it as such. Then

PI = 1
2 T
∑
n

∫
d3p

(2π)3
ln
[
β2
(
ω2
n + p2 + m2

)
Π
]

≈ −1
2 T
∑
n

∫
d3p

(2π)3
ln
(
h3

π2

(ω2
n + p2)(ω2

n + p2 + m2)
(ω2

n + ω2
+)(ω2

n + ω2−)

)
(12.150)

with dispersion relations

ω2
± = p2 + 2m2 ± 2m

√
p2 + m2 (12.151)

The interaction pressure can now be determined in the usual way to be

PI = −T

∫
d3p

(2π)3
[
ln(1 − e−βp) + ln(1 − e−βω(p))

− ln(1 − e−βω+(p)) − ln(1 − e−βω−(p))
]

(12.152)

Note that h3(m/T ) has no effect within this approximation. Note also that
in the broken-symmetry phase where m = 0 the contribution of the b-field
cancels one of the massless degrees of freedom to give N − 1 Goldstone
bosons.

Now we are prepared to examine the behavior of the system near the
critical temperature with the inclusion of next-to-leading terms in N . We
make an expansion in m/T as before. The pressure is, up to and including
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order m3,

P = (N − 1)
π2

90
T 4 − N + 2

24
m2T 2 +

1
2
m2
(
f2
π − v2

)
+

N

12π
m3T

(12.153)

In the high-temperature phase, where v = 0, maximization with respect
to m yields

f2
π = T 2

(
N + 2

12
− N

4π
m

T

)
(12.154)

This gives the same critical temperature as in the mean field treatment
of the linear σ model.

T 2
c =

12
N + 2

f2
π (sub-leading-N approximation) (12.155)

The mass approaches zero from above as follows:

m(T ) =
π(N + 2)

3NT

(
T 2 − T 2

c

)
(12.156)

In the results obtained immediately above, an approximation for Π to
which we have referred as a high-energy approximation has been used.
Relaxing this approximation can be done, albeit at the cost of a numer-
ical calculation. Of course, one should also go beyond the mean field
approximation in the linear model.

12.4.3 Finite-temperature behavior of fπ

Consideration of correlation functions at finite temperature is more
involved than at zero temperature. Lorentz invariance is not manifest
because there is a preferred frame of reference, the frame in which the
matter is at rest. Thus spectral densities and other functions may depend
on energy and momentum separately and not just on their invariant s.
Also, the number of Lorentz tensors is greater because there is a new vec-
tor available, namely, the vector uμ = (1, 0, 0, 0) that specifies the rest
frame of the matter.

In the usual fashion one may construct a Green’s function for the axial-
vector current Aμ

a :

Gμν
ab (z,q) =

∫ ∞

−∞
dω

ω − z
ρμνab (ω,q) (12.157)
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where the spectral density tensor is

ρμνab (ω,q) =
1
Z

∑
m,n

(2π)3δ(ω − Em + En)δ(q − pm + pn)

×
(
e−En/T − e−Em/T

)
〈n|Aμ

a(0)|m〉〈m|Aν
b (0)|n〉 (12.158)

The summation is over a complete set of energy eigenstates.
Owing to current conservation the spectral density tensor can be decom-

posed into longitudinal and transverse terms:

ρμνab (q) = δab
[
ρL
A(q)Pμν

L + ρT
A(q)Pμν

T

]
(12.159)

In general the spectral densities depend on q0 and q separately as well as
on the temperature. In the vacuum we can always go to the rest frame of
a massive particle and in that frame there can be no difference between
longitudinal and transverse polarizations, so that ρL = ρT = ρ. We also
observe that Pμν

L + Pμν
T = −(gμν − qμqν/q2). The pion, being a massless

Goldstone boson, is special. It contributes to the longitudinal axial spec-
tral density and not to the transverse one. In vacuum,

ρμν(q) =
(
qμqν

q2
− gμν

)
ρA(q2) + f2

πδ(q
2)qμqν (12.160)

This may be taken to be the definition of the pion decay constant at zero
temperature. In fact, one can write the pion’s contribution as

f2
πδ(q

2)qμqν = f2
πq

2δ(q2)Pμν
L (12.161)

This cannot be taken as the definition of the pion decay constant at finite
temperature because the contribution of the pion to the longitudinal spec-
tral density cannot be assumed to be a delta function in q2. In general, as
mentioned previously, the pion’s dispersion relation will be more compli-
cated and will develop a width at nonzero momentum. This smears out
the delta function into something like a relativistic Breit–Wigner distri-
bution. Fortunately, the Goldstone theorem [31] requires that there be a
zero-frequency excitation when the momentum is zero (see Chapter 7).
This implies that the width must go to zero at q = 0, which results in a
delta function at zero frequency. Explicit calculations support this asser-
tion [32, 33]. Therefore it would seem to make sense to define

f2
π(T ) ≡ 2 lim

ε→0

∫ ε

0

dq2
0

q2
0

ρL
A(q0, q = 0) (12.162)

Physically this means that the pion decay constant at finite temperature
measures the strength of the coupling of the Goldstone boson to the lon-
gitudinal part of the retarded axial-vector response function in the limit
of zero momentum.
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We shall first study the pion’s contribution to the spectral density at
temperatures small compared with fπ. We shall study both the nonlinear
and linear σ models. At low temperatures the σ meson’s contribution
as a material degree of freedom is frozen out and one might expect the
same dynamics to be operative in both models; in other words, one might
expect the result to be the same and so independent of λ.

The nonlinear σ model

The nonlinear σ model was defined at the beginning of subsection
12.4.2. One can make a nonlinear redefinition of the field without chang-
ing the physical content of the theory. Various redefinitions may be found
in the literature. First we will list the most common ones and then we
will compute fπ(T ) for each of them, thereby illustrating that one always
gets the same result. It is interesting to see how this comes about; it is
also reassuring that it does.

A convenient way to express the sigma and pion fields that explicitly
contains the constraint is

σ = fπ cos(φ/fπ)
(12.163)

π = fπφ̂ sin(φ/fπ)

where φ = |φ| and φ̂ = φ/φ. The Lagrangian may then be expressed in
terms of the fields of choice:

L = 1
2∂μπ · ∂μπ + 1

2∂μσ ∂μσ

= 1
2∂μπ · ∂μπ + 1

2

(π · ∂μπ) (π · ∂μπ)
f2
π − π2

= 1
2

f2
π

φ2
sin2

(
φ

fπ

)
∂μφ · ∂μφ + 1

2

[
1 − f2

π

φ2
sin2

(
φ

fπ

)]
∂μ ∂

μφ (12.164)

Another representation to consider is due to Weinberg [27], who makes
the definition

p = 2
f2
π

π2

(
1 −

√
1 − π2

f2
π

)
π (12.165)

or inversely

π =
p

1 + p2/4f2
π

(12.166)

In terms of Weinberg’s field definition the Lagrangian is very compact:

L =
1
2

∂μp · ∂μp

(1 + p2/4f2
π)2

(12.167)
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The (σ,π) representation is cumbersome because of the constraint,
although it can be handled by the Lagrange multiplier method of subsec-
tion 12.4.2. However, it is inconvenient for exposing the physical particle
content and for doing perturbation theory in terms of physical particles.
Among the three physical representations we choose to work with here,
it is interesting to note the range of allowed values of the fields. The
magnitude of the p-field can range from zero to infinity, the magnitude
of the π-field can range from 0 to fπ, and the magnitude of the φ-field
can range from 0 to πfπ. This distinction is important when dealing with
nonperturbative large-amplitude motion; whether it makes any difference
in low orders of perturbation theory is not known.

The first step in our quest to extract the temperature dependence of fπ
from the theory is to obtain the form of the axial-vector current in terms
of the chosen fields. Starting from

Aμ = −σ ∂μπ + π ∂μσ (12.168)

one directly computes

Aμ = −σ

(
∂μπ +

π (π · ∂μπ)
f2
π − π2

)

= −f2
π

2φ
sin
(

2φ
fπ

)
∂μφ− fπφ̂

[
1 − fπ

2φ
sin
(

2φ
fπ

)]
φ̂ · ∂μφ

= − 1
fπ

1
(1 + p2/4f2

π)2

[(
f2
π − 1

4
p2

)
∂μp +

1
2
p (p · ∂μp)

]
(12.169)

Every form of the axial-vector current is an odd function of the pion field.
Obviously it is not possible to compute the axial-vector correlation func-

tion exactly. We will restrict our attention to low temperatures. Roughly
speaking, a loop expansion of the correlation function is an expansion in
powers of T 2/f2

π , each additional loop contributing one more such factor.
To one-loop order, we need the axial-vector current to third order in the
pion field:

Aμ = −fπ ∂μπ +
π2

2fπ
∂μπ − 1

fπ
π (π · ∂μπ)

= −fπ ∂μφ +
2φ2

3fπ
∂μφ− 2

3fπ
φ (φ · ∂μφ)

= −fπ ∂μp +
3p2

4fπ
∂μp − 1

2fπ
p (p · ∂μp) (12.170)
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We will also need the Lagrangian to fourth order in the pion field:

L4 =
1

2f2
π

(π · ∂μπ) (π · ∂μπ)

=
1

6f2
π

[
(φ · ∂μφ) (φ · ∂μφ) − φ2 ∂μφ · ∂μφ

]
= − 1

4f2
π

p2 ∂μp · ∂μp

(12.171)

The correlation function 〈Ai
μ(x)Aj

ν(y)〉 will have a zero-loop contribu-
tion from the π–π correlation function 〈∂μπi(x) ∂νπj(y)〉, a one-loop
self-energy correction to the same π–π correlation function, and a one-
loop contribution from the correlation function involving four pions,
〈∂μπi(x)πj(y)πk(y)∂νπl(y)〉.

The contribution of the bare-pion propagator D0 to the longitudinal
spectral density is easily found to be

ρL
A(q0,q) = f2

π q
2 δ
(
q2
)

(12.172)

At zero temperature this is just the definition of the pion decay constant.
The one-loop pion self-energy may be computed by standard diagram-

matic or functional integral techniques. The results are:

Ππ(q) = − T 2

12f2
π

q2

Πp(q) = (N − 1)
T 2

24f2
π

q2 (12.173)

Πφ(q) =
1
3

Ππ(q) +
2
3

Πp(q)

These are rather dependent on the definition of the pion field! Neverthe-
less, it is worth noting that the Goldstone theorem is satisfied on account
of the fact that the self-energy is always proportional to q2.

The final contribution comes from the correlation function for a pion
at point x with three pions at point y. Again, standard diagrammatic
or functional integral techniques may be used. To express the answers,
we gather together the contributions from the bare propagator, from
the one-loop self-energy, and from this correlation function and quote
the coefficient of the term f2

π q
2 δ
(
q2
)

in the longitudinal part of the
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axial-vector spectral density:

π :
(

1 − T 2

12f2
π

)
− (N − 3)

T 2

12f2
π

p :
(

1 + (N − 1)
T 2

24f2
π

)
−
(
N − 5

3

)
T 2

8f2
π

(12.174)

φ :
(

1 + (N − 2)
T 2

36f2
π

)
− (N − 2)

T 2

9f2
π

In all three cases the results are the same and amount to a temperature
dependence of

f2
π(T ) = f2

π

(
1 − N − 2

12
T 2

f2
π

)
(12.175)

This agrees with the analysis of Gasser and Leutwyler [21] for the only
case where they can be compared, N2

f = N = 4.

The linear σ model

It is now not surprising to discover that the linear σ model gives the
same result for fπ(T ) at low temperatures as the nonlinear sigma model.
The reason is that the σ meson is very heavy at low temperatures and
cannot contribute materially in the way that the pions do. However, the
way in which the linear σ model works out is very different.

Let us go back to the axial-vector current before shifting the sigma
field:

Aμ = −σ ∂μπ + π ∂μσ (12.176)

After making the shift σ → v + σ the current takes the form

Aμ = −v ∂μπ − σ ∂μπ + π ∂μσ (12.177)

By maximizing the pressure (which is equivalent to minimizing the
effective potential) with respect to v at each temperature we effectively
sum all tadpole diagrams, leaving only 1PI diagrams in any subsequent
perturbative treatment. If this is done, one’s inclination is to identify v(T )
with fπ(T ). This is wrong; fπ(T ) has additional contributions, as we shall
now see.

The first contribution to f2
π(T ) does come from v2(T ) since it involves

the cross term of ∂μπa(x) with ∂νπ
a(y). Following the analysis of subsec-

tion 12.4.1, but at low temperature rather than high, we simply leave out
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the contribution of the heavy σ meson. This gives

P (T, v) = (N − 1)
π2

90
T 4 +

λ

2
v2

(
f2
π − N − 1

12
T 2

)
− λ

4
v4 (12.178)

Maximizing with respect to v gives

v2(T ) = f2
π − N − 1

12
T 2 (12.179)

There is another, nonlocal, contribution to the vertex, corresponding to
the emission and absorption of a virtual σ meson. One might think that
it would be suppressed by the large σ mass, m2

σ = 2λf2
π , but in fact this is

compensated by the coupling constant λ in the extra vertex. Evaluation
of this diagram gives a contribution to f2

π(T ) of T 2/6f2
π .

Finally there is a contribution coming from the dressed pion propagator
analogous to that in the nonlinear σ model. The full one-loop 1PI pion
self-energy diagrams have been shown already in Figure 12.5. We know
that the sum of the momentum-independent terms is zero on account of
Goldstone’s theorem. We just need the contribution that is quadratic in
the energy and momentum of the pion. This can arise only from the so-
called exchange diagram involving two σππ vertices. In imaginary time
(Euclidean space) it is

Πex(ωn,q) = −4λ2f2
π T
∑
l

∫
d3k

(2π)3
1

ω2
l + k2

1
(ωl + ωn)2 + (k + q)2 + m2

σ

(12.180)

Since T � mσ it is easy to extract the part that is quadratic in the
momentum. Analytically continuing to Minkowski space (ωn → iq0), it
is q2T 2/12f2

π .
The residue of the pion pole in the axial-vector correlation function can

now be obtained by adding the vacuum contribution, the pion self-energy
correction, and the tadpole and nonlocal vertex corrections as follows:(

1 − 1
12

T 2

f2
π

)
− N − 1

12
T 2

f2
π

+
1
6
T 2

f2
π

The final result,

f2
π(T ) = f2

π

(
1 − N − 2

12
T 2

f2
π

)
(12.181)

is identical to that of the nonlinear σ model. We remark that this cannot
be used to compute the critical temperature since it was obtained under
the condition that T � fπ.
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The approach to chiral-symmetry restoration

Calculation of fπ(T ) as T → Tc is more involved than in the low-
temperature limit. It was done for the nonlinear model by Jeon and
Kapusta [34]. Here we just quote the result:

f2
π(T ) = f2

π − N + 2
12

T 2 (12.182)

It goes to zero at the correct critical temperature. Notice that the coef-
ficient of the T 2 term is different from that in the low-temperature
limit. A relatively simple Padé approximation may be used to extrap-
olate smoothly from low temperatures to the critical temperature:

f2
π(T )
f2
π

≈
1 − T 2

T 2
c

1 − 4
(N + 2)

T 2

T 2
c

(
1 − T 2

T 2
c

) (12.183)

12.4.4 Finite-temperature scalar condensate

The scalar condensate is defined as |〈Φ〉|. Our convention has been to
allow the last, Nth, component of the field to condense, and to refer to
this as either v, if the field is shifted, or 〈σ〉 if the field is not shifted. In
this section we use the latter convention.

It is interesting to ask what happens to this condensate as a function
of temperature in the nonlinear model. The constraint as an operator
equation is f2

π = Φ2 and as a thermal average is f2
π = 〈Φ2〉; it is not

fπ = |〈Φ〉|. The condensate can indeed change with temperature. In fact
we can quite easily compute it to two-loop order. Before doing so, we
first discuss the connection of this condensate with the quark condensate
〈ψ̄ψ〉.

In two-flavor QCD one often associates the sigma and pion fields with
certain bilinear forms of the quark fields:

ψ̄ψ ∼ σ

iψ̄γ5τψ ∼ π

This association is made because the quark bilinear forms transform in
the same way under SU(2)×SU(2) as the corresponding meson fields.
The dimensions do not match, so there must be some dimensional coeffi-
cient relating them; this coefficient could even be a function of the group
invariant σ2 + π2 ∼ (ψ̄ψ)2 − (ψ̄γ5τψ

)2. Does this particular combination
of four-quark condensates change with temperature? The temperature
dependence of the four-quark condensates at low temperatures was first

https://doi.org/10.1017/9781009401968 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968


12.4 Linear and nonlinear σ models 285

calculated in [35] with the help of the fluctuation–dissipation theorem.
The contribution of pions alone was later discussed in [36] using soft-pion
techniques. From [35, 36] one can state the two condensates separately:〈 (

ψ̄ψ
)2 〉 =

(
1 − T 2

4f2
π

)〈
0
∣∣(ψ̄ψ)2

∣∣0〉− T 2

12f2
π

〈
0
∣∣(ψ̄γ5τψ)2

∣∣0〉 (12.184)

and〈
(ψ̄γ5τψ)2

〉
=
(

1 − T 2

12f2
π

)〈
0
∣∣(ψ̄γ5τψ)2

∣∣0〉− T 2

4f2
π

〈
0
∣∣(ψ̄ψ)2

∣∣0〉 (12.185)

Therefore there is no correction to this group invariant to order T 2/f2
π

inclusive:〈
(ψ̄ψ)2 − (ψ̄γ5τψ)2

〉
=
〈
0
∣∣(ψ̄ψ)2 − (ψ̄γ5τψ)2

∣∣0〉 (12.186)

This result is consistent with our analysis of the nonlinear σ model in
previous sections.

Now let us return to the business of computing the temperature depen-
dence of the scalar condensate to one- and two-loop order. In terms of the
three representations used in the discussion of the nonlinear σ model in
Section 12.4.3 the σ field is given by

σ

fπ
=

√
1 − π2

f2
π

= 1 − π2

2f2
π

−
(
π2
)2

8f4
π

+ · · ·

=
(

1 − p2

2f2
π

+
(p2)2

16f4
π

)1/2(
1 +

p2

4f2
π

)−1

= 1 − p2

2f2
π

+
(p2)2

8f4
π

+ · · ·

= cos
(

φ

fπ

)
= 1 − φ2

2f2
π

+
(φ2)2

24f4
π

+ · · · (12.187)

To second order in the pion field all three representations are the same.
Using the free-field expression for the thermal average of the field squared
we get

〈σ〉
fπ

= 1 − N − 1
2

(
T 2

12f2
π

)
+ · · · (12.188)

For N = 4, the only value for that we can quantitatively compare with
QCD, this agrees with the result of Gasser and Leutwyler [21].

The coefficient of the term that is fourth order in the pion field differs
in sign and magnitude among the three representations. It would be a
miracle if the thermal average of

√
1 − π2/f2

π , cos(φ/fπ), and the Wein-
berg expression were all the same! But regarding the order (T 2/12f2

π)2 we
must recognize that the term that is second order in the pion field gets
modified owing to a one-loop self-energy. This was computed for each
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representation in Section 12.4.3 and the results were listed in (12.173).
The term that is fourth order in the pion field can be evaluated using free
fields. The result is

〈
(φ2)2

〉
= (N2 − 1)

(
T 2

12

)2

(12.189)

and is obviously representation independent. The contributions for each
representation are

π : 1 − N − 1
2

(
T 2

12f2
π

)[
1 −

(
T 2

12f2
π

)]
− N2 − 1

8

(
T 2

12f2
π

)2

p : 1 − N − 1
2

(
T 2

12f2
π

)[
1 +

N − 1
2

(
T 2

12f2
π

)]
+

N2 − 1
8

(
T 2

12f2
π

)2

φ : 1 − N − 1
2

(
T 2

12f2
π

)[
1 +

N − 2
3

(
T 2

12f2
π

)]
+

N2 − 1
24

(
T 2

12f2
π

)2

(12.190)

where the second term in each line comes from the square of the pion field
and the last term comes from the pion field in fourth order. The sum of
all terms is identical in all three representations; it is

〈σ〉
fπ

= 1 − (N − 1)
(

T 2

24f2
π

)
− (N − 1)(N − 3)

2

(
T 2

24f2
π

)2

+ · · · (12.191)

The miracle happens. It is a consequence of the fact that physical quan-
tities must be independent of field redefinition. What is more, for N =
4 it agrees with the previously obtained result of Gasser and Leutwyler.
However, we emphasize once more that this expression should not be
used to infer a critical temperature because it has been derived under the
assumption that the temperature is small compared with fπ.

A calculation of the scalar condensate in the nonlinear model near the
critical temperature was made by Jeon and Kapusta [34]. The result is
exactly the same as in the linear model, (12.114), namely

〈σ〉2 = v2(T ) = f2
π − N + 2

12
T 2 (12.192)

This expression has corrections of order v2(T )/N and T 2/N in the large-N
expansion.
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12.5 Exercises

12.1 Use the exponential representation of the pseudoscalar fields (just
above (12.6)) in the leading-order chiral Lagrangian L2 to calculate
the four-pion interaction.

12.2 Use the four-pion interaction calculated in the first exercise to calcu-
late the two-loop contribution to the pressure of a pion gas. Compare
with (12.23).

12.3 Use the chiral Lagrangian L2 to compute the π–π scattering ampli-
tude. Use it to calculate the pion self-energy as in Section 12.2. Com-
pare your result with (12.173).

12.4 Read the paper by Dey, Eletsky, and Ioffe and rederive the mixing
rule for vector and axial-vector correlators at finite temperature.

12.5 Derive (12.116).
12.6 Construct a Padé approximation for 〈σ〉 = v(T ) to extrapolate from

T � fπ to T → Tc.
12.7 Do the linear and nonlinear σ models satisfy the Weinberg sum rules

at finite temperature? Explain your answer.
12.8 How are conditions (12.103) and (12.104) modified if the ρ and a1

spectral densities are taken to be relativistic Breit–Wigner distri-
butions with momentum-independent but temperature-dependent
widths instead of delta functions?
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13
Nucleation theory

The dynamics of first-order phase transitions has fascinated scientists at
least since the time of Maxwell and Van der Waals. Much work on the
classical theory of the nucleation of gases and liquids was carried out
in the early part of the 1900s, culminating in the theory of Becker and
Döring [1]. There were and still are many important applications, such
as cloud and bubble chambers, the freezing of liquids, and precipitation
in the atmosphere. The modern theory of nucleation was pioneered by
Langer [2]. Langer’s theory is based in a more fundamental way on the
microscopic interactions of atoms and molecules. It can also be applied
close to a critical point. Nucleation theory has been extended to relativis-
tic quantum field theory by Coleman and Callan [3] for zero temperature
and by Affleck [4] and Linde [5] for finite temperature. A coarse-grained
relativistic field theory description was developed by Csernai and Kapusta
[6] for finite temperature and extended to finite density by Venugopalan
and Vischer [7]. Langer’s results are recovered in the nonrelativistic limit.
Applications here are to elementary particle phase transitions in the early
universe, heavy ion collisions, and even the nucleation of black holes.

The goal of nucleation theory is to compute the probability that a
bubble or droplet of the A-phase appears in a system initially in the
B-phase near the critical temperature. Homogeneous nucleation theory
applies when the system is pure; inhomogeneous nucleation theory applies
when impurities cause the formation of bubbles or droplets. For the appli-
cations we have in mind, namely the early universe and very-high-energy
nuclear collisions, it seems that homogeneous nucleation theory is appro-
priate. In the everyday world it is usually the opposite; dust or ions in the
atmosphere are much more efficient in producing precipitation. Nucleation
theory is applicable for first-order phase transitions when the matter is
not dramatically supercooled or superheated. If substantial supercooling
or superheating is present, or if the phase transition is second-order, then
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Fig. 13.1. A potential with two nondegenerate minima.

the relevant dynamics is spinodal decomposition. In this chapter we con-
cern ourselves only with homogeneous nucleation theory.

13.1 Quantum nucleation

A relativistic quantum field theory approach has been worked out by
Coleman and Callan [3] for nucleation from one vacuum to another. This
is essentially a straightforward extension of the semiclassical formula for
tunneling through a barrier in quantum mechanics, generalizing from one
degree of freedom to many degrees of freedom and then to an infinite
number – a field theory. This approach will be illustrated for a single
scalar field.

The Lagrangian is

L = 1
2∂μφ∂

μφ− U(φ) (13.1)

Suppose that U has a local minimum at φ+ and a global minimum at
φ−, with U(φ−) < U(φ+), as illustrated in Figure 13.1. If the system is
at φ+, the false vacuum, it can tunnel through the barrier to enter the
region near the true vacuum, φ−. In nonrelativistic quantum mechanics,
the tunneling probability amplitude is dominated by the exponential of
minus the action of a trajectory which goes from one side of the barrier
to the other. The probability itself is proportional to the exponential of
minus the action for a trajectory which begins near φ+, goes through the
barrier, and returns to its starting point (on account of time reversal).
In the path integral approach to quantum mechanics, this corresponds to
the motion of a point particle in imaginary time, as opposed to real time,
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or equivalently to the motion of a particle in the inverted potential. The
process of starting near the false vacuum, going through the barrier, and
returning to the starting point was called a “bounce” by Coleman.

Although we are interested in the vacuum tunneling rate we can still
use the formalism of finite-temperature field theory, taking the zero tem-
perature, or β → ∞, limit in the end. In Euclidean space the classical
equation of motion is

∂2φ

∂τ2
+ ∇2φ = U ′(φ) (13.2)

The boundary conditions we impose are

φ(x, 0) = φ(x, β) = φ+ (13.3)
lim

|x|→∞
φ(x, τ) = φ+ (13.4)

∂φ

∂τ
(x, τ0) = 0 (13.5)

The first of these means that the bounce begins and ends at the false
vacuum. The second means that the bounce is localized, being surrounded
by false vacuum. The third means that the field has zero velocity at the
time τ0, the time at which the field penetrates the barrier: U(φ(x, τ0)) =
U(φ+). Solutions to the classical field equation will be dominant in the
classical (� → 0) limit since they have minimal values of the action.

One should expect that the vacuum tunneling solution with the small-
est action has O(4) invariance, from the symmetry of the problem.
The bounce solution, referred to as φ̄, depends only on the variable
ρ =

√
τ2 + x2. Rather than taking 0 < τ < β one may just as well take

−β/2 < τ < β/2. Then the equation of motion simplifies to

d2φ̄

d2ρ
+

3
ρ

dφ̄

dρ
= U ′(φ̄) (13.6)

The boundary conditions are

lim
ρ→∞ φ̄(ρ) = φ+ (13.7)

∂φ̄

∂ρ
(0) = 0 (13.8)

The last of these is needed to avoid a singularity at the origin. The action
is then computed from

S = 2π2

∫ ∞

0
dρ ρ2

[
1
2

(
dφ

dρ

)2

+ U(φ)

]
(13.9)
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Let us refer to S evaluated with the bounce solution φ̄ as SB. Since the
bounce is a solution to the equation of motion and is localized, it will
have finite action.

At zero temperature the system would sit at φ−, where the potential
energy is a minimum. Of course there will be quantum corrections to the
energy density. The most important of these will arise from fluctuations
about φ−. From Chapter 2 we know that we can express the quadratic
fluctuations to the partition function around this minimum as

N
{
det
[−∂2

τ −∇2 + U ′′(φ−)
]}−1/2 (13.10)

where N is a normalization constant. The bounce solution, together with
the quadratic fluctuations about it, will contribute

NβV exp(−SB)
{
det
[−∂2

τ −∇2 + U ′′(φ̄)
]}−1/2 (13.11)

where N is the same normalization. This expression neglects complica-
tions due to any zero eigenvalues when performing the functional inte-
gral. The factor of spacetime volume βV arises from integration over the
position of the center of the bounce: it may be centered anywhere, not
necessarily at τ = 0, x = 0 as assumed above. The vacuum energy density
is computed in the limit β → ∞ from the formula E0 = −∂ lnZ0/∂β. In
this semiclassical approximation,

lnZ0 = ln
{
N
[−∂2

τ −∇2 + U ′′(φ−)
]−1/2

}
+ ln

{
1 +

det[−∂2
τ −∇2 + U ′′(φ̄)]−1/2

det[−∂2
τ −∇2 + U ′′(φ−)]−1/2

exp(−SB)

}
(13.12)

Notice that the normalization N drops out from the second logarithm.
The operator −∂2

τ −∇2 + U ′′(φ̄) has four zero eigenvalues owing to the
invariance of the bounce solution under translation of its center. Thus, if φ̄
is a solution to the classical equation of motion then so are the φμ = b∂μφ̄,
where b is a constant. The normalization b can be determined as follows.
First, since φ̄ is a solution to the classical equation of motion, the action is
stationary under general variations, in particular under the infinitesimal
scale transformation

δφ̄ = xν∂ν φ̄ (13.13)

Evaluating the action with φ̄ + δφ̄ and setting the first-order variation of
it to zero, we get∫

d4x(∂μφ̄)(∂μφ̄) = 4
∫

d4xL(φ̄) = 4SB (13.14)
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13.1 Quantum nucleation 293

Requiring that each φμ be normalized to unity determines the factor b =
S
−1/2
B .
The functions ∂μφ̄ all have one node, hence none of them represents the

lowest state. There must be at least one mode with a negative eigenvalue.
Owing to the power 1/2 in (13.12), the bounce solution contributes an
imaginary part to the vacuum energy density. This means that the bounce
solution is actually a saddle point of the action, not a local minimum.

If we somehow prepare the system in a state at or near φ+ then it will
decay by quantum tunneling, and this is reflected in the imaginary part
of the energy. If the bounce solution is left out of the sum over states
in the partition function then the energy density is real, as it must be if
we explicitly sum over the energy eigenstates of the Hamiltonian. If the
bounce solution is kept, its contribution should be isolated and identified
as an instability of a state that does not belong to the spectrum of the
Hamiltonian.

Putting Planck’s constant back into our formulae for the moment, we
realize that in the semiclassical limit the bounce solution is exponentially
suppressed via the factor exp(−SB/�). To lowest order in this small quan-
tity, the imaginary part of the energy density is

I =
(
SB

2π

)2 ∣∣∣∣ det′[−∂2
τ −∇2 + U ′′(φ̄)]

det[−∂2
τ −∇2 + U ′′(φ−)]

∣∣∣∣−1/2

exp(−SB) (13.15)

where the prime means that the four zero eigenvalues are omitted from the
determinant. The first factor arises from the integration over the four zero
modes. The factor involving the ratio of determinants has the dimension
1/length4 since four eigenvalues are deleted from one of the operators,
yielding an I with the proper dimensions of the number of tunnelings
per unit time per unit volume. The exponential is the dominant factor in
the tunneling, and is analogous to the Boltzmann factor in producing a
critical-sized droplet in the classical nucleation rate.

Generally the classical equation of motion must be solved numerically
to obtain the bounce solution, which is then used to compute the bounce
action and the tower of eigenvalues of the fluctuation operator. However,
in some circumstances one can make a thin-wall approximation to obtain
the bounce solution, the action, and the negative eigenvalue. For example,
consider the potential

U(φ) = λ
(
φ2 − a2

)2 +
ε

2a
(φ− a) (13.16)

where ε is a small quantity that represents the breaking of the reflection
symmetry of the potential. To lowest order in this quantity, φ± = ±a.
The bounce solution has the behavior that it equals −a for ρ � R and a
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for ρ � R, and crosses zero at ρ = R. This defines the four-dimensional
radius of the bounce R. The approximate solution is

φ̄(ρ) =

⎧⎪⎪⎨⎪⎪⎩
−a ρ � R

a tanh
(
ρ−R

2ξ

)
ρ ≈ R

a ρ � R

(13.17)

Here ξ ≡ 1/
√

8λa is the correlation length. This ought to be a good
approximation when the wall thickness, characterized by ξ, is much less
than the radius R. Substitution into the action yields

SB = −π2ε

2
R4 +

π2

12λξ3
R3 (13.18)

which displays the competition between the four-dimensional volume
energy and the three-dimensional surface energy. The radius is determined
by minimization:

RB =
1

8λεξ3
(13.19)

For self-consistency, we must therefore require ε � 1/(8λξ4). The result-
ing action is

SB =
π2

6
εR4

B (13.20)

The semiclassical calculation ought to be valid when SB � 1. A detailed
calculation proves that there is one and only one negative eigenvalue,
which is −3/(2R2

B).

13.2 Classical nucleation

The classical theory of nucleation culminated in the work of Becker and
Döring [1]; it was nicely reviewed by McDonald [8]. This theory was devel-
oped to describe the nucleation of a liquid droplet in a dilute yet super-
saturated vapor.

The classical expression for the nucleation of a droplet of dense liquid
in a dilute gas is

I = a(i∗)
( |ΔE′′(i∗)|

2πT

)1/2

n1 exp
(−ΔE(i∗)

T

)
(13.21)

where ΔE(i∗) is the formation energy of a critical sized droplet consisting
of i∗ molecules, a prime denotes differentiation with respect to the number
of molecules i, T is the temperature, n1 is the density of single molecules,
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and a(i∗) is the accretion rate of single molecules on a critical droplet.
Usually the accretion rate is taken to be

a(i∗) = 1
2n1v̄4πR2

∗s (13.22)

which is the flux of particles (v̄ is the mean speed of gas molecules) strik-
ing the surface of the critical droplet times a “sticking fraction” s less
than unity. The first term in the nucleation rate is a dynamical factor
influencing the growth rate, the second term characterizes fluctuations
about the critical droplet, and the product of the third and fourth terms
gives the quasi-equilibrium number density of critical-sized droplets. The
energy is measured with respect to the gas molecules, so that ΔE(1) = 0.

To extend the classical expression to the nucleation of a droplet in a
somewhat denser gas, the first thing to do is to multiply the Boltzmann
factor by the number of states available to the hot droplet:

e−ΔE/T → e−ΔE/T eΔS (13.23)

Owing to the thermodynamic identities S = −dF/dT and F = E − TS,
this modifies the Boltzmann factor to e−ΔF/T .

The size of the droplet can be characterized not by the number of
molecules it contains but by its radius. Then integration over quadratic
fluctuations about the mean size will give the prefactor( |ΔF ′′(R∗)|

2πT

)1/2

(13.24)

The accretion rate must be multiplied by the increase in radius per particle
absorbed to compensate for this change of variable. Upon absorption of
one more particle, the droplet free energy changes by

δΔF = ΔF ′(R∗)δR + 1
2ΔF ′′(R∗) (δR)2 (13.25)

The derivatives are evaluated at R∗, where the first derivative vanishes.
The (Gibbs) free energy added by one gas molecule is just minus the
pressure of the gas molecules divided by their number density. Therefore
the accretion rate is multiplied by the factor

δR =
(
− P1

n1ΔF ′′(R∗)

)1/2

(13.26)

Putting everything together we arrive at

I = 2πsv̄R2
∗n

2
1

(
P1

n1πT

)1/2

exp
(−ΔF∗

T

)
(13.27)
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Generalizing to different species of molecules we write

I = 2πR2
∗n1 exp

(−ΔF∗
T

) ∑
j

sj v̄jnj

(
Pj

njπT

)1/2

(13.28)

where Pj is the partial pressure of the jth species, nj is their density,
etc. The quasi-equilibrium density of critical droplets is normalized to
the density of the lightest species of particles, n1. Note especially the
appearance of R2∗ in the prefactor. This arises from the fact that the
absorption rate is proportional to the surface area. In contrast, when the
growth rate is dominated by dissipation, as will be the case in Sections
13.3 and 13.4, the prefactor has only one power of R∗.

13.3 Nonrelativistic thermal nucleation

The theory of nucleation developed by Langer [2] starts with the intro-
duction of a set of variables ηi, i = 1, . . . , N , that describe N collective
degrees of freedom of the system. We introduce a distribution function
ρ({η}, t) that is a probability density for the configurations {η} as a func-
tion of time t. We assume that ρ({η}, t) satisfies a continuity equation of
the form

∂ρ

∂t
= ∂tρ = −

N∑
i=1

∂Ji
∂ηi

(13.29)

where the probability current is given by

Ji = −
N∑
j=1

Mij

(
∂F

∂ηj
ρ + T

∂ρ

∂ηj

)
(13.30)

Here M is a generalized mobility matrix and F{η} is a coarse-grained free
energy. Both of these quantities will be discussed in more detail below.
Note that (13.29)–(13.30) can be derived via standard statistical tech-
niques by adding a suitable Langevin force to the Hamiltonian equations
of motion

∂tηi = −
N∑
j=1

Aij
∂F

∂ηj
(13.31)

where A is an antisymmetric matrix with entries 0 or 1.
The choice of variables ηi will depend on the problem. Generally one

chooses the smallest set that describes the system to sufficient accuracy
yet allows for a tractable analysis. The equilibrium configurations, for
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which ∂tρ = 0, have a probability distribution of the form

ρeq{η} ∝ exp
(−F{η}

T

)
(13.32)

Such configurations represent either the initial metastable point in the
η-space denoted by {η0}, or the final state. The phase transition starts
from a metastable point {η0} and moves to the vicinity of a stable point,
a point where F has its minimum. In this process the system is likely to
pass a saddle point. The configuration at the saddle point, {η̄}, is close to
{η0} except for the presence of one critical-sized droplet of the new phase.
At the saddle point we assume stationary flow, ∂tρ = 0, and calculate the
current across this saddle. The rate of probability flow, {η̄}, determines
the droplet-formation rate in the system. This rate is

I = I0 exp
(−ΔF

T

)
(13.33)

It gives the number of critical-sized droplets created in unit volume in
unit time. The activation energy ΔF is given by

ΔF = F{η̄} − F{η0} (13.34)

The prefactor I0 in (13.33) is the product of two terms:

I0 =
κ

2π
Ω0 (13.35)

Here the dynamical prefactor is κ (with dimension inverse time) and the
statistical prefactor is Ω0 (with dimension inverse volume). Langer showed
that the statistical prefactor can be written as

Ω0 = V
(

2πT
|λ̄1|

)1/2 N∏
α=α0+2

(
2πT
λ̄α

)1/2 N∏
α=1

(
λ

(0)
α

2πT

)1/2

(13.36)

Here V is the volume of η-space available for the flux of probability flow
and {η̄} and {η0} are the eigenvalues of the matrix

∂2F{η}
∂ηi∂ηj

evaluated at the points {η̄} and {η0}. We will evaluate Ω0 in the next
section.

Since {η0} is a minimum of F , all the λ
(0)
α must be positive. Because

{η̄} resides at the highest point along the path of lowest energy leading
away from {η0}, there is only one eigenvalue λ̄α that is negative. This is
the eigenvalue denoted by λ̄1 in (13.36). If F{η} has translational symme-
try in three-space then there will be at least three other eigenvalues λ̄α,
which are zero. These correspond to the three independent translations
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of the position of the symmetry-breaking fluctuation (bubble or droplet)
described by {η̄}. The product of λ̄’s appearing in (13.36) starts with
α = α0 + 2, where α0 is the total number of symmetries of F which are
broken by {η̄}. The integration over these α0 degrees of freedom defines
the factor V in (13.36).

The dynamical factor κ is the exponential growth rate of the unstable
mode {η̄}. To compute κ, we linearize (13.31) about ηi = η̄i:

∂tνi = −
N∑

j,l=1

Aij
∂2F

∂η̄j∂η̄l
νl (13.37)

where νi = ηi − η̄i. Then, setting ν ∝ eκt, we identify κ as the positive
eigenvalue of the matrix

−
N∑
j=1

Aij
∂2F

∂η̄j∂η̄l
(13.38)

In the nucleation problem the instability described by κ is the initial
growth rate of a bubble or droplet that has just exceeded the critical size.

The dynamical prefactor has been calculated by Langer and Turski
[9, 10] and by Kawasaki [11] for a liquid–gas phase transition near the
critical point, where the gas is not dilute, to be

κ =
2λσT
�2n2

�R
3∗

(13.39)

This involves the thermal conductivity λ, the surface free energy σ, the
latent heat per molecule �, and the density of molecules in the liquid
phase n�. The interesting physics in this expression is the appearance
of the thermal conductivity. In order for the droplet to grow beyond the
critical size, latent heat must be conducted away from the surface into the
gas. For a relativistic system of particles or quantum fields that has no
net conserved charge, such as baryon number, the thermal conductivity
vanishes. The reason is that there is no rest frame defined by the baryon
density to refer to heat transport. Hence this formula obviously cannot
be applied to such systems.

13.4 Relativistic thermal nucleation

The relativistic quantum field theory approach for nucleation from one
vacuum to another as worked out in Section 13.1 was extended by
Affleck [4] and Linde [5] to finite temperature. In the limit where thermal
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fluctuations dominate quantum fluctuations the rate is

I =
ω−
π

(
S3

2πT

)3/2{det′[−∇2 + U ′′(φ̄, T )]
det[−∇2 + U ′′(0, T )]

}−1/2

exp
(−S3

T

)
(13.40)

where S3 is the three-dimensional action associated with the formation
of a critical-sized bubble or droplet. This follows from the assumption
that the radius of the bubble is much larger than the inverse temperature
β. It is assumed that the bounce solution depends on three-dimensional
r instead of four-dimensional ρ, namely, φ̄(ρ) → φ̄(r). Integration over τ
in the action just produces an overall factor β = 1/T . The factor ω− is
the frequency of the unstable mode. The ratio of determinants is almost
never evaluated because it would have to be done numerically. Usually
dimensional analysis is invoked to approximate this pre-exponential factor
by T 4 or by T 4

c , so that

I ≈ T 4 e−S3/T or I = T 4
c e−S3/T (13.41)

The expression (13.40) is very similar to the nucleation rate given by
Langer for nonrelativistic systems, which itself is a generalization from the
classical nucleation rate. It is our goal here to derive an expression that is
fully relativistic, has Langer’s rate formula as a nonrelativistic limit, and
is expressed in terms of physically measurable observables such as surface
energy, latent heat, transport coefficients, and so on. This involves the
use of collective coordinates and coarse-graining.

The model of nucleation adopted here will be defined by the choice
of the statistical variables, ηi, and the corresponding coarse-grained free
energy F{η}. The conventional formulation of classical many-body sta-
tistical mechanics in terms of particle positions and momenta is not very
convenient for the present purpose. Nucleation is characterized by semi-
macroscopic fluctuations involving large numbers of particles. Therefore
hydrodynamic-type collective variables are more appropriate to describe
the formation of bubbles or droplets.

Hydrodynamics can be derived from microscopic kinetic theory by a
coarse-graining or cellular method. That is, one divides up the macro-
scopic system into semimacroscopic cells of a given volume and assigns
specific densities and flows to each of these cells. The free energy com-
puted by performing a partition sum subject to the cellular constraints
is the coarse-grained F that we are talking about. There is no problem,
in principle, in summing over the cellular densities and flows to obtain
the true equilibrium free energy. Moreover, as long as each cell comes to
local thermal equilibrium rapidly compared with the times required for
the hydrodynamic processes that one wants to consider, then one can
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use the coarse-grained F for computing nonequilibrium properties of the
system.

The question that arises at this point is, what is a suitable size for the
coarse-graining cells? In order for the hydrodynamic description to make
sense, the cell volume must be much larger than the average volume per
molecule. However, the cells cannot have linear dimensions appreciably
larger than a correlation length. If the cells are chosen to be too large,
phase separation will occur within single cells and the interesting details of
the condensation mechanism will be lost in the process of taking cellular
averages. To put this another way, we expect F as a function of the
average energy density ε to be a nonconvex function with distinct minima
corresponding to the two phases. But, if the cell size is large enough for
well-defined phase separation to occur within a cell then F must approach
its convex envelope and cannot possibly have the above property. We
conclude that the cell size can be neither much larger nor much smaller
than a correlation length.

13.4.1 Relativistic fluid dynamics

The equations of motion of relativistic fluid dynamics, ∂μT νμ = 0, can be
given in terms of E ≡ T 00 and M i = T 0i, that is, E = (ε + Pv2)γ2 and
M = (ε + P )γ2v, where ε is the energy density and P is the pressure; see
Section 6.9. The low-speed limit of relativistic fluid dynamics (γ2 ≈ 1 and
Pv2 � ε, but P not assumed small compared to ε) is given by

∂tε = −∇ · M (13.42)

and

∂tM = −∇ ·
(

1
w

M ⊗ M
)
−∇P (13.43)

Here w = ε + P is the enthalpy density, and we have assumed that the
relativistic energy density is E = (ε + Pv2)γ2 ≈ ε and that the relativistic
momentum density is M = wγ2v ≈ wv. The low-speed limit of relativis-
tic fluid dynamics finds applications not only in cosmology and astro-
physics but also in terrestrial environments dominated by radiation pro-
cesses, such as nuclear detonations, high-energy shock waves, and rocket
engines.

With the above-mentioned restrictions in mind we will try to find a
suitable form for the coarse-grained free energy F . This is not a trivial
problem. We choose as our basic variables the local energy density and
momentum density fields, ε(x, t) and M(x, t). The free energy F must
consist of a kinetic energy FK and an interaction term FI. The kinetic
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term is simply

FK(ε,M) =
1
2

∫
d3x wv 2 =

∫
d3x

M2

2w
(13.44)

We shall assume that FI is a functional of ε only and that it can be written
in the form

FI [ε(x)] =
∫

d3x

(
1
2
K(∇ε)2 + f(ε)

)
(13.45)

where f(ε) is the Helmholtz free energy density and 1
2K(∇ε)2 is the usual

gradient energy. The quantity K is a constant to be determined. Note
that in this discussion we assume that the temperature T is constant.

Using the above F with the mobility matrix

Mij = ∂j(Mi) + (Mi)∂j − Mj

2w
(∂iw)

Mi0 = −∂iε

M00 = 0

M0i = (∂iw) + w∂i

(13.46)

the equations of motion for ε and M are obtained as the low-speed limit
of relativistic fluid dynamics. The equation for energy conservation is

∂tε = −(∇w) · δFK

δM(x)
− w∇ · δFK

δM(x)
= −∇ · M(x) (13.47)

and the equation for momentum conservation, the Euler equation, is

∂tM = −
[
∇M + M ∇− M

2w
∇w

]
· δFK

δM(x)
+

δF

δε(x)
∇ε

= −∇ ·
(

1
w

M ⊗ M
)
−K(∇2ε)∇ε +

∂f

∂ε
∇ε (13.48)

In the limit where we have a uniform system in equilibrium it is clear, from
(13.43) and (13.48), that we must identify the last term on the right-hand
side with the gradient of the pressure,

∂f

∂ε
∇ε = ∇f −→ −∇P (13.49)

Note that when ε(x) is varying so slowly that the gradient energy can be
neglected, (13.45) is consistent with

f(ε) = ε− Ts = −P (13.50)
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13.4.2 Parametrization of the free energy

Imagine having two phases in equilibrium with each other at tempera-
ture T and, furthermore, that there is an interface separating them. This
interface cannot be perfectly sharp. It must have a finite thickness of
the order of a correlation length. In a local-density picture the energy
density ε should vary smoothly from one phase to the other. Since first-
order phase transitions have a latent heat, this means that we need to
know the free energy density f(ε) for values of the energy density ranging
between one phase and the other. To be specific, in what follows the low-
temperature low-energy-density phase will be denoted by the subscript
L, and the high-temperature high-energy-density phase will be denoted
by the subscript H. In addition to the need to know f(ε) for εL < ε < εH
we will also encounter situations where we need to know f(ε) for a range
of values about εL and εH. Statistical fluctuations about local thermal
equilibrium would require such knowledge, for example.

For a range of temperatures about Tc, f(ε) should have minima located
at εL(T ) and εH(T ). There should also be a barrier between these two
minima located at some ε0(T ). We require that

f(εL(T )) = −PL(T )

f(εH(T )) = −PH(T )
(13.51)

Therefore, at fixed T we shall parametrize f(ε) by a fourth-order polyno-
mial in ε. Owing to the pinning of the two local minima shown above, f(ε)
will have its global minimum at εH(T ) when T > Tc and its global mini-
mum at εL(T ) when T < Tc. At the critical temperature the two minima
of f(ε) are equal. Our parametrization is

f(ε) = f0 +
f ′′
0 (ε− ε0)2

2
− (εL + εH − 2ε0)f ′′

0

3(εL − ε0)(εH − ε0)
(ε− ε0)3

+
f ′′
0

4(εL − ε0)(εH − ε0)
(ε− ε0)4 (13.52)

where εL(T ), εH(T ), PL(T ) and PH(T ) are specified functions of T and f ′′
0

is the curvature of f at the top of the barrier located at ε0 (f ′′
0 < 0). Let us

define Δε ≡ εH − εL > 0 and ΔP ≡ PL − PH. In terms of these variables,

ε0 =
εL + εH

2
+

f ′′
0 (Δε)3

12ΔP
±
[(

f ′′
0 (Δε)3

12ΔP

)2

+
(Δε)2

4

]1/2

(13.53)

where + (−) corresponds to ΔP > 0 (ΔP < 0) and

f0 = −PH +
f ′′
0

12
(εH − ε0)2(εH − 2εL + ε0)

εL − ε0
(13.54)
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Fig. 13.2. Free-energy functional for extrapolating states away from equilib-
rium.

The first derivative of f is

f ′(ε) =
∂f

∂ε
=

f ′′
0 (ε− ε0)(ε− εL)(ε− εH)

(εL − ε0)(εH − ε0)
(13.55)

Thus, if the location of the two minima and their depths are given for
fixed T then only one free parameter, f ′′

0 , remains. In particular, this
parameter determines the barrier height, position, and curvature at all
energy densities:

f ′′(ε) =
f ′′
0

(εL − ε0)(εH − ε0)
× [(ε− ε0)(ε− εL) + (ε− ε0)(ε− εH) + (ε− εL)(ε− εH)] (13.56)

See Figure 13.2 for illustrations of f(ε) when T is greater than, equal to,
or less than Tc. Unless we can extract this free-energy function from the
Lagrangian in a more fundamental way we shall be content to use this
parametrization in the following analyses.

13.4.3 Surface profile

We restrict ourselves to the case of idealized bubbles or droplets. That is,
we consider only the limit in which the nucleating fluctuation described
by {η̄} is, indeed, a well-defined sphere of the L-phase with radius R
large compared with the interface thickness or the correlation length ξ (to
be defined below). In principle we need not make this restriction in the
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present theory. As we shall see, however, it is the appropriate one in the
cases of interest here. By going to this limit we can do all our calculations
analytically instead of having to resort to numerical methods.

The stationary point {η̄} is given by v(x) = 0 and ε(x) = ε̄(x), where
ε̄ satisfies

δFI

δε̄(r)
= −K∇2ε̄ +

∂f

∂ε̄
= 0 (13.57)

Given a spherical bubble of L-phase surrounded by H-phase at T < Tc

the energy density ε̄ depends only on the distance r from the center of
the bubble. Deep inside the bubble the energy density will be εL; far away
from the bubble the energy density will be εH. The energy density profile
ε̄(r) then describes a smooth transition from one phase to the other. As
discussed above, we will assume that the surface is located at a distance
R from the center that is much greater than the surface thickness.

Using our parametrization of f(ε) the static profile equation becomes

−K

(
d2

dr2
+

2
r

d

dr

)
ε̄ + f ′′

0

(ε̄− ε0)(ε̄− εL)(ε̄− εH)
(εL − ε0)(εH − ε0)

= 0 (13.58)

We introduce a correlation length defined at the top of the barrier by
ξ2
0 ≡ −K/f ′′

0 . Then

d2ε̄

dr2
+

2
r

dε̄

dr
+

(ε̄− ε0)(ε̄− εL)(ε̄− εH)
ξ2
0(εL − ε0)(εH − ε0)

= 0 (13.59)

Let us find the behavior of the solution in each of three regions.

(i) In the interior of the bubble ε̄ = εL + g1(r); g1(r) is a small deviation
from the equilibrium L-phase energy density satisfying

d2g1

dr2
+

2
r

dg1

dr
− ξ−2

L g1 = 0 (13.60)

where

ξ2
L = ξ2

0

εH − ε0
Δε

(13.61)

defines the correlation length in the L-phase. The solution of this equation
is

g1(r) =
A1

r
sinh

(
r

ξL

)
+

B1

r
cosh

(
r

ξL

)
(13.62)

From the requirement that the solution be finite at the origin we get
B1 = 0. In order to match onto the interface region, A1 must be very
small, proportional to e−R/ξL . Then ε̄(r) ≈ εL throughout most of the
interior.
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(ii) Near R we can write ε̄ = ε0 + g2(r). Linearizing in g2 leads to

d2g2

dr2
+

2
r

dg2

dr
+ ξ−2

0 g2 = 0 (13.63)

The general solution is

g2(r) =
A2

r
sin
(

r

ξ0

)
+

B2

r
cos
(

r

ξ0

)
(13.64)

We require that g2(R) = 0, which is equivalent to defining the location
of the surface by the equation ε̄(R) = ε0. Thus the solution for ε̄ in the
vicinity of the bubble’s surface is

ε̄ = ε0 +
A2

r
sin
(
r −R

ξ0

)
(13.65)

and A2 > 0.

(iii) The exterior solution has the same functional form as in the interior
except that g3(r → ∞) = 0 is required by the boundary condition. The
exterior solution is therefore

ε̄ = εH − A3

r
e−r/ξH (13.66)

where

ξ2
H = ξ2

0

ε0 − εL
Δε

(13.67)

defines the correlation length in the H-phase and A3 > 0.

At the critical temperature f(εL) = f(εH). Then the free energy
becomes symmetric, ε0 = (εL + εH)/2, and ξ2

H = ξ2
L = ξ2

0/2. In this case
the interfacial profile has a nice analytical solution in the planar (R → ∞)
limit:

ε̄(x) =
1
2

[
εL + εH + Δε tanh

(
x

2ξH

)]
(13.68)

Here the surface is located at x = 0 with L-phase on the left and H-phase
on the right.

Suppose that an L-phase bubble has formed in the H-phase at T < Tc

because of statistical fluctuations. The change in free energy of the system
is

ΔF =
4π
3

(fL − fH)R3 + 4πR2σ (13.69)

where σ is the surface free energy. For baryon free matter,

ΔF =
4π
3

[PH(T ) − PL(T )]R3 + 4πR2σ (13.70)
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The hadronic droplet is stationary if ∂RΔF = 0, which leads to Laplace’s
formula

PL(T ) − PH(T ) =
2σ

R(T )
(13.71)

Thus the activation energy, in our approximation, is

ΔF =
4
3
πσR2 (13.72)

The surface free energy can be calculated from our parametrization of
FI. For a planar interface or for a sphere whose radius is much greater
than its surface thickness the formula was given by Cahn and Hilliard
[12]:

σ = K

∫ ∞

−∞
dx

(
dε̄

dx

)2

(13.73)

Inserting the solution for the planar interface at Tc, this integral takes
the form

σ = K

(
Δε

2

)2 1
2ξH

∫ ∞

−∞
dz

1
cosh4 z

=
K(Δε)2

6ξH
(13.74)

The correlation length and the surface free energy determine the param-
eters −f ′′

0 and K in the coarse-grained free energy. In principle these
parameters are temperature dependent. Their temperature dependence
is, however, generally difficult to obtain.

13.4.4 The prefactor

The prefactor is a product of two terms: the statistical prefactor and
the dynamical prefactor. The statistical prefactor, Ω0, is a measure of
both the available phase space as the system goes over the saddle and
of statistical fluctuations at the saddle relative to the equilibrium states.
The dynamical prefactor, κ, is the exponential growth rate of the bubble
or droplet at the saddle point. This is the more difficult to calculate. We
shall evaluate it using techniques exactly analogous to those employed by
Turski and Langer [9, 10].

The general expression for the statistical prefactor was given in (13.36).
To evaluate it, we first consider the eigenvalues of the matrix of second
derivatives of F , the λα. The λ

(0)
α are eigenvalues of the operator

δ2FI

δε(x)δε(x′)

∣∣∣∣
ε=εH

=
(
−K∇2 +

∂2f

∂ε2H

)
δ(x − x′) (13.75)
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Here by ∂2f/∂ε2H we mean the second derivative of f with respect to
ε at fixed temperature evaluated in the equilibrium H-phase. This is a
measure of the fluctuations in the system and cannot be determined from
knowledge of the equation of state alone. Since the right-hand side of
(13.75) depends on x only through ∇2, its eigenfunctions are plane waves,
with wave vectors q and eigenvalues

λ
(0)
q = Kq 2 +

∂2f

∂ε2H
(13.76)

There is also a set of eigenvalues, formally to be included among the
λ

(0)
α , which come from the kinetic term FK. In Langer and Turski [10]

it was concluded that these eigenvalues are spurious; that is, they do
not describe physically relevant fluctuations but only bulk motion of the
system. Hence they do not appear in the final formula for any nucleation
quantity.

At the saddle point, ε(x) = ε̄(r), the operator

δ2FI

δε(x)δε(x ′)

∣∣∣∣
ε=ε̄(r)

=
(
−K∇2 +

∂2f

∂ε̄2

)
δ(x − x′) (13.77)

is no longer translationally invariant because of the r-dependence of ε̄.
As was discussed by Langer [13], the resulting spherically symmetric
Schrödinger-like eigenvalue equation has an s-wave ground state with a
radial eigenfunction proportional to dε̄/dr and a negative eigenvalue

λ̄1 ≈ −2K
R2

(13.78)

This eigenstate is associated with the instability of the critical bubble
against uniform expansion or contraction. The next states are the three
p-waves, with eigenvalues λ̄ = 0, which occur because of the broken trans-
lational symmetry. Then there are higher-order partial waves with posi-
tive λ̄ corresponding to volume-conserving deformations of the shape of
the droplet. Finally, there is a continuum of nonlocalized eigenfunctions
starting at λ̄ = ∂2f/∂ε2H. These eigenfunctions are similar to the states
associated with the λ(0) in that they describe fluctuations in the bulk
plasma but here these fluctuations are perturbed by the presence of the
bubble. As before, the eigenvalues associated with the kinetic part of F
are spurious and can be disregarded.

We can recognize the products over α in (13.36) as representing fluc-
tuation corrections to the mean field excess free energy of the bubble.
If we were to evaluate ΔF using measured values of the surface energy
and thermodynamic potential, it would be inconsistent to include fluc-
tuation corrections to ΔF in the prefactor Ω0. Strictly speaking, the
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nucleation formula used here requires that ΔF be first evaluated at the
stationary point obtained from (13.57), and then corrected by the fluc-
tuation terms in Ω0. But this procedure would imply that the radius
of the critical droplet is determined by the expression for σ given in
(13.73), which is not necessarily the same as the experimental surface
free energy because of the fluctuation corrections. What we shall do,
instead, is to delete the explicit fluctuation terms in Ω0 and interpret
σ everywhere as the true surface energy; we shall make a similar assump-
tion concerning other thermodynamic quantities that appear. Possibly
this procedure can be justified by going beyond the Gaussian approxima-
tions for η-space integrations which were used in deriving (13.36); that is,
by constructing a renormalized perturbation expansion in the neighbor-
hood of {η̄}. If this program can be carried out, we might also be able
to compute systematically curvature corrections to the surface energy.
These corrections will be omitted here, and we shall focus our attention
on other ingredients of the nucleation formula, particularly the dynamical
prefactor.

Note that there are α0 + 1 = 4 more terms in the product over the λ
(0)
β

than in the product over the λ̄α in (13.36). This means that the logarithm
of the combined products is not precisely a free-energy difference. To see
what is happening here, it is useful to think in terms of a one-to-one
pairing between the λ

(0)
β and the λ̄α. At the top of the spectra (large pos-

itive λ(0) and λ̄) both kinds of eigenvalue correspond to short-wavelength
fluctuations that extend throughout the volume of the system V . We can
pair these eigenvalues so that their contributions cancel each other to
the extent that the droplet volume is negligible compared with the total
volume of the system. At the bottom of the continuum a finite set of
λ̄ values, which correspond to localized deformations of the bubble, fall
appreciably below their associated λ(0) values. Thus, by pairing the λ’s as
described, the correction to ΔF remains of order R3 in the limit V → ∞,
as it must. This procedure leaves four unpaired λ(0)’s at the bottom of the
spectrum that are not accounted for by the revised ΔF . Specifically, we
have

lim
V→∞

4∏
β=1

⎛⎝ λ
(0)
β

2πT

⎞⎠1/2

=
(

1
2πT

∂2f

∂ε2H

)2

(13.79)

remaining as the sole explicit contribution from the complicated products
over the α.

Having written down the value for λ̄1, we need only evaluate the factor
V to complete the calculation of Ω0. The formula for V was given by
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Langer [2, 13]:

V = V

[
1
3

∫
dr(∇ε̄)2

]3/2

= V

[
4πR2σ

3K

]3/2

(13.80)

Here we have made use of the fact that dε̄/dr is appreciable only in a
narrow region near r = R, where R is the radius of the bubble.

The resulting expression for Ω0 is

Ω0 = V

(
4πR2σ

3K

)3/2 (
πTR2

K

)1/2 ( 1
2πT

∂2f

∂ε2H

)2

(13.81)

Identifying the correlation length ξH in the H-phase by

1
K

∂2f

∂ε2H
=

1
ξ2
H

(13.82)

we can write (13.81) in the form

Ω0 =
2

3
√

3

(σ
T

)3/2
(
R

ξH

)4

V (13.83)

If one considers the nucleation rate to be per unit volume then the volume
V should be divided out of the above expression. Usually we do mean the
rate per unit volume and so Ω0 will not include the factor V in subsequent
discussion.

The dynamical prefactor κ should be obtained as the positive eigenvalue
of the matrix given in (13.38). Using the mobility matrix and the fact that
the bubble solution is spherically symmetric and satisfies (13.57), one finds
that κ = 0. This means that the bubble does not grow. The reason was
discussed by Langer and Turski [10]. In order for a bubble (or droplet) to
grow, latent heat must be transported away from the surface region: for
the nonrelativistic systems they were considering, they discovered that
heat conduction was necessary to allow for growth. This eventually led to
(13.39), which says that κ is proportional to the thermal conductivity λ.
It is clear that to get our bubble to grow we must include the effects of
dissipation in the dynamics.

We now want to determine the equations of motion of dissipative fluid
dynamics (Section 6.9) for small deviations about the stationary config-
uration ε(x, t) = ε̄(r),v(x, t) = 0. To that end we write ε = ε̄(r) + ν(x, t)
and v = v(x, t) and linearize the full equations of motion, including the
gradient term FK, in terms of ν and v:

∂tν = −∇ · M = −∇ · (w̄v) (13.84)
∂t(w̄v) = ∇ε̄

[−K∇2ν + f ′′ν
]
+ ∇ [(ζ + 4η/3)∇ · v] (13.85)
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Hereafter when we write f , f ′, or f ′′ we intend that they be evaluated at
the stationary configuration, so that they are complicated functions of r.

To determine κ we look for radial perturbations of the form

ν(x, t) = ν(r)eκt (13.86)
v(x, t) = v(r)r̂eκt (13.87)

These radial deviations are governed by the equations of motion

κν(r) = − 1
r2

d

dr

[
r2w̄v(r)

]
(13.88)

and

κw̄v(r) = − dε̄

dr

[
−K

(
d2

dr2
+

2
r

d

dr

)
+ f ′′

]
ν(r)

+
d

dr

{(
ζ +

4η
3

)
1
r2

d

dr

[
r2v(r)

]}
(13.89)

Eliminating ν(r) using the first equation we obtain a linear third-order
differential equation for the velocity profile:

κ2w̄v(r) = −dε̄

dr

[
K

(
d2

dr2
+

2
r

d

dr

)
− f ′′

]{
1
r2

d

dr

[
r2w̄v(r)

]}
+

d

dr

{
κ

(
ζ +

4η
3

)
1
r2

d

dr

[
r2v(r)

]}
(13.90)

Self-consistent solutions of this equation, together with the boundary con-
ditions, should provide us with the allowed values of κ. Unfortunately, it is
not a trivial equation to solve. Therefore we will first analyze the behavior
of the solution in three regions: the interior of the bubble, the exterior of
the bubble, and the surface region. We first note a constraint that follows
from (13.88) and the conditions that v(r) vanishes at the origin and at
infinity, namely ∫ ∞

0
dr 4πr2ν(r) = 0 (13.91)

In the interior region, from the origin to within a few correlation lengths
of the surface, recall that ε̄ ≈ constant. Then the first term on the right-
hand side of (13.90) vanishes, and the equation for v(r) reduces to

r2v′′ + 2rv′ − (a2
Lr

2 + 2)v = 0 (13.92)

where a2
L = κwL(ζL + 4ηL/3)−1. The general solution of this differential

equation is

v(r) = A

(
aL

r
− 1

r2

)
eaLr + B

(
aL

r
+

1
r2

)
e−aLr (13.93)
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where A and B are constants. We must require that v and v′ vanish at
r = 0. Consequently both A and B are zero, so that the velocity vanishes
in the interior of the bubble. This is true to the extent that ε̄ = constant
in this region.

In the exterior region, far outside the surface, the energy and enthalpy
densities approach their equilibrium values in the bulk H-phase, ε̄ → εH
and w̄ → wH. Then the first term on the right-hand side of (13.90) can
again be neglected as a first approximation. The solution with the correct
large-r behavior is

v(r) = C

(
aH

r
+

1
r2

)
e−aHr (13.94)

where C is a constant and a2
H = κwH(ζH + 4ηH/3)−1.

In the region of the surface, r ≈ R, the stationary configuration ε̄(r)
is varying rapidly and dε̄/dr is nonzero. Therefore, unlike in the deep
interior or the exterior of the bubble, the first term on the right-hand side
of (13.90) cannot be dropped. In fact, as we shall see, κ is proportional to
the viscosity, which we assume to be very small. Then the other two terms
in the equation are of second order in the viscosity, and we shall ignore
them. Thus, to good approximation, in the surface region ν(r) satisfies(−K∇2 + f ′′) ν(r) = 0 (13.95)

Given that ε̄(r) satisfies (13.57) and that ν(r) must go to zero at the
origin and at infinity, the solution to the above equation is

ν(r) ∼ dε̄

dr
(13.96)

Together with (13.88) this implies that in the surface region

v(r) =
D

r2w̄(r)

∫ r

0
dr′r′2

dε̄

dr′
(13.97)

where D is a constant. For distances r which exceed the bubble radius
R by more than a few correlation lengths but which are less than 2R,
(13.97) can be integrated to give

v(r) ≈ DΔε

wH

R2

r2
(13.98)

Remember that, as always, we are assuming weak to moderate supercool-
ing, so that R � ξ.

It is necessary to distinguish between the actual radius of the bubble, R,
and the radius of the bubble in the stationary or metastable configuration,
R∗, determined by Laplace’s formula. If the stationary bubble is perturbed
only slightly then the energy-density profile will change by only a minute
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amount. The transport of heat away from the surface will be a very slow
process because of the assumed smallness of the viscosity. As the bubble
slowly begins to expand, the energy-density profile will not change much,
but the profile moves out a small distance dR in a time dt. The energy flux
density (the energy per unit area per unit time) that must be transported
outwards is Δw dR/dt. Here we do not distinguish between the difference
in energy densities and the difference in enthalpy densities of the two bulk
phases because the pressure difference is small compared with the energy-
density differences; we shall refer to them interchangeably as the latent
heat. This energy flux must be balanced by that due to dissipation, which
is −(ζ + 4η/3)v dv/dr. We will evaluate the flow velocity just outside
the surface of the bubble. According to (13.98) the derivative is dv/dr ≈
−2v/R. Therefore energy balance gives us the relation

Δw
dR

dt
= 2

(
ζH +

4ηH

3

)
v2

R
(13.99)

The outward momentum flux density (the momentum per unit area
per unit time) is Δw v2. (This neglects a small contribution from viscous
terms that can be considered to be a higher-order effect.) The momentum
flux density must be equated to the force per unit area, which comes from
the Laplace formula

Δw v2 = 2σ
(

1
R∗

− 1
R

)
(13.100)

Again, the velocity is to be evaluated just outside the surface.
Using both energy and momentum conservation we can eliminate the

velocity and solve for dR/dt:

dR

dt
=

4(ζH + 4ηH/3)σ(R−R∗)
(Δw)2 R2 R∗

(13.101)

This is a differential equation for R(t), from which we can read off the
value of κ. It is

κ =
4σ(ζH + 4ηH/3)

(Δw)2 R3∗
(13.102)

This may be considered the principal result of this section.
Putting it all together gives the nucleation rate

I =
4
π

( σ

3T

)3/2 σ(ζH + 4ηH/3)R∗
ξ4
H(Δw)2

e−ΔF/T (13.103)

where ΔF = 4πσR2∗/3 and R∗ is given by the Laplace formula (13.71).
This is the probability per unit volume per unit time of nucleating an L-
phase bubble out of the H-phase. If one considers nucleating an H-phase
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droplet in the L-phase instead, one just needs to evaluate the correlation
length and the viscosities in the L-phase rather than the H-phase. At
the critical temperature, R∗ → ∞, and the rate vanishes because of the
exponential. The system must supercool a minute amount at least in order
that the rate attain a finite value. Note that at the critical temperature the
pre-exponential factor is linearly divergent in R∗, which is qualitatively
unlike the simple dimensionless estimate of a constant I0.

Venugopalan and Vischer [7] extended the calculation of κ to incorpo-
rate a net baryon number and therefore the effect of thermal conduction.
The result is

κ =
2σ[λHT + 2(ζH + 4ηH/3)]

(Δw)2 R3∗
(13.104)

This is proportional to a linear combination of the three dissipation coef-
ficients. It reduces to the expression derived above when thermal conduc-
tion can be neglected and to the expression of Langer and Turski in the
nonrelativistic limit and when shear and bulk viscosities are small.

This completes our calculation and analysis of the thermal nucleation
rate for systems with zero or negligibly small baryon number. In a sub-
sequent chapter we shall use it in a set of rate equations for the time
evolution of phase transitions in the early universe and in ultrarelativistic
nuclear collisions.

13.5 Black hole nucleation

In a beautiful and original work Gross, Perry, and Yaffe [14] calculated
the nucleation rate for black holes in a thermal bath of gravitons. Their
result is

I = 1.752T
(
M0

T

)212/45 (mP

4π

)3
exp

( −m2
P

16π2T 2

)
(13.105)

where mP ≡ G−1/2 is the Planck mass and G is Newton’s constant. The
quantity M0 is a regulator mass, undetermined in the pure Einstein theory
but supposed to be of the order of mP in a more complete quantum theory
of gravitation. Physically the reason for this instability of flat space is
that statistical fluctuations will produce small black holes. According to
Hawking [15] the effective temperature of a black hole is m2

P/8πM where
M is its mass. If the mass is too large then the black hole temperature
will be smaller than that of its surroundings and it will accrete matter. If
the mass is too small, the black hole temperature will be greater than its
surroundings and it will evaporate and eventually explode. The critical
mass for this unstable equilibrium is M∗ = m2

P/8πT .
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The calculation of the nucleation rate by Gross, Perry, and Yaffe is
based upon small fluctuations about a Schwarzschild instanton in a path-
integral formulation of Einstein’s theory. There is one negative eigenvalue,
which gives rise to the instability of flat space. The calculation is at the
same time elegant and lengthy. However, the main features of the result
can be obtained from the classical theory of nucleation [16].

Consider a volume V with gravitons at temperature T . The probability
that a fluctuation will produce a black hole of critical mass is exp(−ΔF ),
where ΔF is the change in free energy of the system with T and V held
fixed. Now ΔF = F∗ − Fg, where F∗ is the free energy of the black hole
and Fg is the free energy of the thermal gravitons displaced by the black
hole. The black hole free energy F∗ is related to M∗ by

M∗ = F∗ − T
dF∗
dT

(13.106)

or

F∗ =
M∗
2

=
m2

P

16πT
(13.107)

whereas Fg is given by

Fg = −π2

45
T 4 4π

3
r3 (13.108)

where r is of the order of or slightly greater than the Scharzschild radius.
Thus Fg/T is of the order of 10−2 to 10−3 and will be neglected.

Knowing the probability for one statistical fluctuation, we can esti-
mate the density for fluctuations to occur. Consider quantum density
fluctuations on the smallest scale possible, namely, the Planck wavelength
λP = 2π/mP. Imagine a cube with fluctuations spaced λP/2 apart. The
quantum density of fluctuations necessary to produce a black hole of crit-
ical mass is then estimated to be

n∗ =
(mP

π

)3
exp

( −m2
P

16πT 2

)
(13.109)

The rate of change of n∗ can be calculated as

dn∗
dt

=
1
T

∣∣∣∣dM∗
dt

∣∣∣∣n∗ =
m2

P

8πT 3
n∗ (13.110)

The rate of increase in the black hole mass may be estimated by the rate
at which gravitons cross the Schwarzschild radius RS:

dM∗
dt

= 2×4πR2
S

∫
hemisphere

d3p

(2π)3
p

exp(p/T ) − 1
=

π

120
T 2 (13.111)
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Putting everything together we get

I =
8π
15

T
(mP

4π

)3
exp

( −m2
P

16πT 2

)
(13.112)

Comparing (13.105) and (13.112) we see that in the former there still
remains a factor (M0/T )212/45 to interpret. The origin of this term is a
quantum correction to the free energy of the black hole [17]:

F quantum
∗
T

= −106
45

χ ln
(
M0

T

)
(13.113)

The factor χ is a topological invariant of the space, being 2 for the
Schwarzschild metric and 0 for flat space. The final formula derived heuris-
tically is

I =
8π
15

T

(
M0

T

)212/45 (mP

4π

)3
exp

( −m2
P

16πT 2

)
(13.114)

It is remarkable that not only the functional dependence on T and mP

is reproduced, but also the absolute normalization is very close. This is
more than could reasonably be expected.

13.6 Exercises

13.1 Show that the functions φμ = b∂μφ̄ are solutions to the equation of
motion given in Section 13.1 and that they have one node.

13.2 Write down the false vacuum decay rate including explicitly Planck’s
constant.

13.3 Make a numerical estimate of the nucleation rate for a critical-sized
water droplet in an atmosphere that is oversaturated by 10% at 10
degrees C.

13.4 Derive (13.40) along the same lines used to derive the vacuum decay
rate.

13.5 Derive (13.88)–(13.90) and from them patch together an approxi-
mate solution for v(r) valid from r = 0 to r = ∞.

13.6 Calculate the black hole formation rate with the inclusion of Nf

massless spin-1/2 fermions and Nb massless spin-0 bosons.
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14
Heavy ion collisions

The only practical way of creating and studying hot and dense strongly
interacting matter in the laboratory is by colliding heavy nuclei at high
energies. Some of the pioneering studies have used nuclear emulsion
data of highly energetic cosmic ray events. However, a serious handi-
cap there is the lack of control over the physical beam characteristics.
For a few decades now, there has existed a vibrant experimental program
seeking to explore the physics of nuclear collisions in different energy
regimes and with different combinations of beam and target nuclei. The
pioneering experiments at the Lawrence Berkeley National Laboratory
(Berkeley, USA) have been followed by several other experimental ven-
tures. It is impossible to enumerate all the facilities, but some important
efforts at the high end of the energy spectrum have been pursued at
the GSI (Darmstadt, Germany), CERN (Geneva, Switzerland), and at
Brookhaven National Laboratory (Upton, USA). The Relativistic Heavy
Ion Collider (RHIC) is located at BNL, and the Large Hadron Collider
(LHC) has a heavy ion program expected to begin at CERN around 2007.
A healthy experimental program in high energy nuclear collisions requires
a basis in nucleon–nucleon and nucleon–nucleus collisions. These in fact
constitute a crucial category of control experiments for the more com-
plex nucleus–nucleus events. The study of strongly interacting matter at
high temperature and density enjoys an active and fruitful collaboration
between the experimental and theoretical communities.

In relativistic nuclear collisions, multiple scatterings involving both the
primary constituents (the original nucleons) and the secondary particles
(mostly created pions) can, in principle, drive the system towards a state
of local thermodynamic equilibrium. The reason for this originates in
the phenomenology of hadronic collisions. From those studies it is known
that, at energies relevant for the applications considered in this chapter,

317
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the large inelastic part of the nucleon–nucleon cross section will cause
considerable energy loss of the colliding constituents. This energy loss
ultimately translates into the creation of a large number of light mesons,
mostly appearing in the central rapidity region, which is midway between
the projectile and target fragmentation regions. The identity of the pri-
mordial fields first materializing at mid-rapidity (partons or composites)
is not completely clear but should depend on the initial energy density.
The key issue, however, is the following: because of the large particle
multiplicities involved, the relativistic collisions of heavy nuclei will cre-
ate zones of short mean free paths. This condition will pave the way to the
statistical treatment of heavy ion collisions that we shall discuss in this
chapter. We have seen that QCD predicts a transition from hot hadronic
matter to quark–gluon plasma, provided that the energy density is large
enough. We also will review some of the probes that have been proposed
to study hot and dense systems and to determine whether a new state of
matter has been created.

14.1 Bjorken model

Fermi was the first to apply statistical techniques to hadronic particle
production in p–p collisions [1]. Shortly thereafter, the first application
of relativistic hydrodynamics to a strongly–interacting system was made
by Landau [2]. The power, elegance, and simplicity of hydrodynamics
is essentially contained in the statement that the entire system can be
described by a few macroscopic thermodynamic fields. The conditions nec-
essary for this to be so are that any modification of the state of the system
is reflected instantaneously in the fields. Quantitatively, this statement
identifies any relaxation time as shorter than any other time scale in the
system under scrutiny. Local thermal equilibrium is therefore assumed.
We also assume that the net baryon number and electric charge are zero.
Not only does this simplify the analysis but it is a very good approxi-
mation in high energy collisions because of the large number of particles
produced.

We have already seen, in Chapter 6, that the energy–momentum tensor
may be written as

Tμν = −Pgμν + (ε + P )uμuν (14.1)

where P is the pressure, ε is the energy density, and uμ = (γ, γv) is the
local flow velocity relative to some fixed reference frame. In a frame in
which the fluid is locally at rest, uμ = (1, 0, 0, 0), T 00 = ε, T ij = Pδij , and
T i0 = 0. The conservation of energy and momentum is expressed as

∂μT
μν = 0 (14.2)
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This vector equation, (14.2), represents a set of four scalar equations.
However, there are five unknown quantities: the three independent com-
ponents of the flow velocity uμ (the normalization condition u2 = 1 defines
three independent and one dependent component), the energy density,
and the pressure. To close this system, another equation must be sup-
plied, and this is the equation of state. This set of equations can always
be solved numerically. However, their solution is a complicated task in
three spatial dimensions unless simplifying assumptions are placed on the
symmetry of the system. There is a wide body of literature devoted to
the techniques used in numerical simulations using relativistic hydrody-
namics.

Insight can be gained by considering some simple limits. Motivated by
empirical observations, Bjorken [3] was led to explore the consequences
of the existence of a central plateau structure in the inclusive particle
production as a function of the spacetime rapidity y, defined as

y =
1
2

ln
(
t + z

t− z

)
(14.3)

where the z-axis is oriented along the beam direction. Theoretically, the
existence of this plateau implies that the initial conditions, viewed at the
same proper time after the beginning of the nuclear collision, are invariant
with respect to Lorentz transformations along the longitudinal (or beam)
direction.

Another assumption of the Bjorken scenario is that essentially all the
baryon number is carried by the receding Lorentz-contracted nuclei that
have just collided. The produced particles then occupy the central rapidity
region and the high multiplicity will ensure rapid thermalization followed
by hydrodynamic evolution. At this point it is appropriate to note that
this approach is really a conceptual idealization. In actual practice, the
manifest success of the hydrodynamic model in relativistic nuclear colli-
sions at RHIC energies suggests a very early thermalization, even though
the microscopic mechanisms that would drive it currently remain unclear.

In keeping with Bjorken’s line of thought, we shall be interested in the
early stages of the hydrodynamic development of the central collision of
high-energy nuclei. There the flow can be assumed one dimensional, owing
largely to the initial symmetry of the colliding system. At slightly later
times, larger than those associated with the size of the nucleus (t >
1.2A1/3 fm/c), the rarefaction wave coming in from the nuclear surface will
be fully formed and a three-dimensional expansion will set in. Therefore,
the early solution will be independent of the rapidity, and nothing in the
time evolution will spoil this symmetry. One may write the general solu-
tions as ε(τ), P (τ), T (τ), uμ(τ), with proper time τ =

√
t2 − z2. Solving
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for t and z in terms of τ and y yields

t = τ cosh y z = τ sinh y (14.4)

Then

uμ =
dxμ

dτ
= (cosh y, 0, 0, sinh τ) (14.5)

and indeed, uμuμ = 1. One may then write

uμ
∂τ

∂xμ
= u0∂τ

∂t
+ u3∂τ

∂z
= cosh2 y − sinh2 y ≡ 1

and
∂τ

∂xμ
=

xμ
τ

(14.6)

The equation for the conservation of energy and momentum is

∂μT
μν =

∂Tμν

∂xμ
=

∂(ε + P )
∂τ

∂τ

∂xμ
uμuν + (ε + P )

∂uμ

∂xμ
uν

+(ε + P )uμ
∂uν

∂xμ
− gμν

∂P

∂τ

∂τ

∂xμ
= 0 (14.7)

With the help of (14.6), this reduces to

∂ε

∂τ
+

ε + P

τ
= 0 (14.8)

Defining an entropy density s = S/V = (ε + P )/T and using the facts that
uμ∂/∂xμ = d/dτ and that at constant volume dε = Tds, we may rewrite
the above equation as

ds

dτ
+

s

τ
= 0 (14.9)

the solution of which clearly satisfies

s(τ)
s(τ0)

=
τ0
τ

(14.10)

Also implied by (14.9) is

∂ (suμ)
∂xμ

= ∂μs
μ = 0 (14.11)

Entropy is therefore a conserved quantity. Furthermore, since a volume
element in this geometry is dV = d2x⊥τdy, (14.10) also means that the
entropy per unit rapidity, dS/dy, is a constant with respect to proper
time.

Let us now study the time evolution implicit in the formalism we have
just written down. We start by considering the case of a first-order phase
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transition. Our pragmatic approach will be to describe the quark–gluon
plasma as a noninteracting gas of eight massless gluons and two flavors
(u, d) of massless quarks. Note that massive strange quarks could also
be included self-consistently. A bag constant B [4] is used to simulate
the effect of confinement in the hadron phase, which is described as a
noninteracting gas of massless pions. Thus the pressure, energy density,
and entropy density in each of the two phases are

Pq = 37aT 4 −B εq = 111aT 4 + B sq = 148aT 3

Ph = 3aT 4 εh = 9aT 4 sh = 12aT 3
(14.12)

where a = π2/90. The critical temperature is determined by pressure bal-
ance to be

Tc =
(

B

34a

)1/4

(14.13)

Thus B may be eliminated in favor of Tc. The latent heat necessary to
liberate the color degrees of freedom is 4B.

We may write
dε

dτ
=

dε

dP

dP

dT

dT

dτ
= −sT

τ
(14.14)

where (14.8) has been used. Note that dP = sdT at constant volume. The
sound velocity is

v2
s =

dP

dε
(14.15)

Putting all this together,

1
T

dT

dτ
= −v2

s

τ
(14.16)

which yields

T = T0

(τ0
τ

)v2
s

(14.17)

For the equations of state in (14.12), v2
s = 1/3 except at Tc. At Tc it is

necessary to specify in addition the volume fraction f of the quark–gluon
phase. The entropy density is

s(f, Tc) = sq(Tc)f + sh(Tc)(1 − f) (14.18)

and similarly for the energy density.
We assume now that the nucleus–nucleus collision produces a quark–

gluon plasma with initial entropy density s0 > sq(Tc). The temperature
evolves according to (14.17) until T drops to Tc. This occurs in the proper
time interval τ0 < τ ≤ τ1 = (T0/Tc)3τ0. Assuming that the nucleation of
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the hadron phase is fast, the system then enters the mixed phase. In the
mixed phase the entropy density decreases, not by decreasing T but by
converting quark–gluon plasma to hadron matter at lower entropy density
but still at Tc. The fraction f(τ) is easily derived to be

f(τ) =
1

r − 1

(
r
τ1
τ

− 1
)

(14.19)

where r = 37/3 is the ratio of number of degrees of freedom in the two
phases. Thus 1 > f > 0 for τ1 < τ < τ2 = rτ1. The mixed phase termi-
nates at τ2 whereupon the temperature begins to fall again according
to

T (τ) = Tc

(τ2
τ

)1/3
(14.20)

for τ > τ2. The expansion continues until the pions can no longer maintain
thermal contact. One can take this as a final breakup temperature Tf , also
called the freezeout temperature. In totally dynamical simulations of the
nuclear collision this sharp cutoff is avoided.

In the case sq(Tc) > s0 > sh(Tc) we assume that the matter is initially
formed in the mixed phase, with volume fraction f0 determined by

s = sq(Tc)f0 + sh(Tc)(1 − f0) (14.21)

It follows that

f(τ) =
1

r − 1

{
[1 + (r − 1)f0]

τ0
τ

− 1
}

(14.22)

The system evolves in the mixed phase until τ2 = [1 + (r − 1)f0]τ0. The
evolution then follows (14.17) in the hadron phase.

Let us now suppose that the equation of state leads to a second-order
phase transition. We parametrize the effective number of massless bosonic
degrees of freedom in each of the two phases as

Nh(T ) = 3 + be(T−Tc)/d Nq(T ) = 37 − ce(T−Tc)/d (14.23)

It is straightforward to verify that this leads to a second-order phase
transition (P and s continuous but ds/dT discontinuous) provided that
b + c = 34, b > 0, b = 17. Consistently with our discussion of the Wein-
berg sum rules in Chapter 12, let us require the ρ and a1 mesons to
become effectively massless at Tc. Then b = 18. Setting c = 16 produces
21 massless bosonic degrees of freedom at Tc, corresponding to the up and
down quarks. The missing 16 degrees of freedom correspond to the eight
massless gluons, which may not be readily available at Tc. The entropy
is 4aT 3N(T ), and the evolution can easily be charted using (14.10). The
parameter d controls the degree-of-freedom conversion rate. For the sake
of illustration we choose d = 0.034Tc.
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Fig. 14.1. The number of degrees of freedom as a function of the temperature
for equations of state producing phase transitions of the first order (solid line)
and of the second order (broken line). The effect of a rapid crossover (dotted
line) is also shown.

A rapid-crossover scenario is produced by the parametrization

N(T ) = 20 + 17 tanh
(
T − Tc

d

)
(14.24)

The transitions from one set of degrees of freedom to another are shown
in Figure 14.1, for the different schemes we have considered: a first-order
phase transition, a second-order transition, and a rapid crossover. Simi-
larly, the temperature evolution associated with each of these is shown in
Figure 14.2.

Another powerful feature of the Bjorken model is the particle produc-
tion. Since the entropy density of a gas of massless pions is proportional
to the pion number density, it follows that the entropy can be determined
by measuring the charged-particle multiplicity Nch. Considering a head-on
collision of equal-mass nuclei, one finds approximately

dNch

dy
=
(
f0 +

1 − f0

r

)
3πR2τ0T

3
0 (14.25)

where R is the nuclear radius, f0 = 0 if T0 < Tc, 0 ≤ f0 ≤ 1 if T0 = Tc, and
f0 = 1 if T0 > Tc. Those arguments are not significantly altered even if
the rather large latent heat is shrunk to zero so that the first-order phase
transition turns into a second-order one, or even if there is no proper
phase transition at all. The essential requirement is that the number of
degrees of freedom should increase by a factor r in a small temperature
interval ΔT ≈ d. The conservation of entropy density enables one to relate
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Fig. 14.2. The temperature evolution in the Bjorken model. Note that the
plateau in T starts and ends at τ = τ1 and τ2, respectively. See the text for
details.

measurements in the final state to parameters that determine the initial
conditions for thermal equilibrium and hydrodynamic flow.

In this section, we have used a simple dynamical model for ultrarel-
ativistic nucleus–nucleus collisions, and simple parametrizations of the
equation of state to give a flavor of this branch of high-energy nuclear
physics. For more sophisticated discussions, the reader is referred to the
literature cited at the end of the chapter.

14.2 The statistical model of particle production

As mentioned previously, Fermi’s seminal paper was instrumental to the
development of statistical techniques for particle production in strongly
interacting systems [1]. Fermi’s original application was to proton–proton
collisions. Our discussion will concentrate on nucleus–nucleus collisions,
where the applicability of the model is arguably maximal, but the statis-
tical model has even been applied in the case of e+e− collisions [5].

If we assume that the approach to equilibrium can be modeled by a
transport equation of the Boltzmann type for the phase-space density
f(x, p), we may write(

pμ

m

∂

∂xμ
+ Fμ ∂

∂pμ

)
f(x, p) = C[f ] (14.26)

where Fμ is a generalized force term and C[f ] is a collision term that
ensures entropy growth. At equilibrium, detailed balance makes the right-
hand side of this equation vanish, and thermal distributions functions are
recovered. In fact, in high-energy nuclear collisions a statistical approach
is natural, as the high multiplicity will provide a physical environment

https://doi.org/10.1017/9781009401968 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968


14.2 The statistical model of particle production 325

appropriate for realization of equipartition. Specifically, λ ∼ 1/σn, where
σ is a total cross-section, λ is a mean free path, and n ∼ ∫ d3p f(x, p).
Thus as the multiplicities increase, the mean free path will decrease. Fur-
thermore, the relevance of statistical arguments should improve in high-
temperature environments, owing to the same arguments.

The fundamental quantity that regulates the thermal composition of
particle species is the partition function. We will work in the grand canon-
ical ensemble. We have already encountered this quantity in Chapter 1; it
is given by Z = Tr ρ̂, where ρ̂, the statistical density matrix, is given by
(1.1). In a system that we are modeling as a gas of relativistic hadrons
(stable and unstable), the quantum numbers we choose to be conserved
are electric charge, baryon number, and strangeness. The grand canonical
partition function can then be written as a sum of partition functions for
individual hadrons and resonances:

lnZ(V, T, μQ, μB, μS) =
∑
i

lnZi(V, T, μQ, μB, μS) (14.27)

where

lnZi(V, T, μQ, μB, μS) = ±(2si + 1)
V

2π2

∫ ∞

0
dp p2 ln [1 ± λi exp(−βωi)]

(14.28)

The + or − sign is for fermions or bosons, 2si + 1 is the spin degeneracy

factor, ωi =
√
p2 + m2

i , β = 1/T , and the fugacity is

λi(T, μQ, μB, μS) = exp [β(μQQi + μBBi + μSSi)] (14.29)

The coordinate-space density of species i is then

ni(T, μQ, μB, μS) =
Ni

V
= (2si + 1)

T

2π2

∞∑
�=1

(±1)�+1

�
λ�
im

2
iK2(�βmi)

(14.30)

where K2(x) is a modified Bessel function. In actual comparisons with
experiment, it is especially important to account for resonances decaying
into lighter hadrons; then we get a net number

Nnet
i (T, μ) = Ni(T, μ) +

∑
k

Nk(T, μ)Bk→i+X (14.31)

where Bk→i+X is the branching ratio for the decay k → i + X. At high
temperatures (around and above the pion mass) the yield of the light
mesons is indeed dominated by feed-down from the higher-lying reso-
nances.

In practical applications to measured particle numbers and, especially,
ratios, the temperature T and the baryon chemical potential μB are the
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two main parameters of the model. Note that there is no quantum number
associated with the conservation of meson number, unlike baryons. Also,
overall strangeness conservation fixes μS . Note that this would actually
be rigorously true if measurements covered all the phase space, so that all
fragments were measured. For measurements performed at mid-rapidity,
however, the strangeness entering one region in rapidity is approximately
canceled by that leaving. Therefore, even in experiments with a limited
phase-space coverage, the strangeness chemical potential can be taken to
vanish. In addition, charge conservation requirements have a small influ-
ence at RHIC energies and above. Finally, the volume V drops out in
analyses of particle number ratios. It can actually be fixed by measuring
the total pion multiplicity and requiring agreement between the theoret-
ical expression and the empirical value.

Putting these ingredients together, one may further assume chemical
equilibrium and thus verify how far this assumption will hold. Chemical
equilibrium implies that if c � a + b then μc = μa + μb. Therefore, the
chemical potential of a given resonance is fixed by its decay systematics
and can be written in terms of μB. In the final analysis, decay cascades
(where several generations of particle decays contribute) are also included.
Also of practical concern is whether to use only data at mid-rapidity or
data that is integrated over the full phase space. A popular and pragmatic
choice is to restrict the analysis to a slice at mid-rapidity centered at zero
with a total width of 2 units of rapidity [6]. From CERN experiments,
the ratios of particle abundances were fitted at fixed-target bombarding
energies of 40 and 158 GeV per nucleon, for collisions of Pb on Pb. At
RHIC energies (

√
s = 130 and 200 GeV in the nucleon–nucleon center-of-

mass frame), Au + Au collisions were analyzed. At 40 GeV per nucleon,
11 particle ratios were included in the fit while that number was 24 at 158
GeV per nucleon. The lower RHIC energy included 13 species, while the
higher energy included five particle ratios; these numbers are continuously
updated as the experimental analyses continue. Weak-decay systematics
are extremely important: those species that are unstable against the weak
interaction will eventually decay and their products will be measured by
the experimental detectors. The goodness of fit was evaluated via the
minimization of

χ2 =
∑
i

(
Rexpt

i −Rmodel
i

)2

σ2
i

(14.32)

where Ri is the fraction of particles of species i in the total number of
particles of all species and σi is its experimental uncertainty. The set of
(T, μB) values that minimize the above relation is plotted in Figure 14.3.
The values of χ2 attained are about 1 per degree of freedom [6].
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Fig. 14.3. The chemical freezeout temperature against baryon chemical poten-
tial as extracted from several fits to measured particle ratios at different energies.
The solid line is a curve for which the average energy per hadron 〈E〉/〈N〉 = 1
GeV [7]. The data have been collected from experiments performed at the GSI
[8], the AGS at BNL [9], CERN [10, 6], and RHIC [11].

There have been efforts [12] to improve the fits to hadron-yield ratios
by invoking a departure from chemical equilibrium and looking for evi-
dence of this deviation in the data. For example, the density of pions is
parametrized by generalizing the thermal distribution function to

Nπ

V
= 3

∫
d3p

(2π)3
1

γ−1
π eωπ/T − 1

(14.33)

where γπ is a parameter that regulates the absolute chemical equilibrium
and is therefore unity in that limit. Values of γπ = 1 would constitute, in
this interpretation, a signature of nonequilibrium. We will not pursue this
further here, but it is a topic of current investigation.

The fitted values from Figure 14.3 can be reconciled with a global pic-
ture that emerged from years of heavy ion phenomenology at CERN’s
SPS, which we now very briefly summarize. The intuitive picture is as
follows. The nuclear system is first heated and compressed. This is fol-
lowed by a phase of decompression where both the temperature and the
density drop. Note here the use of the word temperature, which stems
again from years of phenomenological analysis. Two freezeout tempera-
tures may be identified. As the hot, interacting system cools, it eventually
breaks apart and its constituents begin free-streaming towards the detec-
tors to be measured individually. A criterion for this to happen is that the
mean free path, as defined earlier by the inverse of the product of density
and cross section, becomes comparable with the spatial dimensions of the

https://doi.org/10.1017/9781009401968 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968


328 Heavy ion collisions

system:

λ ∼ 1
nσ

∼ R (14.34)

The particle population will be dominated by pions, as they are the light-
est species. Some insight on the behavior of the system may then be had
by considering chiral perturbation theory. For temperatures below the
pion mass, the elastic cross section essentially saturates the total cross
section: the inelastic channels manifest themselves at higher powers of
the chiral expansion [13]. This means that number-changing interactions
will cease before purely elastic interactions do, as the system expands and
cools. Another way of thinking about this is related to the fact that inelas-
tic reactions have energy thresholds, whereas elastic interactions do not.
Therefore, there will exist a region where Tkin < T < Tchem. Here Tkin is
the kinetic freezeout temperature (where transverse-momentum spectra
cease to evolve) and Tchem is the temperature below which the particle
numbers do not change.

The fact that the curve corresponding to an average energy per par-
ticle of 1 GeV traces the path laid out by the thermal-model fit is very
suggestive of a critical phenomenon. However, numerical simulations of
relativistic nuclear collisions have correlated the energy per particle value
of 1 GeV with the onset of inelastic thresholds [14], at least at beam ener-
gies that correspond to those spanned in the experimental fits shown in
Figure 14.3. It is very suggestive that the low-μB chemical freezeout tem-
peratures found in the thermal analysis of experimental nucleus–nucleus
data are consistent with the critical temperature extracted from the lattice
simulation of QCD, as mentioned in Section 10.5. This would be the case
if the chemical composition of the hadrons being measured were estab-
lished during the hadronization of the quark–gluon plasma. Note also the
similarity between Figures 14.3 and 10.9. Although very suggestive, these
connections remain the source of much current research.

14.3 The emission of electromagnetic radiation

In theoretical studies of hot and dense strongly interacting systems, elec-
tromagnetic radiation constitutes a class of penetrating probes. This is
essentially a reflection of the near absence of final-state interactions for
photons (real and virtual) that are produced in relativistic nuclear colli-
sions. More quantitatively, at scales relevant for hadronic phenomenology,
α/αs ∼ 0.002 � 1. This means that electromagnetic radiation, once cre-
ated, will leave the system unscathed. In line with the rest of this chap-
ter, we assume that nuclear collisions at high energies form a thermal-
ized system. As mentioned previously, this assertion receives considerable
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empirical support. We will now proceed to derive the rate of emission of
electromagnetic radiation from a thermal, strongly interacting, medium.
As in any hadronic collision, there will always be emission of electro-
magnetic radiation from the very first interactions, those involving cold
matter. In nucleon–nucleus and in nucleus–nucleus events, this primordial
photon and lepton pair emission is usually treated (up to aspects like the
Cronin effect, which we do not discuss here) as an additive superposi-
tion of nucleon–nucleon contributions, calculated using the techniques of
perturbative QCD. The details of this are outside the scope of this book.

Consider generic hadronic states |i〉 and |f〉 and a transition between
them that involves the absorption or emission of a photon with four-
momentum kμ = (ω,k) and polarization εμ. To make things more definite
we shall concentrate on the case of real photons here, and extend our
analysis to lepton pair production later. The transition rate between the
two states is

Rfi =
|Sfi|2
tV

(14.35)

tV being the proper four-volume. To leading order in the interaction
Hamiltonian (or equivalently, in the one-photon approximation), the S-
matrix element is

Sfi = 〈f |∫ d4xĴμ(x)Aμ(x)|i〉 (14.36)

Ĵμ(x) being the hadronic electromagnetic current operator. Considering
a free vector field

Aμ(x) =
εμ√
2ωV

(
eik·x + e−ik·x

)
(14.37)

and, invoking translation invariance for the matrix element

〈f |Ĵμ(x)|i〉 = ei(pf−pi)·x〈f |Ĵμ(0)|i〉

one may write

Rfi = − gμν

2ωV
(2π)4 [δ(pi + k − pf ) + δ(pi − k − pf )]

×〈f |Ĵμ(0)|i〉〈i|Ĵν(0)|f〉 (14.38)

One delta function corresponds to the absorption process and the other to
emission. The differential thermal emission rate is obtained by keeping the
appropriate delta function, summing over final states, and averaging over
initial states with a Boltzmann weight e−βK̂i/Z, where Z =

∑
i e

−βK̂i ,

https://doi.org/10.1017/9781009401968 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968


330 Heavy ion collisions

and K̂ = Ĥ − μN̂ :

d3R

d3k
= − gμν

2ωV
V

(2π)3
1
Z

∑
i

e−βK̂i

∑
f

(2π)4δ(pi − pf − k)

×〈j|Ĵμ(0)|i〉〈i|Ĵν(0)|f〉 (14.39)

Defining, as in Section 6.2, spectral functions associated respectively
with absorption and emission,

f±
μν(k) = ± 1

Z

∑
i,f

e−βK̂i(2π)3δ(pi − pf ± k)

×〈f |Ĵμ(0)|i〉〈i|Ĵν(0)|f〉 (14.40)

one may use the identity relating them, f+
μν(k) = −eβωf−

μν(k), to write

ω
d3R

d3k
=

gμν

(2π)3
πf−

μν (14.41)

Note that the symbol used here (f) is different from that used in Chapter
6 (ρ), to make clear the fact that here the correlation functions involve
the current operator. One relates the current–current correlators to those
involving the fields through the equation of motion ∂μ∂μAν(x) = Jν(x),
written here in the Feynman gauge. Doing this, and using the fact that
the spectral density ρn

μν(k) is proportional to the imaginary part of the
retarded propagator, (6.33), one obtains

ω
d3R

d3k
= − gμν

(2π)3
Im Π′R

μν(ω,k) (14.42)

Here the finite-temperature retarded improper self-energy, Π′R
μν , is defined

through the appropriate Schwinger–Dyson equation, D = D0 −D0Π′D0.
Therefore, to leading order in the electromagnetic interaction but to all
orders in the strong interaction,

ω
d3R

d3k
= − gμν

(2π)3
Im ΠR

μν(ω,k) (14.43)

where ΠR
μν is the finite-temperature retarded photon self-energy.

Repeating this derivation, but for a virtual photon that converts to a
lepton pair, we are led to

E+E−
d6R

d3p+d3p−
=

2e2

(2π)6
1
k4

[
pμ+p

ν
− + pν+p

μ
− − gμν

(
p+ · p− + m2

�

)]
×ΠR

μν(ω,k)
1

eβω − 1
(14.44)
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where the invariant mass of the virtual photon is M2 = k2 = (p+ + p−)2,
p+ and p− are the momenta of the lepton pair components, and m� is the
lepton mass.

14.4 Photon production in high-energy heavy ion collisions

The formation and observation of quark–gluon plasma in ultrarelativistic
collisions between heavy nuclei is an important goal of modern nuclear
physics. Among the proposed probes of the plasma are the directly
produced real photons [15–21]. Microscopically, these could come from
the annihilation process qq̄ → gγ and from the QCD Compton pro-
cess qg → qγ, q̄g → q̄γ. These photons interact only electromagnetically,
unlike pions, and so their mean free paths are typically much larger than
the transverse size of the region of hot matter created in any nuclear col-
lision. As a result, high-energy photons produced in the interior of the
plasma usually pass through the surrounding matter without interact-
ing, carrying information directly from wherever they were formed to the
detector. This makes them an interesting object of study to both theorists
and experimenters.

Here we concern ourselves with the following questions. What is the
spectral emissivity of quark–gluon plasma? What is the spectral emissiv-
ity of hot hadronic matter? How do they compare at the same tempera-
ture? These are important questions. Suppose we put hadron gas in one
box and quark–gluon plasma in another and maintain them at the same
temperature T . Can we tell which box contains the quark–gluon plasma
by looking through a small window and measuring the photon spectrum?
If we wait long enough the answer is clearly no: even if we do not put
any photons into the boxes at the beginning, the matter will eventually
come to equilibrium under the electromagnetic interactions; to a good
approximation the final photon distribution will be just the Planck distri-
bution at temperature T . Fortunately, in conditions more appropriate to
a nuclear collision the answer is yes. A closer analog to a nuclear collision
is to make the boxes smaller than the photon mean free path and to make
the walls transparent to photons, so that the photons always escape and
the photon distribution stays far from equilibrium. The spectral emissiv-
ity then directly reflects the dynamics of real photon-producing reactions
in the matter, which may be different for the two phases. The thermal
production rates in the two phases are important in another sense. Sup-
pose that quark–gluon plasma is formed in a collision. It will expand and
eventually hadronize in a first- or second-order phase transition or rapid
crossover. The hadrons themselves may maintain local thermal equilib-
rium for a while, also producing photons. The total yield is a sum of
the yields from both phases. To make the method clear, we shall mainly
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+

Fig. 14.4. One- and two-loop contributions to the photon self-energy in QCD.

concentrate here on the radiation from the partonic phase of QCD, and
follow the treatment in [21].

In an expansion in diagram topologies, the one- and two-loop contri-
butions to Πμν are shown in Figure 14.4. The imaginary part is obtained
by cutting the diagrams. Cutting the one-loop diagram gives zero when
the photon is on the mass shell since qq̄ → γ has no phase space. Certain
cuts of the two-loop diagrams give order-g2 corrections to the nonexistent
reaction qq̄ → γ, while other cuts correspond to the reactions qq̄ → gγ,
qg → qγ and q̄g → q̄γ. Let Mi represent the amplitude for one of these.
The contribution to the rate in relativistic kinetic theory for a photon-
producing reaction 1 + 2 → 3 + γ is

Ri = N
∫

d3p1

2E1(2π)3
d3p2

2E2(2π)3
f1(E1)f2(E2)(2π)4δ(pμ1 + pμ2 − pμ3 − pμ)

× |Mi|2 d3p3

2E3(2π)3
d3p

2E(2π)3
[1 ± f3(E3)] (14.45)

where N is a degeneracy factor, the f ’s are the Fermi–Dirac or Bose–
Einstein distribution functions as appropriate, and there is either a Bose-
enhancement or a Pauli-suppression of the strongly interacting particle in
the final state. (Another example of the connection between the imaginary
part of the finite-temperature retarded self-energy and relativistic kinetic
theory can be found in Section 16.6.)

This rate can be simplified. Define s = (p1 + p2)2 and t = (p1 − p)2.
Insert integrations over s and t with a delta function for each of these
identities. This is a natural thing to do because the invariant amplitude
depends only on these two variables. Converting the total rate to a differ-
ential one, all but four of the integrations can be done without approxi-
mation:

E
d3Ri

d3p
=

N
(2π)7

1
16E

∫
ds dt |Mi(s, t) |2

∫
dE1 dE2 f1(E1)f2(E2)

× [1 ± f3(E1 + E2 − E)]θ(E1 + E2 − E)(aE2
1 + bE1 + c)−1/2

(14.46)
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where

a = −(s + t)2

b = 2(s + t)(Es− E2t)

c = st(s + t) − (Es + E2t)2
(14.47)

At present we are interested in the case where the photon energy is large,
E1 + E2 > E � T . In this limit it is a good approximation to make the
replacement

f1(E1)f2(E2) → e−(E1+E2)/T (14.48)

Even though E1 or E2 separately need not be large, phase space is unfavor-
able for it. This approximation can be checked numerically (see Exercise
14.4). Then the integrals over E1 and E2 can be done, with the relatively
simple result

E
d3Ri

d3p
=

N
(2π)6

T

32E
e−E/T

∫
ds

s
ln(1 ± e−s/4ET )±1

∫
dt |Mi(s, t) |2

(14.49)
The upper sign is to be taken when particle 3 is a fermion, the lower sign
when it is a boson.

For massless particles the amplitude is related to the differential cross
section by

dσ

dt
=

|M|2
16πs2

(14.50)

For the annihilation diagram,

dσ

dt
=

8πααs

9s2

u2 + t2

ut
(14.51)

where u and t are Mandelstam variables, and N = 20 when summing over
the up and down quarks. For the Compton reaction,

dσ

dt
=

−πααs

3s2

u2 + s2

us
(14.52)

and N = 320/3. The integral over t just gives the total cross section.
But the total cross section involving the exchange of a massless particle
is infinite: the differential cross sections have a pole at t and/or u = 0.
Many-body effects are necessary to screen this divergence. We will show
how this works. For now we delete the region of phase space causing the
divergence. We integrate over

−s + k2
c ≤ t ≤ −k2

c

2k2
c ≤ s < ∞ (14.53)
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where kc is an infrared cutoff and T 2 � k2
c > 0. This way of regulating

the divergence treats u and t symmetrically and maintains the identity
s + t + u = 0 that is appropriate for all massless particles.

In the limit k2
c → 0 we find

E
d3R

d3p

Compton

=
5
9
ααs

6π2
T 2e−E/T

[
ln
(

4ET

k2
c

)
+ CF

]
(14.54)

E
d3R

d3p

annihilation

=
5
9
ααs

3π2
T 2e−E/T

[
ln
(

4ET

k2
c

)
+ CB

]
(14.55)

where

CF =
1
2
− γE +

12
π2

∞∑
n=2

(−1)n

n2
ln n

= 0.0460 . . . (14.56)

CB = −1 − γE − 6
π2

∞∑
n=2

1
n2

ln n

= −2.1472 . . . (14.57)

and γE is Euler’s constant. These expressions use the full Fermi–Dirac or
Bose–Einstein distribution functions in the final state. Although E � T ,
it is not necessarily the case that E3 � T . Taking this into account, one
gets slightly different results if one uses the Boltzmann distribution in the
final state instead:

E
d3R

d3p

Compton

=
5
9

2ααs

π4
T 2e−E/T

[
ln
(

4ET

kc2

)
+

1
2
− γE

]
(14.58)

E
d3R

d3p

annihilation

=
5
9

2ααs

π4
T 2e−E/T

[
ln
(

4ET

k2
c

)
− 1 − γE

]
(14.59)

Corrections to these formulae vanish in the limit kc → 0.
The essential factors in these rates are easy to understand. There is a

factor 5/9 from the sum of the squares of the electric charges of the u
and d quarks, a factor ααs coming from the topological structure of the
diagrams, a factor T 2 from phase space, which gives the overall dimension
to the rate, the ubiquitous Boltzmann factor e−E/T for photons of energy
E, and a logarithm due to the infrared behavior.

The infrared divergence in the photon production rate discussed above
is caused by a diverging differential cross section when the momen-
tum transfer goes to zero. Often, long-range forces can be screened by
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Fig. 14.5. HTL-corrected photon self-energy, in QCD.

many-body effects at finite temperature. In fact, we have already seen
concrete examples of this mechanism in Chapter 9. From the hard ther-
mal loops (HTL) analysis, we know that a propagator must be dressed
if the momentum flowing through it is soft, on a scale set by the tem-
perature T . For the present application we would begin by replacing the
bare propagators and vertices in the one-loop diagram of Figure 14.4 by
effective propagators and vertices. The reason is that the propagation
of soft momenta is connected with infrared divergences in loops; if we
do not dress these propagators we get infinite answers, so the correc-
tions due to the dressing of the propagators are also infinite and therefore
necessary. Thus, the results with soft propagators dressed are really the
lowest-order finite results. In our case it is necessary to dress one of the
quark propagators because our results diverge otherwise. It is not nec-
essary to dress both, nor is it necessary to dress either of the vertices,
because these produce only finite corrections that are of higher order in
g. We are thus led to evaluate the diagram shown in Figure 14.5. Some
insight can be gained by expanding the diagram as a power series in g2.
The zeroth-order term reproduces the one-loop diagram of Figure 14.4.
The order-g2 term reproduces one of the two-loop diagrams of Figure
14.4, with the recognition that the quark self-energy is not the exact
one-loop self-energy but is approximated by its high-temperature limit.
Clearly this is a summation of an infinite set of diagrams that is pur-
posely designed to regulate infrared problems of the type encountered
here.

Starting with Figure 14.5, and summing over u and d quarks, we
find

Πμν(p) = −6 × 5
9
e2T

∑
k0

∫
d3k

(2π)3
Tr [G∗(k)γμG(p− k)γν ] (14.60)

where

G∗(k) = G∗
+(k)

γ0 − k · γ
2

+ G∗
−(k)

γ0 + k · γ
2

(14.61)

is the dressed propagator for a quark with four-momentum k, already
encountered in Section 9.4, and

G(q) = g+(q)
γ0 − q · γ

2
+ g−(q)

γ0 + q · γ
2

(14.62)
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is the bare propagator for a quark with four-momentum q = p− k. The
propagator G∗(k) was defined in (9.37), and

g±(q) = (−q0 ± q)−1 (14.63)

Using these expressions for the quark propagators, and evaluating the
traces, we obtain

ΠR,μ
μ (p) =

20
3
e2T

∑
k0

∫
d3k

(2π)3
{G∗

+(k) [g+(q) (1− k · q)+ g−(q) (1+k · q)]

+ G∗
−(k) [g+(q) (1 + k · q) + g−(q) (1 − k · q)]

}
(14.64)

That the self-energy is retarded means that p0 has a small positive imag-
inary part, as is appropriate in linear response analysis.

We then follow Braaten, Pisarski, and Yuan [22] in computing the imag-
inary part in the following elegant way:

ImT
∑
k0

F1(k0)F2(p0 − k0)

=
1
2i

Disc T
∑
k0

F1(k0)F2(p0 − k0)

= π(1 − eE/T )
∫ +∞

−∞
dω

∫ +∞

−∞
dω′NF(ω)NF(ω′)

×δ(E − ω − ω′) ρ1(ω) ρ2(ω′)
(14.65)

Here NF is the Fermi–Dirac occupation number and ρ1 and ρ2 are the
spectral densities for the two chosen functions F1 and F2. Specifically,
these are related by

F (k0) =
∫ +∞

−∞
dω

ω − k0 − iε
ρ(ω) (14.66)

We need the spectral density functions ρ∗± and r± for the dressed and bare
propagators, respectively. The latter can be obtained in a straightforward
fashion, and the former were given in Chapter 9. Putting this information
together we obtain

ImΠR,μ
μ = −20π

3
e2(eE/T − 1)

∫
d3k

(2π)3

∫ +∞

−∞
dω

∫ +∞

−∞
dω′ δ(E − ω − ω′)

× NF(ω)NF(ω′)
[
(1 + q · k)(ρ∗+r− + ρ∗−r+)

+ (1 − q · k)(ρ∗+r+ + ρ∗−r−)
]

(14.67)

with r±(ω′,q) = δ(ω′ ∓ |q|). In these expressions ρ∗+ and ρ∗− (9.39) are
evaluated at (ω,k).
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In the kinetic theory calculation we were forced to put a cutoff k2
c on the

four-momentum transfer t (and on u) to avoid an infrared divergence. This
cutoff removes only the small region of phase space left out by (14.53).
Anything else must necessarily be higher order in g. Inspection of Figure
14.4 shows that the exchanged quark must be dressed and must satisfy

− k2
c ≤ ω2 − k2 ≤ 0. (14.68)

This means that the delta functions (representing poles) in the spectral
densities do not contribute to this order, but only the functions β± (rep-
resenting branch cuts); see (9.40).

The energy-conserving delta function, together with the mass-shell
delta functions of r±, can be used to evaluate the integral over ω′ and
the integral over the angle between k and q in (14.67). Then, making use
of the inequalities E � T and 0 ≤ k2 − ω2 ≤ k2

c � T 2, we get

ImΠR,μ
μ = −5e2

6π

(
eE/T − 1

)
e−E/T

×
∫ kc

0
d |k |

∫ |k|

−|k|
dω [(|k | −ω)β+(ω,k) + (|k | +ω)β−(ω,k)]

(14.69)

The integral involving β− is the same as the integral involving β+, so
we only need to determine the latter and multiply by 2. Furthermore
it is convenient to make the change of variables |k |= τ cosh η and ω =
τ sinh η. Then we have for the above double integral

2
∫ +∞

−∞
dη

∫ kc

0
τ dτ (|k | −ω)β+(ω,k)

=
m2

q

4

∫ +∞

−∞
dη

cosh2η

{
ln
(

(Θ + yc cosh2η)2 + 1
Θ2 + 1

)
−2Θ

[
tan−1(Θ + yc cosh2η) − tan−1(Θ)

]}
(14.70)

where

Θ =
2
π

Q0(sinh η) −Q1(sinh η)
1 − tanh η

(14.71)

and

yc =
2
π

k2
c

m2
q

(14.72)

The quantities Q0(z) and Q1(z) are Legendre functions.
We still have some freedom in choosing the cutoff kc. Since g is supposed

to be perturbatively small for this whole analysis to make sense let us
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choose kc to lie somewhere in the interval

mq � kc � T (14.73)

Then we are allowed to take the limit yc � 1 in (14.70). Doing so, and
dropping terms that vanish in the limit yc → ∞, we find that the right-
hand side becomes

m2
q ln
(

k2
c

m2
q

)
+

m2
q

4

∫ ∞

−∞
dη

cosh2η

[
ln
(

4
π2

cosh4η

Θ2 + 1

)
− 2Θ

(π
2
− tan−1 Θ

)]
(14.74)

This remaining integral is a pure number and is evaluated as −4 ln 2.
Now we have all the items we need in order to write down the contri-

bution to the rate coming from the infrared-sensitive (IR) part of phase
space:

E
d3RIR

d3p
=

5
9
ααs

2π2
T 2e−E/T ln

(
k2

c

2m2
q

)
(14.75)

where

2m2
q =

g2T 2

3
(14.76)

Adding the contributions from both the hard momentum transfers,
(14.54) and (14.55), and the soft momentum transfers, (14.75), we get
the net rate

E
d3R

d3p
=

5
9
ααs

2π2
T 2e−E/T ln

(
2.912
g2

E

T

)
(14.77)

This is independent of the cutoff kc! The HTL resummation method works
beautifully to screen the infrared divergence. (Inclusion of the exact Bose–
Einstein and Fermi–Dirac distributions in the initial state instead of the
Boltzmann limit (14.48) leads to a replacement of the numerical factor
2.912 in the logarithm by 3.739. See Exercise 14.4.)

It is apparent that our asymptotic formula breaks down when E ≤
g2T/2.9 because the logarithm goes negative. For photon energies that
are small on a scale set by the the temperature, a complete calculation
should include bremsstrahlung processes. Also, the effective cutoff was
determined under the assumption that the photon energy was large. If it
is not, then all propagators and vertices in Figure 14.5 must be dressed.

The rate for photon emission described above was computed by taking
the imaginary part of Figure 14.5. In a Feynman diagram representation,
the HTL correction induces a thermal mass which screens the singular-
ity that would appear when the intermediate-quark propagator goes on-
shell. Moving on to a higher topology in the number of loops and taking
the imaginary part gives contributions like those of Figure 14.6. These
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Fig. 14.6. Two photon-producing processes that appear to be of higher order
in αs than the Compton and annihilation contributions.

+

Fig. 14.7. The two Feynman diagrams that contribute to the ρ self-energy. The
wavy lines are a neutral ρ, whereas the broken lines represent charged pions.

bremsstrahlung and pair-annihilation plus scattering contributions to the
photon emission are superficially of higher order in αs (they appear to be
O(α2

s )) than the ones we have discussed previously [23]. If the virtuality of
the off-shell quark going into the vertex where the photon is being emitted
is very small, there is an enhancement in the net thermal emission rate.
This can be seen in the prefactor: α2

sT
2/m2

q ∼ αs. Those diagrams, naively
of higher order in the strong coupling, contribute parametrically at the
same order as the previous ones for low energy photons! The resolution of
this apparent paradox was provided by a systematic identification of all
processes contributing, to the leading order in αs, to photon and lepton
pair production [24].

For the evaluation of the emissivity of hot matter in the confined,
hadronic sector, calculations have mainly followed the techniques out-
lined in this section. In particular, most practitioners have used relativistic
kinetic theory and considered the contributing processes, such as πρ → πγ
and ππ → ργ, channel by channel. This closely parallels the first part of
this section, where the annihilation and Compton contributions to the
photon spectrum in hot QCD were considered. Many authors have con-
tributed to this line of study. An early analysis was that given in reference
[21]. A recent assessment of this issue can be found in [25].

14.5 Dilepton production

The calculation of dilepton radiation from a medium of strongly inter-
acting partons follows steps very similar to those used for the calculation
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of real-photon emission. The first calculation using the HTL resumma-
tion technique was performed by Braaten, Pisarski, and Yuan [22]. The
dilepton sector has also profited from a reappraisal of the electromagnetic
emissivities, complete to leading order in αs [26]. Instead of concentrating
on the techniques that are appropriate for QCD again, we choose to con-
sider radiation from a hot gas of mesons. This is more representative of
conditions existing at temperatures below that of the phase transition, or
just before the strongly interacting system freezes out. In a similar way,
this discussion will illustrate the use of effective interactions to calcu-
late the in-medium vector spectral density, as alluded to in Section 12.2.
Conversely, we shall see that the methods in that chapter for inferring
the spectral density from experimental data can be used to evaluate the
emission of electromagnetic radiation.

This discussion closely follows that of Gale and Kapusta [27]. We start
with the interaction between a vector meson and a conserved current.
This is known to be renormalizable even if the vector meson is massive.
For the case at hand, charged pions interact with a neutral ρ meson via
the Lagrangian

L = |DμΦ|2 −m2
π|Φ|2 − 1

4ρμνρ
μν + 1

2m
2
ρρμρ

μ (14.78)

where Φ is the complex charged pion field, ρμν = ∂μρν − ∂νρμ is the ρ field
strength, and Dμ = ∂μ + igρρμ is the covariant derivative. The one-loop ρ
self-energy in a gas of pions is represented by the two diagrams of Figure
14.7. In Euclidean space,

Πμν(k) = −g2
ρT
∑
n

∫
d3p

(2π)3
(2p + k)μ(2p + k)ν

(p2 + m2
π) [(p + k)2 + m2

π]

+ 2δμνg2
ρT
∑
n

∫
d3p

(2π)3
1

p2 + m2
π

(14.79)

Here, p4 or k4 = 2πT × an integer. The zero-temperature part of the self-
energy may be evaluated using dimensional regularization. The vacuum
part is then

Πμν
vac(k) = (kμkν − k2δμν)

1
3

( gρ
4π

)2

×
[(

1 +
4m2

π

k2

)3/2

ln

(√
1 + 4m2

π/k
2 + 1√

1 + 4m2
π/k

2 − 1

)
− 8m2

π

k2
+ C

]
(14.80)
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where C is a renormalization constant. The contribution from T > 0 is

Π44
mat(k) = −

(
g2
ρ

2π

)∫ ∞

0

dp p2

ω

1
eβω − 1

(
4ω2 − k2

4

2p|k| ln a− 4 +
2ik4ω

p|k| ln b

)
(14.81)

Π4i
mat(k) = −kik4

k2
Π44

mat(k) (14.82)

Πij
mat(k) = Aδij + B

kikj

k2
(14.83)

The scalar functions A and B are given by

A = −1
2

( gρ
2π

)2
∫ ∞

0

dp p2

ω

1
eβω − 1

(
4(k2

4 − k2)
k2

− 2ik4ω(k2
4 + k2)

p|k|3 ln b

+
k2

4(k
2
4 − 4ω2) + k2(k2 + 2k2

4 − 4p2)
2p|k|3 ln a

)
(14.84)

B = −1
2

( gρ
2π

)2
∫ ∞

0

dp p2

ω

1
eβω − 1

(
4(k2 − 3k2

4)
k2

+
2ik4ω(3k2

4 + k2)
p|k|3 ln b

+
3k2

4(4ω
2 − k2

4) + k2(4p2 − 2k2
4 − k2)

2p|k|3 ln a

)
(14.85)

with

a =

(
k2

4 + k2 − 2p|k|)2 + 4ω2k2
4(

k2
4 + k2 + 2p|k|)2 + 4ω2k2

4

b =

(
k2

4 + k2
)2 − 4 (p|k| + ik4ω)2(

k2
4 + k2

)2 − 4 (p|k| − ik4ω)2
(14.86)

and ω =
√
p2 + m2

π. Switching back to Minkowski space, we may write as
in (5.46)

Πμν = FPμν
L + GPμν

T (14.87)

where Pμν
T/L are the transverse and longitudinal projection operators.

Using the relation between the self-energy and the full and bare
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propagators,

Πμν =
(D−1

)μν − (D−1
0

)μν (14.88)

and (14.87), we obtain

Dμν = − Pμν
L

k2 −m2
ρ − F

− Pμν
T

k2 −m2
ρ −G

− kμkν

m2
ρk

2
(14.89)

For any linear response analysis and for lepton pair production rates
we need the retarded ρ propagator. Therefore we will analytically con-
tinue the Matsubara frequency, k4 = 2πnT , to ik4 = k0 = E + iε, where
ε → 0+. The scalar functions F and G acquire an imaginary part when a
or b are negative. This happens when the variable of integration, p, lies
in the interval∣∣∣E√1 − 4m2

π/M
2 − |k|

∣∣∣ ≤ 2p ≤ E
√

1 − 4m2
π/M

2 + |k| (14.90)

Here M =
√
k2 is the invariant mass of the ρ and E =

√
M2 + k2 is the

total energy in the rest frame of the pion gas.
At zero temperature, dimensional regularization and renormalization

yield equal longitudinal and transverse self-energies, which are finite:

Fvac = Gvac

=
g2
ρ

48π2
M2

{
(1 − 4m2

π/M
2)3/2

×
(

ln

∣∣∣∣∣
√

1 − 4m2
π/M

2 + 1√
1 − 4m2

π/M
2
1

∣∣∣∣∣− iπθ(M2 − 4m2
π)

)
8m2

π

M2
+ C

}
(14.91)

The bare and renormalized fields and masses are related by

ρ(0)
μ = Z1/2ρμ Z0 =

(
mρ/m

(0)
ρ

)2
(14.92)

and the coupling constants are related by

Z0g
(0)
ρ = Z1/2gρ (14.93)

We may choose Z0 = Z for convenience. Finally, for the physical mass to
be mρ, we choose C in such a way that ReFvac(k2 = m2

ρ) = 0.
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Finally, at T > 0, F = Fvac + Fmat and G = Gvac + Gmat, where

Fmat =
g2
ρ

4π2

M2

k2

∫ ∞

0

dp p2

ω

1
eβω − 1

×
[
4ω2 + E2

2p|k| (ln |a| − iπΔ) − 4 +
2ωE
p|k| (ln |b| + iπΔ)

]
(14.94)

Gmat =
g2
ρ

4π2

∫ ∞

0

dp p2

ω

1
eβω − 1

[
2(E2 + k2)

k2
− EωM2

p|k|3 (ln |b| + iπΔ)

+
k2(4p2 − k2 + 2E2) − E2(E2 + 4ω2)

4p|k|3 (ln |a| − iπΔ)
]

(14.95)

where a and b are given in (14.86) and

Δ =

{
1 if

∣∣∣E√1 − 4m2
π/M

2 − |k|
∣∣∣ ≤ 2p ≤ E

√
1 − 4m2

π/M
2 + |k|

0 otherwise
(14.96)

We have shown (14.44) that the dilepton emission rate is related to
the imaginary part of the retarded photon self-energy, at finite tempera-
ture. The vector meson dominance model (VMD) states that the hadronic
electromagnetic current operator is given by the current–field identity

Jμ = − e

gρ
m2

ρρμ − e

gω
m2

ωωμ − e

gφ
m2

φφμ (14.97)

The VMD is nonperturbative in the strong interaction and has had an
impressive phenomenological success [29]. See also Exercise 14.7. We have
encountered VMD before, in Section 12.2. The current–field identity turns
the current–current correlation function into a field–field correlation func-
tion. Therefore to order e2 but to all orders in the strong coupling, the
dilepton emission rate can be written in terms of the in-medium vec-
tor spectral density, which is itself calculated with the effective hadronic
Lagrangian:

E+E−
d6R

d3p+d3p−

=
2

(2π)6
e4

g2
ρ

m4
ρ

M4

(
pμ+p

ν
− + pν+p

μ
− − gμνp+ · p−

)
Im DR

μν(ω,k)
1

eβω − 1
(14.98)

To make the longitudinal and transverse contributions manifest, we may
use kμ = pμ+ + pμ− and qμ = pμ+ − pμ− to write the expression in terms of
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Fig. 14.8. The dispersion relations for a ρ meson in its longitudinal and trans-
verse polarization states. The curves are for T = 0 (lower) and 150 MeV (upper).

the real and imaginary parts of F = FR + iFI, and G = GR + iGI:

E+E−
d6R

d3p+d3p−

=
1

(2π)6
e4

g2
ρ

m4
ρ

M4

{[
q2 −

(
q · k̂

)2
] −FI(

M2 −m2
ρ − FR

)2 + F 2
I

+
[
2M2 − q2 +

(
q · k̂

)2
] −GI(

M2 −m2
ρ −GR

)2 + G2
I

}
1

eβω − 1
(14.99)

This treatment may be generalized and extended to other mesons [30, 31].
This is necessary for a realistic treatment including chiral symmetry.

Finally, the effects of the interactions on the ρ meson may be quantified
further by considering the longitudinal and transverse dispersion relations,
which are found by locating the poles in the ρ propagator. They are
generated by obtaining the self-consistent solutions of

(ω2)L = k2 + m2
ρ + FR(ωL, |k|, T )

(14.100)
(ω2)T = k2 + m2

ρ + GR(ωT, |k|, T )

The longitudinal and transverse dispersion relations are plotted in Fig-
ure 14.8. Observe that the in-medium energy asymptotically goes over to

https://doi.org/10.1017/9781009401968 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968


14.6 J/ψ suppression 345

the free energy, with increasing momentum. This behavior is characteris-
tic of a many-body effect.

14.6 J/ψ suppression

In the search for the quark–gluon plasma, the experimental signature of
this new state of matter that enjoys the most popularity is that associ-
ated with the suppression of the J/ψ vector meson. The main ingredients
of this simple and elegant idea [32] can briefly be summarized as follows.
As the temperature increases, so will the effect of color Debye screening,
which will ultimately cause the dissociation of the charmonium bound
states. Suppression of the J/ψ was predicted before its experimental
observation!

In nonrelativistic charmonium models, the interaction potential is most
simply modeled as

V (r) = σr − αeff

r
(14.101)

where σ is the string tension and αeff is an effective Coulombic interaction
coupling. The energy of the lowest bound state can be roughly estimated
in a semiclassical approximation [32]. We start by writing

E(r) = 2m +
1

mr2
+ V (r) (14.102)

where m is the c quark rest mass. The second term is obtained by invoking
the uncertainty relation to write the kinetic term involving the reduced
mass in coordinate space. The lowest bound state is found by minimizing
the energy with respect to r. Taking αeff � 1/2, m � 1.5 GeV, and σ =
0.19 GeV2 one obtains rJ/ψ � 0.3 fm. This value is in qualitative agree-
ment with that obtained through more sophisticated approaches and also
confirms that, at T = 0, the size of the J/ψ is largely set by the confining
part of the potential.

Now consider the high-temperature plasma phase. If the transition
is first order, this is tantamount to choosing T > Tc. Since the quark–
antiquark pair is heavy, it makes sense to use a static potential for their
mutual interaction. We have discussed this already in Chapters 8 and 10.
At leading order in the coupling, the interaction is modeled by one-gluon
exchange, and at small momenta the gluon propagator develops an elec-
tric mass related to Π00(k). In pure SU(N) gauge theory, one calculates
the real part of the finite-temperature one-loop gluon self-energy.

The Debye-screened color Coulomb potential is

V (r) = −N2 − 1
2N

g2

4πr
exp(−melr) = −αeff

s

r
exp(−melr) (14.103)
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with m2
el = Ng2T 2/3. The coupling αeff

s obtained above Tc is generally
different from that used in the zero-temperature potential (14.101). Using
[33]

g2(T ) =
24π2

11N ln
(
19.2T/ΛMS

) (14.104)

one may get an estimate for T ∼ ΛMS, which implies that αeff
s � 0.3.

An interesting phenomenon, revealed by keeping the first powers in the
momentum expansion of Π00, is that of Friedel oscillations in QCD [33].
To see this, it is useful to recall that F = −Π00 = Fvac + Fmat. A low-
momentum expansion for Fmat(0,k) has been performed in the temporal
axial gauge and is [34]

Fmat(0,k) =
1
3
g2NT 2 − 1

4
g2NT |k|

− 11
48π2

g2Nk2

[
ln
(

k2

T 2

)
+

2
33

+ 2(γE − ln 4π)
]
(14.105)

The first term in this expansion is the electric mass, which is gauge invari-
ant. The second term, linear in k, is also gauge invariant. It is the same in
the temporal-axial, Coulomb, and all covariant gauges. The reason is that
this term modifies the plasmon effect in the thermodynamic potential; see
Section 8.3. The next term has the same coefficient as that of the vacuum
term, as it must in order to produce a temperature-dependent coupling
constant. Keeping the terms that are subleading in the low-momentum
expansion produces

V (r) = −N2 − 1
2N

g2(T )
2π2r

∫ ∞

0
dz

z sin zx

z2 − 2tz + 1
(14.106)

where x = melr and t = 3mel/8T . A contour integration puts the integral
into the form

V (r) = −N2 − 1
2N

g2(T )
4πr

S(x, t) (14.107)

The dimensionless screening function is

S(x, t) = 2
(

cos tx +
t√

1 − t2
sin tx

)
exp

(
−x2

√
1 − t2

)
−4t

π

∫ ∞

0
dy

y2 exp(−xy)
(1 − y2)2 + 4t2y2

(14.108)
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Fig. 14.9. The screening function S(x, t) for different values of t = 3mel/8T .

S(x, t) has the following asymptotic expansion. For fixed x and small t (the
high-temperature limit), S → e−x, the Debye-screening result. For fixed t
and x → ∞ (the long-distance limit), S → 8t/πx3. At very large distances
the potential is repulsive and falls as a power, not as an exponential:

V (r) → 9
4π3

[
N2 − 1
N2

]
1

T 3r4

The screening function is derived under the assumption that x > 1; that is,
the low-momentum expansion of F (0,k) has been used. This expression
cannot be written in terms of elementary functions. The integration in
(14.108) must be done numerically, and the results are plotted in Figure
14.9. We see that in general the inclusion of the momentum dependence of
the gluon self-energy increases the screening for 1 < x < 3 (or between one
and three Debye lengths) but decreases the screening at greater distances.
In fact, for large distances there is a slight antiscreening: the potential is
repulsive instead of attractive.

Going back to the low-momentum expansion, we keep only the lead-
ing term. Inserting (14.103) into (14.102) and minimizing produces a
value for rJ/ψ. All the temperature dependence is now contained in the
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value of mel. After minimization, the algebraic equation to be solved is

2mel

mαeff
= x(x + 1)e−x (14.109)

where x = rmel. Notice that the left-hand side increases linearly with tem-
perature (the variation of αeff with T is only logarithmic). The right-hand
side has a maximum at 1.62. At that point we have (mel)max = 0.81mαeff

s .
Extracting the logarithmic dependence, and using the definition of the
electric mass, yields the equation

T =
0.81
3π

mg(T ) (14.110)

Using ΛMS = 220 MeV, the above turns into a nonlinear equation for the
maximum temperature at which the J/ψ exists. Solving it, one obtains
Tmax � 200 MeV. Should the J/ψ disappear because of the mechanism
discussed here, the higher-lying excitations of the charmonium bound
states will already have dissolved. Remember that the J/ψ is an n = 1,
� = 0 state, whereas the lesser-bound states are ψ′(n = 2, � = 0) and
χc(n = 2, � = 1).

The whole analysis in terms of potential models can only give a gen-
eral idea of the dissociation pheomenon. First, the heavy quark potential
should be determined directly using lattice QCD simulations at finite
temperature. The nonperturbative studies could allow the study of the
evolution of the gap between the charmonium bound-state mass and the
open charm threshold, among other things. It has recently become possi-
ble to study directly the finite-temperature charmonium spectral density
on the lattice [35]. All such studies are currently based on quenched lat-
tices: they do not include quark loops, thermal or otherwise. This obvious
shortcoming will have to be addressed in order to extract any quantita-
tive result. Furthermore, one needs to reconstruct the thermal spectral
densities from the thermal correlators: recent progress on this has been
made possible by the use of Bayesian techniques in lattice analysis [36].
This topic is one for specialists. See Chapter 10 for the basic notions of
QCD lattice gauge theory.

Any analysis of the charmonium spectrum in nuclear collisions will be
incomplete unless supplemented by knowledge of what happens to those
states in cold nuclear matter and in hot hadronic systems. These are all
environments that are liable of influencing the measured J/ψ yields as
well as those of the higher-lying states. There is at present considerable
uncertainty, because the J/ψ sits at an energy scale that is not high
enough for perturbative QCD to be totally reliable and because there
is no direct experimental data on J/ψ–hadron cross sections. However,
the yields of charmonium bound states as a function of the muon pair
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Fig. 14.10. The average of two data sets showing the J/ψ to Drell–Yan ratio
(multiplied by the branching ratio into a dimuon pair) as a function of the
transverse energy, in the invariant mass region 2.9 GeV/c2 < M < 4.5 GeV/c2.
The solid line shows the effect of nuclear absorption with an absorption cross
section that is extracted from proton–nucleus data. This plot is from [37], with
kind permission of Springer Science and Business Media.

transverse energy (and hence of event-centrality) in proton–nucleus col-
lisions can reveal the features that are germane to absorption in cold
nuclear matter. In fact, proton–nucleus analyses provide an important
class of control experiments, as plasma formation is not expected to occur
there. Drell–Yan muon pairs serve as a background estimator, as they
constitute the dominant source of continuum dileptons at the invariant
masses of interest here. The ratios of cross sections for proton–nucleus col-
lisions are then fitted to a Glauber prescription of normal nuclear matter
absorption; this procedure leads to a value σabs = 4.18 ± 0.35 mb [37]. The
extra absorption in nucleus–nucleus events, shown in Figure 14.10, is then
deemed anomalous. Owing to the large multiplicities that are common in
heavy ion collision environments, the interaction of the newly formed J/ψ
with this hot hadronic matter also has to be considered. At the present
time, many hadronic approaches claim to reproduce the anomalous SPS
J/ψ absorption data with various degrees of success, thereby making the
arguments claiming a a new state of matter considerably less compelling.
This topic is still under investigation and will continue to be so in exper-
imental measurements at RHIC and at the LHC.
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+ +

Fig. 14.11. Tree-level diagrams for the processes gg → ss̄, and qq̄ → ss̄.

14.7 Strangeness production

Another signature of the presence of a nascent quark–gluon plasma cre-
ated in high-energy nuclear collisions is that of strangeness production
[38]. Strange quarks and antiquarks are absent in cold nuclear matter.
They are found only in the parton distribution functions of the sea quarks,
probed by deep inelastic scattering experiments. As a consequence their
abundances are typical of those of quantum fluctuations. In a hot par-
tonic system, however, the situation is different. High initial temperatures,
greater than the strange quark mass, imply an abundance comparable
with that of the lighter up and down quarks. The loss of confinement
suggests comparable rates of production of up, down, and strange quarks.

Starting with no strange quarks (or antiquarks), estimates for the pro-
duction of ss̄ pairs can be obtained from lowest-order perturbative QCD.
The contributing channels are those of gluon fusion and light qq̄ annihi-
lation. The relevant Feynman diagrams are shown in Figure 14.11. The
invariant matrix elements have been calculated by several groups of work-
ers to leading order in the strong coupling constant [39]. Labeling the
processes in Figure 14.11 by a, b, c and d, respectively (going from left to
right, starting from the top), the squared matrix elements summed over
initial color, spin, and flavor states are

∑ |Ma|2 = 16 × 6(παs)2
(m2 − t)(m2 − u)

3s2∑ |Mb|2 = 16 × 6(παs)2
2
27

(m2 − t)(m2 − u) − 2m2(m2 + t)
(m2 − t)2∑ |Mc|2 = 16 × 6(παs)2

2
27

(m2 − t)(m2 − u) − 2m2(m2 + u)
(m2 − u2)2∑ |Md|2 = Nf 62(παs)2

16
81

(m2 − t)2 + (m2 − u)2 + 2m2s

s2

(14.111)
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the interference terms being∑MaM∗
b = 16 × 6 (παs)2

(m2 − t)(m2 − u) + m2(u− t)
12s(m2 − t)∑MaM∗

c = 16 × 6 (παs)2
(m2 − t)(m2 − u) + m2(u− t)

12s(m2 − u)∑MbM∗
c = 16 × 6 (παs)2

m2(s− 4m2)
108(m2 − u)(m2 − t)

(14.112)

Here s, t, and u are the usual Mandelstam variables, Nf is the number of
fermion flavors, and m is the strange quark mass. In the equations above,
the numerical prefactors correspond to products of the degeneracy factors
(spin × color) for the gluons (2 × 8) and quarks (2 × 3). For the processes
under consideration a scale appropriate for the evaluation of the strong
coupling yields αs(s).

Given the above, the cross sections averaged over initial states are eval-
uated to be

σ̄gg→ss̄ =
2πα2

s

3s

[(
1 +

4m2

s
+

m4

s2

)
tanh−1 w(s) −

(
7
8

+
31
8
m2

s

)
w(s)

]
σ̄qq̄→ss̄ =

8πα2
s

27s

(
1 +

2m2

s

)
w(s) (14.113)

where w(s) =
√

1 − 4m2/s. The rate for pair production can then be cal-
culated using the usual formalism of relativistic kinetic theory. Quite
generally, one may write a rate for the reaction a1 + a2 → X, in the
independent-particle limit, as

R(a1+a2 → X) =
1

1 + δa1,a2

∫
d3k1

(2π)3
f(k1)

d3k2

(2π)3
f(k2)σ(a1+a2 → X) vrel

(14.114)

with

vrel =
(k1 · k2)2 −m4

a

E1E2
(14.115)

In the case where the initial-state fields are massless, vrel = s/(2E1E2)
with s = (k1 + k2)2.

The invariant rate (the number of reactions per unit time per unit
volume) is then

R =
d4N

dtd3x
=

1
2

∫ ∞

4m2

ds s δ(s− (k1 + k2)2)
∫

d3k1

(2π)3E1

∫
d3k2

(2π)3E2

×
(

1
2
fg(k1)fg(k2)σ̄gg→ss̄(s) + Nf fq(k1)fq̄(k2)σ̄qq̄→ss̄(s)

)
(14.116)
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Note that the distribution functions here contain the appropriate degen-
eracy factor,

fg(k) = 16
1

eβ|k| − 1

so that the gluon density is

ng =
Ng

V
=
∫

d3k

(2π)3
fg

and similarly for the quarks and antiquarks.
Inserting the appropriate Bose–Einstein or Fermi–Dirac distribution

functions, the net rate may be computed numerically. Doing this with the
quark chemical potential set to zero, one finds that the gluon contribution
dominates the contribution with the qq̄ initial state. For the gluon fusion
rate, expanding the Bose–Einstein distribution functions for T � m
yields

Rg =
4T
π4

∫ ∞

4m2

ds s3/2σ̄gg→ss̄

∑
k,�=1

1√
k�

K1

(√
k�s

T

)

� 7
6π2

α2
smT 3e−2m/T

(
1 +

51
14

T

m
+ · · ·

)
(14.117)

One may divide out the temperature dependence and plot a dimen-
sionless rate, R/αsT

4, against m/T , where m is the strange quark
mass. A parametrization of these results over the temperature range
considered here is perhaps useful for modeling purposes. An excellent
parametrization for the range of m/T plotted is provided by R/α2

sT
4 =

(a + bx2) exp(−cx), with x = m/T , a = 0.937, b = 0.958, and c = 2.715.
The fit is shown, together with the result of the numerical rate calculation,
in Figure 14.12.

When the density of ss̄ pairs increases, their annihilation will start
to deplete the population of strange quarks. This depletion rate will be
proportional to the square of the strange quark density. Then the rate
equation for a static (nonexpanding) system is

dns(t)
dt

= R

[
1 −

(
ns(t)
neq

s

)2
]

(14.118)

For small departures from equilibrium, such that n(t) = neq + δn(t) where
|δn(t)| � neq, we may linearize (14.118):

d δns(t)
dt

= −δns(t)
τeq

τeq =
neq

s

2R
(14.119)

Therefore, a large rate means a short equilibration time.
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Fig. 14.12. The dimensionless rate for emission of ss̄ pairs from a sum of all
tree-level partonic processes with u and d quarks, as a function of the ratio of the
strange quark mass to the temperature (solid line). Here αs = 0.6 and m = 150
MeV. The parametrization discussed in the text corresponds to the dotted line.

We now consider the fate of the strange hadrons in the portion of the
system’s spacetime trajectory that is in the confined sector. Let us assume
that the system has zero net baryon number and that the species present
are light pseudoscalars only. Anticipating the effect of high temperatures,
we approximate the distribution functions to be of the Boltzmann type
with vanishing chemical potentials. Then all integrals but one can be
performed in (14.114), to yield

R(a1 + a2 → X) =
T 6

16π4

∫ ∞

z0

σ(E)z2(z2 − 4z2
a)K1(z) dz (14.120)

where z = E/T , E is the center-of-mass energy, and za = ma/T . For
the annihilation process, z0 = 2za. If a1 + a2 → b + c and 2ma < mb + mc

then z0 = (mb + mc)/T . The reader is invited to verify that this expres-
sion agrees with the leading term (k = � = 1) in (14.117).

There is not much data on strangeness production in mesonic annihi-
lation. Some estimates exist of the cross section for the process π+π− →
K+K− from measurements of π−p → K+K−n [40]. These estimates find
that the cross section is roughly constant as a function of energy, with a
mean value of σ0 = 5/3 mb. With a total of three isospin channels, the
total cross section is thus 3σ0 = 5 mb. Then

R(ππ → KK̄)

=
3σ0T

6

16π4

[
z2
0(z

2
0 − 4z2

a + 8)K0(z0) + 4z0(z2
0 − 2z2

a + 4)K1(z0)
]

(14.121)

In this case, z0 = 2mK/T and za = mπ/T .
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Fig. 14.13. The time constant τeq for chemical equilibration as a function of
temperature for different processes: solid curve, τeq for the partonic reactions
gg → ss̄ and qq̄ → ss̄ (with q = u, d); broken curve, τeq for ππ → KK̄; bro-
ken and dotted curve, the equilibration time for the KK̄ annihilation pro-
cesses. The parameters used here are αs = 0.6 and m (strange quark mass) =
150 MeV.

Another useful reaction for evaluating the population of strangeness-
carrying hadrons is K+K− → nonstrange hadrons. Its magnitude may be
estimated from that of pp̄ → charged hadrons [41]:

σ(pp̄ → charged hadrons) = A′ +
B′√

(E/mp)2 − 4
(14.122)

with A′ = 38.25 mb and B′ = 36 mb. Since K+K− has four valence quarks
whereas pp̄ has six, a simple estimate may then be obtained by multiplying
A′ and B′ by (2/3)2 and replacing mp by mK . Finally, bear in mind that
a K− can equally annihilate on a K0 or a K+. Putting all this together
we arrive at

R(KK̄ annihilation) = 2(RA + RB)
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where

RA =
AT 6

8π4
z3
0K3(z0)

(14.123)

RB =
BT 6

64π3
z0(3 + 3z0 + z2

0)e
−z0

with z0 = 2mK/T , A = 17 mb, and B = 16 mb. It is revealing to plot
the relevant strangeness-equilibration time constants, as evaluated from
(14.119). The rates were integrated numerically in the Boltzmann limit
for the distribution functions and were used to obtain the various relax-
ation times. These are shown in Figure 14.13. Of course, not all processes
operate over the complete temperature range shown there.

This figure is revealing in many aspects. First, note the strong
temperature-dependence. Second, this plot shows why strangeness-
enhancement is considered a promising probe for the formation of the
quark–gluon plasma. The smallness of τeq for the partonic contributions
indicates that gluons and light quarks will reach equilibrium during the
early stages of the plasma phase. However, note that the time constant
for ss̄ in the plasma phase is within a factor 2 of that for KK̄ anni-
hilation in the hadron phase for the interesting temperature interval of
150 < T < 250 MeV. This suggests that strangeness production and anni-
hilation in the hadronic phase will be comparable in magnitude with that
in the plasma phase. This also means that the actual usefulness of this
observable will depend on the details of the evolution scenario. Finally,
the relationship between the rates for ππ → KK̄ and for KK̄ annihilation
is as it should be. If the latter pairs could only annihilate into a pair of
pions, the two rates would be equal by detailed balance. However, two
kaons may annihilate into a many-pion (more than two) final state, and
this will increase the net rate and decrease the related time constant.

In order to calculate how the strangeness density evolves in time, the
spacetime evolution is needed. An increase in volume will cause a pro-
portionate decrease in density even in the absence of interactions. This
means that (14.118) needs to be supplemented by a dilution term:

dns(t)
dt

= R

[
1 −

(
ns(t)
neq

s

)2
]
− ns(t)

V (t)
dV (t)
dt

(14.124)

In the Bjorken model, the volume grows linearly with time because the
entropy density drops inversely with time, (14.10). Therefore in this case

dns(t)
dt

= R(T (t))

[
1 −

(
ns(t)
neq

s

)2
]
− ns(t)

t
(14.125)
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The initial condition, ns(t0), needs to be chosen. Three possibilities
include: (i) no strange quarks; (ii) strange quarks in chemical equilibrium;
(iii) a strange quark abundance determined by proton–proton collisions at
the same energy. If the equilibration rate is high enough compared with
the expansion rate, strange quarks will come to equilibrium no matter
what the initial condition.

The equation above is valid in the plasma phase. Once the plasma
begins to convert into hadrons, the rate equation for kaons is

dnK−(t)
dt

= Rh(Tc)

(
1 −

(
nK−(t)
neq
K−(Tc)

)2
)

− nK−(t)

f̂(t) t

d

dt

[
f̂(t) t

]
+

1
2
ns(t)

f̂(t)

df̂(t)
dt

(14.126)

where f̂(t) = 1 − f(t) is the volume fraction in the plasma phase and Rh is
the rate in the hadron phase. The dilution term is slightly different from its
previous version. The last term given the gain from strangeness conversion
into the hadron phase from the plasma phase. The factor 1/2 accounts
for the fact that a given s quark is equally likely to end up in a K̄0.

The strangeness content as a function of time is given by integration of
the differential equations presented in this section. It is clear how to adapt
this rate equation to the evolution in the purely hadronic phase. When
comparing with actual measurements, perhaps a more realistic estimate
will need to include multistrange baryons and strange antibaryons, as
well as to consider the effect of different and more sophisticated spacetime
evolution scenarios. The interested reader is invited to consult the research
literature for the current status of strangeness as a probe of heavy ion
collisions.

14.8 Exercises

14.1 Construct the pressure and energy density as functions of temper-
ature for the three equations of state presented in Section 14.1.

14.2 A simple way to model the effect of the transition from
one-dimensional to three-dimensional expansion is to replace
the formula s(τ) = s(τ0)τ0/τ in the Bjorken model by s(τ) =
[s(τ0)τ0R2]/[τ(τ2 + R2)], where R is the nuclear radius. This takes
into account the time delay for the rarefaction wave from the
surface to reach the center of the hot matter. Calculate the
temperature as a function of proper time for the three equations
of state of Section 14.1, and plot the result similarly to Figure
14.2.
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14.3 Derive the expression for the photon production rate in relativistic
kinetic theory (14.46).

14.4 Consider the rates for photon emission through the Comp-
ton and annihilation processes, (14.54) and (14.55). These were
evaluated assuming that the initial-state distribution functions
could be approximated by their Maxwell–Boltzmann form. Show
that, keeping the quantum distribution functions in the initial
state, the rates from the Compton and annihilation processes
become [42]

E
d3R

d3p

Compton

=
5
9
ααs

4π2

1
eE/T + 1

T 2

[
ln
(

4ET

k2
c

)
+ C ′

F

]
where

C ′
F = −γE +

1
2
− 8

π2

∞∑
n=0

ln
(2n + 1)
(2n + 1)2

and

E
d3R

d3p

annihilation

=
5
9
ααs

4π2

1
eE/T + 1

T 2

[
ln
(

4ET

k2
c

)
+ C ′

B

]
where

C ′
B = −γE − 1 − 8

π2

∞∑
n=0

ln
(2n + 1)
(2n + 1)2

14.5 Prove (14.65).
14.6 Derive the expressions (14.94) and (14.95) for the scalar functions

F and G at finite temperature.
14.7 Show that the pion electromagnetic form factor in the vector

meson dominance model (VMD) is predicted to be

Fπ(M) =
m2

ρ + Fvac(0)
m2

ρ + Fvac(M) −M2

and show that this reproduces the Gounaris–Sakurai formula [28].

14.8 Construct the grand canonical partition function for a gas of
hadrons containing all light mesons, baryons, and resonances, up
to a mass of 2 GeV. Use the Particle Data Table [43]. For several
combinations of temperature and chemical potential (say T = 100,
150, and 200 MeV; μB = 250 and 550 MeV), evaluate the density
of positively charged pions (including the resonance-decay contri-
bution) divided by that of the thermal pions.
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14.9 Calculate numerically the rate in (14.116), and show that the
contribution from quark–antiquark annihilation is negligible with
respect to the gluon fusion rate. You should plot the two rates for
100 < T < 300 MeV.

14.10 Assuming a first-order phase transition, obtain the behavior of the
strangeness density as a function of time in the Bjorken model.
Do the calculation for two initial temperatures, T0 = 250 and 500
MeV. Plot ns(t)/n

eq
s as a function of time, and compare with the

results shown in [44].
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15
Weak interactions

In the 1960s and early 1970s a theory was developed by Glashow [1],
Weinberg [2], Salam [3], ’t Hooft [4], and others that unified the weak and
electromagnetic interactions. This theory is presently in accord with all
experimental information. It is not our purpose here to go into a detailed
exposition of the model or the history of weak interaction physics. Rather,
we want to show that the spontaneously broken gauge symmetry that is
the cornerstone of the theory can be restored in a phase transition at a
critical temperature of order 100 GeV. The existence and order of this
transition depend on details that we shall discuss in this chapter.

15.1 Glashow–Weinberg–Salam model

We begin with a theory involving bosons only. The essence of the model
can be found without the inclusion of fermions: they will be added later.
The Lagrangian is

L = (DμΦ)† (DμΦ) + c2Φ†Φ − λ
(
Φ†Φ

)2

− 1
4g

μνgμν − 1
4f

μν
a fa

μν (15.1)

This Lagrangian has an SU(2) × U(1) symmetry. There is an SU(2) gauge
field Aa

μ and a U(1) gauge field Bμ. The field strengths are

fa
μν = ∂μA

a
ν − ∂νA

a
μ − gεabcAb

μA
c
ν (15.2)

gμν = ∂μBν − ∂νBμ (15.3)

There is a covariant derivative

Dμ = ∂μ + 1
2 igA

a
μτ

a + 1
2 ig

′Bμ (15.4)
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which acts on a complex SU(2) field

Φ =
1√
2

(
φ1 + iφ2

φ3 + iφ4

)
(15.5)

Note that, according to (15.1), Aa
μ and Bμ are massless spin-1 bosons and,

if c2 > 0, Φ is a tachyon. Thus we should expect spontaneous symmetry
breaking. Altogether, there are apparently 12 spin degrees of freedom.

Owing to the gauge symmetry we may choose, without loss of generality,
the vacuum expectation value

〈Φ〉 =
1√
2

(
0
v

)
(15.6)

where v is a real constant. Then, for arbitrary Φ, we write

Φ =
1√
2
U−1(ζ)

(
0

v + η

)
(15.7)

where ζ(x, t) and η(x, t) are the independent fields and

U(ζ) = exp
(−iζ · τ

2v

)
(15.8)

This is the so-called unitary, or U , gauge. It is a useful gauge since it
makes the particle content of the theory manifest.

Now let

Φ → Φ′ = U(ζ)Φ =
1√
2

(
0

v + η

)
(15.9)

This is just a particular SU(2) gauge transformation, such that

Bμ → Bμ ,

τ ·Aμ → τ ·A′
μ = U(ζ)

(
τ ·Aμ − i

g
U−1(ζ)∂μU(ζ)

)
U−1(ζ) (15.10)

After some algebra, the Lagrangian is expressed in terms of the indepen-
dent fields as

L = 1
2(∂μη)(∂μη) + 1

2c
2(v + η)2 − 1

4λ(v + η)4

+ 1
4Φ′†(g′Bμ + gτ ·Aμ)(g′Bμ + gτ ·Aμ)Φ′

− 1
4g

μνgμν − 1
4f

μν
a fa

μν (15.11)

This can be written as the sum of a classical part, Lcl, a part quadratic in
the fields, Lquad, and a part giving rise to interactions that is cubic and
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quartic in the fields, LI;

Lcl = 1
2c

2v2 − 1
4λv

4 (15.12)

Lquad = 1
2(∂μη)2 − 1

2(3λv2 − c2)η2

− 1
4(∂μBν − ∂νBμ)2 − 1

4(∂μAc
ν − ∂νA

c
μ)2

+ 1
8v

2
[
(g′Bμ − gA3

μ)2 + g2(A1
μ)2 + g2(A2

μ)2
]

(15.13)

We define new fields

W±
μ =

(
A1

μ ± iA2
μ

)
/
√

2

Zμ =
(
g′Bμ − gA3

μ

)
/
√

g2 + g′2 (15.14)

Aμ =
(
gBμ + g′A3

μ

)
/
√

g2 + g′2

The masses are

m2
η = 3λv2 − c2

mA = 0
mW = 1

2gv

mZ = 1
2

√
g2 + g′2 v

(15.15)

The tachyon is avoided as long as v2 ≥ c2/3λ. In fact, from (15.12) we see
that the classical minimum occurs at v2 = v2

0 = c2/λ, so that indeed the
model shows spontaneous symmetry breaking.

After addition of the fermions, it becomes possible to identify the fields
and parameters described above: Aμ is the photon, W± and Z are the
weak interaction bosons, and η is the as yet unobserved Higgs boson.
Since all these are massive except for the photon, the total number of
spin degrees of freedom is 12, the same as before, since the W± and Z
each acquirie one degree of freedom from the Φ field. The electric charge
is

e =
gg′√

g2 + g′2
(15.16)

and the Weinberg angle is defined by

tan θW =
g′

g
(15.17)

Experimentally, it is found that e = 0.3028. . . and sin2 θW = 0.226±
0.004. This leads to g = 0.637 and g′ = 0.344. It turns out that the vac-
uum field v0 is related directly to the Fermi constant: v2

0 = (
√

2GF)−1 =
(246 GeV)2. The predicted masses of the gauge bosons in the tree
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approximation are then mW = 78.4 GeV and mZ = 89.0 GeV. (Radia-
tive corrections increase these by several GeV.) These are consistent with
observation. Only the combination c2/λ is known, so there remains one
undetermined parameter. It may be taken to be the Higgs mass. The the-
oretical bounds are currently 130 < mη < 190 GeV [5]. The lower bound
comes from the requirement that the standard model vacuum be stable.
The upper bound comes from the requirement that λ be small enough
that perturbation theory can be used. It should remain valid up to a
supposed grand unification scale ΛGUT ∼ 1016 GeV.

The fermions are included according to the following scheme. The quark
mass eigenstates are not eigenstates of the weak interactions. The matrix
connecting the different sets of eigenstates is the Cabibbo–Kobayashi–
Maskawa (CKM) matrix. By convention the charge 2/3 quarks (u, c, t) are
unmixed. The CKM matrix, UCKM, is unitary and relates the eigenstates
of the charge −1/3 quarks (d, s, b) as⎛⎝d′

s′
b′

⎞⎠ = UCKM

⎛⎝d
s
b

⎞⎠ (15.18)

The elements of UCKM will not be needed in the subsequent discussion.
The fermions are then grouped into left-handed SU(2) doublets and

right-handed SU(2) singlets. For example, the electron and its neutrino
form the doublet

L =
(
νe
e−

)
L

(15.19)

where e−L = 1
2(1 − γ5)e−, and a singlet R = 1

2(1 + γ5)e−. These are cou-
pled to the gauge bosons via

R̄
(
i∂ − g′B)R + L̄

(
i∂ − 1

2g
′B + 1

2g Aaτa
)
L (15.20)

The other leptons and quarks are included in an analogous way. The
coupling to γ,W±, and Z can be written compactly as

eψ̄γμ
{
QAμ +

1
23/2 sin θW

(1 − γ5)
(
T+W+

μ + T−W−
μ

)
+

1
sin θW cos θW

[
1
2 (1 − γ5)T3 −Q sin2 θW

]
Zμ

}
ψ (15.21)

where ψ is one of the following doublets,(
u
d′

) (
c
s′

) (
t
b′

) (
νe

e−

) (
νμ

μ−

) (
ντ

τ−

)
(15.22)

and where Q is the electric charge operator, T3 is the third component
of the weak SU(2) spin (with eigenvalue 1/2 for νe, νμ, ντ , u, c, t, and
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eigenvalue −1/2 for e−, μ−, τ−, d, s, b), and T± is the raising or lowering
operator, which acts on the left-handed particles. The weak hypercharge
Y is determined by Q = T3 + 1

2Y .
In order to retain the left-handed SU(2) symmetry for the fermions it is

not possible to add a mass term in the usual form −ψ̄Mψ. The allowable
term for the electron, for example, is of the Yukawa form

−fe

(
R̄Φ†L + L̄ΦR

)
(15.23)

After using (15.9) we obtain the electron mass as me = 1
2fev

0 and zero
neutrino mass. A similar situation prevails for the other fermions. Thus
all quarks and leptons receive their masses on account of spontaneous
symmetry breaking. In the vacuum, a quark or lepton mass is therefore
∼ fiG

−1/2
F where fi is a dimensionless coupling constant. For all but the

t quark the fi are very small since G
−1/2
F = 293 GeV.

15.2 Symmetry restoration in mean field approximation

The existence of phase transitions in the early universe has been a ques-
tion that has preoccupied a generation of cosmologists. Early on, Kirzh-
nits [6] found that the symmetry between the weak and electromagnetic
interactions would be restored at high temperatures. This result was soon
complemented by similar works by Weinberg [7] Dolan and Jackiw [8],
and Kirzhnits and Linde [9]. Some consequences of this phase transition
will be discussed in Chapter 16. In the sections that follow, the stage will
be set for the theoretical investigation of the electroweak phase transition,
its existence, and its order.

The Glashow–Weinberg–Salam model is relatively easy to study at
finite temperatures in the mean field approximation. At high tempera-
ture, T > 50 GeV, the fermion masses can be ignored except for that of
the top quark. For simplicity, we shall ignore that for the moment as well.
First, we shall use the U -gauge and show that it leads to an erroneous
result, at least in the mean field approximation. This can be corrected in
a covariant gauge.

The U -gauge has the advantage of displaying immediately the physical
degrees of freedom. From (15.12) and (15.15) we can write the pressure
as

PMF = −1
4c

4/λ + 1
2c

2v2 − 1
4λv

4

+ 6P0(mW) + 3P0(mZ) + 2P0(0) + P0(mη) + 7
8π

2T 4

(15.24)
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The last term is the contribution from three generations of massless quarks
and leptons. The previous four terms are the boson contributions, with

P0(m) =
∫

d3k

(2π)3
k2

3ω
1

eβω − 1
∼ π2

90
T 4 − m2

24
T 2 (15.25)

where the high-temperature limit is given. Using this limit we obtain

PMF =
(

7
8 + 2

15

)
π2T 4 + 1

2v
2
[
c2 − 1

4T
2
(
λ + 3

4g
2 + 1

4g
′2)]

−1
4λv

4 − 1
4c

4/λ (15.26)

Maximizing the pressure with respect to the mean field v gives the
temperature dependence v2(T ) =

[
c2 − 1

4T
2
(
λ + 3

4g
2 + 1

4g
′2)]/λ if T 2 <

4c2/
(
λ + 3

4g
2 + 1

4g
′2) and v(T ) = 0 otherwise. This would indicate restora-

tion of the gauge symmetry that was spontaneously broken at T = 0.
However, the result (15.26) is wrong. The reason can be traced to the U -

gauge itself. Although it makes the physical particle content of the theory
manifest, it is not, in practice, a renormalizable gauge. This follows from
the poor ultraviolet behavior of the massive vector meson propagators,
which is pμpν/m2p2 instead of 1/p2. The implication for finite temperature
is serious since T effectively acts as a physical high-momentum cutoff.
Another way to see the difficulty is to consider the transformation (15.8)
in the high-temperature phase, where v is supposed to vanish.

A more appropriate gauge for our purpose is the R-gauge, suitably
generalized from its first application to the Abelian Higgs model, given
in Section 7.4. Now we take as the independent fields η and ζ, defined by

Φ =
1√
2

(
0

v + η

)
+

iζ · τ√
2v

(
0
v

)
=

1√
2

(
ζ2 + iζ1

v + η − iζ3

)
(15.27)

which is suggested by (15.7) and (15.8). We choose the SU(2) gauge-fixing
function to be

F a = ∂μAa
μ − 1

2ρgvζ
a − fa(x, τ) (15.28)

and the U(1) gauge-fixing function to be

F = ∂μBμ + 1
2ρg

′vζ3 − f(x, τ) (15.29)

The gauge-fixing delta functions δ(F ) and δ(F a) in the functional integral
expression for Z are multiplied by

exp
{
− 1

2ρ

∫
d3x dτ(f2

a + f2)
}
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and integration over fa(x, τ) and f(x, τ) is carried out. The result is to
add to the Lagrangian the gauge-fixing terms

− 1
2ρ
(
∂μAa

μ − 1
2ρgvζ

a
)2 − 1

2ρ
(
∂μBμ + 1

2ρg
′vζ3

)2 (15.30)

The cross terms in (15.30) between the gauge fields and ζ are ρ-
independent. They combine with the cross terms from (DμΦ)†(DμΦ) to
produce total divergences that integrate to zero. Thus one advantage of
using (15.28) and (15.29) is that there is no mixing between the fields. The
terms −(∂μAa

μ)2/2ρ− (∂μBμ)2/2ρ are familiar from the covariant gauge.
The last terms in (15.30), when combined with the quadratic terms in
c2Φ†Φ − λ(Φ†Φ)2, yield the masses

m2
η = 3λv2 − c2

m2
ζ1 = m2

ζ2 = λv2 − c2 + 1
4ρgv

2 (15.31)

m2
ζ3 = λv2 − c2 + 1

4ρ(g
2 + g′2)v2

The fact that the ζ masses are gauge or ρ-dependent suggests that these
do not represent physical particles.

The determinants must be analyzed. They are det(∂F/∂α) and
det(∂F a/∂αb), where the infinitesimal gauge transformations are
parametrized by α(x, τ) and αb(x, τ). With the help of (8.11), we find

∂F a

∂αb
= −∂2δab − 1

4ρg
2v2δab + linear terms

∂F

∂α
= −∂2 − 1

4ρg
′2v2 + linear terms

(15.32)

where “linear terms” indicates terms that are linear in Aa
μ, ζ, and/or η.

The determinants can be written as functional integrals over the ghost
fields Ca and C. The ghost masses can be read off directly from (15.32):

m2
Ca

= 1
4ρg

2v2

m2
C = 1

4ρg
′2v2

(15.33)

The propagators for the W and Z fields are

Dμν =
gμν − pμpν/m2

p2 −m2
+

pμpν/m2

p2 − ρm2
(15.34)

where m2 = m2
Z or m2

W . The first term is the usual propagator for a
massive vector boson. The second term looks like the propagator for an
unphysical longitudinally propagating particle.

Now we are ready to put together this strange zoo of real and fictitious
particles. Again, in the mean field approximation at high temperature we
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have

PMF = − 1
4c

4/λ + 1
2c

2v2 − 1
4λv

4 +
(

7
8 + 2

15

)
π2T 4

− 1
24T

2
[
3m2

Z + 6m2
W + m2

η +
(
m2

ζ1 + m2
ζ2 + m2

ζ3 + ρm2
Z

+ 2ρm2
W − 6m2

Ca
− 2m2

C

)]
(15.35)

The quantity in the second parentheses is all that distinguishes the U -
gauge from the R-gauge. These mass-squared terms add up to 3(λv2 − c2).
The pressure is thus

PMF = 121
120 π

2T 4 + 1
2v

2
[
c2 − 1

4T
2
(
2λ + 3

4g
2 + 1

4g
′2)]

−1
4λv

4 − 1
4c

4/λ + 1
6c

2T 2 (15.36)

This should be compared with (15.26). Note that all ρ-dependence has
vanished: a nice check on the calculation.

Minimizing PMF with respect to v we obtain

v2(T ) =
{

(c2/λ)
(
1 − T 2/T 2

c

)
T ≤ Tc

0 T ≥ Tc
(15.37)

PMF =

⎧⎨⎩
121
120π

2T 4 + 1
4(c4/λ)

(
1 − T 2/T 2

c

)2 + 1
6c

2T 2 − 1
4c

4/λ T ≤ Tc

121
120π

2T 4 + 1
6c

2T 2 − 1
4c

4/λ T ≥ Tc

(15.38)

and

T 2
c =

4c2

2λ + 3
4g

2 + 1
4g

′2 (15.39)

This yields a second-order symmetry-restoring phase transition at Tc

since ∂P/∂T is continuous but ∂2P/∂2T is not. If we take the zero-
temperature Higgs mass to be 120 GeV then c = 84.9 GeV and λ =
0.119. The critical temperature is Tc = 225 GeV. The effective poten-
tial is plotted in Figure 15.1 as a function of v for several values of the
temperature, including the critical value. Here the effective potential is
Ωeff

MF(v) ≡ PMF(0, T ) − PMF(v, T ); in the literature it is also written as
Veff . Minimizing the effective potential is equivalent to maximizing the
pressure.

All the previously discussed difficulties associated with spontaneous
symmetry breaking and nonabelian gauge theories at finite temperature
arise in the Glashow–Weinberg–Salam model as well. For example, at
sufficiently high temperature the Higgs-mass-squared of (15.15) becomes
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Fig. 15.1. The effective potential in the mean field approximation, as described
in the text. The curves shown correspond to potentials calculated at T = 0,
T = 175 GeV, T = Tc = 225 GeV, and T = 275 GeV, from bottom to top, respec-
tively.

negative, and loop self-energy corrections are necessary to cure it. In the
high-temperature phase the mean field masses of the gauge fields are zero.
Thus the same infrared problems will arise as in QCD. The contributions
of exchange and ring diagrams to the pressure may be computed.

15.3 Symmetry restoration in perturbation theory

The applicability of finite-temperature perturbation expansions in the
electroweak theory will now be more closely examined. Consider a scalar
field theory, λφ4, like that discussed elsewhere in this book. At each order
in a loop expansion there will be terms of the form

T
∑
n

∫
d3p

(2π)3
f(ωn,p) (15.40)

where f(ωn,p) is a functional of propagators and vertices. The tadpole
diagram is a simple example, namely

T
∑
n

∫
d3p

(2π)3
1

ω2
n + ω2

(15.41)
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with ω =
√

p2 + m2. Clearly this will be dominated by the Matsubara
zero mode. Omitting the integral over momentum, this fact is expressed
as

T
∑
n

1
ω2
n + ω2

∼ T

ω2
(15.42)

What might constitute a dimensionless loop-expansion parameter? The
argument above suggests that when the vertices contribute an overall
constant λ then the expansion parameter that controls the convergence is
λT/ω ∼ λT/meff for bosons (where meff is some soft scale in our theory)
and λT/T = λ for fermions. For bosons the perturbation expansion could
be ill defined if meff < λT , and then non-perturbative techniques would
be required. What happens in the standard model is more complicated
because of the inclusion of the gauge bosons. In what follows we study
the electroweak theory with the inclusion of the ring diagrams, that are
known to be important for long wavelengths.

In the Glashow–Weinberg–Salam model, the gauge boson mass term is
of the form

(Aa
μ, Bμ)M2

(
Aμ

a

Bμ

)
with a non-diagonal mass matrix

M2(v) =
v2

4

⎛⎜⎜⎝
g2 0 0 0
0 g2 0 0
0 0 g2 −gg′
0 0 −gg′ g′2

⎞⎟⎟⎠ (15.43)

The customary procedure is to define the physical fields W±
μ , Zμ, and

Aμ as linear combinations of the Aa
μ and Bμ fields, such that the physical

masses are m2
W (v) = g2v2/4, m2

Z(v) = (g2 + g′2)v2/4, and m2
A(v) = 0. For

this application, we now assume that only the top quark Yukawa coupling,
ft, is nonzero. The shift in the Higgs field generates a mass through the
term LYukawa = fttt̄v/

√
2.

The one-loop contribution to the thermodynamic potential is split into
zero-temperature and finite-temperature contributions. Following Car-
rington [10], one may write the contribution from the Higgs boson (φ),
the gauge boson (gb), and the top quark (ψ) loops as

Ω1(v) = Ωvac
1 (v) + Ωmat

1 (v) (15.44)

where

Ωvac
1 (v) = Ωvac

1,φ(v) + Ωvac
1,gb(v) + Ωvac

1,ψ(v)

Ωmat
1 (v) = Ωmat

1,φ (v) + Ωmat
1,gb(v) + Ωmat

1,ψ (v)
(15.45)
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The zero-temperature loops are regularized using a cut-off. Their contri-
bution may be obtained from Section 7.3; for an arbitrary mass mx(v) it
is

Λ2
c

32π2
m2

x(v) +
m4

x(v)
64π2

[
ln
(
m2

x(v)
Λ2

c

)
− 1

2

]
(15.46)

This procedure generates a correction to the tree-level zero-temperature
effective potential, so that

Ωvac(v) = Ωtree(v) + Ωvac
1 (v) (15.47)

with

Ωtree = −1
2
c2v2 +

1
4
v4

and

Ωvac
1 (v)

=
3

32π2
λc2v2 − v4

64π2

(
6λ2 +

3
16

g4 +
3
32

(g2 + g′2)2 − 3
2
f4

)
+

1
64π2

[
6m4

W (v) ln
(
λv2

c2

)
+ 3m4

Z(v) ln
(
λv2

c2

)
− 12m4

t (v) ln
(
λv2

c2

)
+m4

1(v) ln
(
m2

1(v)
2c2

)
+ 3m4

2(v) ln
(
m2

2(v)
2c2

)]
(15.48)

The one-loop finite-temperature thermodynamic potential for bosons and
fermions is just the negative of the pressure for the free particle of mass
mx(v). There will be contributions to the ring diagrams from both gauge
and Higgs bosons. The finite-temperature part of the one-loop potential
will combine with the ring contribution to define a potential in terms of
the shifted mass-squared. Therefore we need to evaluate the gauge boson
and Higgs boson self-energies in the leading infrared limit. For the ith
Higgs field,

Πi(0) = Π
(Aa

μ)

φ (0) + Π(Bμ)
φ (0) + Π(φ)

φ (0) + Π(ψ)
φ (0) (15.49)

where the individual contributions are

Π
(Aa

μ)

φ (0) =
1
8
g2T 2 Π(Bμ)

φ (0) =
1
16
(
g2 + g2

)
T 2

Π(φ)
φ (0) =

1
2
λT 2 Π(ψ)

φ (0) =
1
4
ftT

2
(15.50)

The ring contribution for the Higgs field is

Ωmat
ring(v) = −1

2
T
∑
n

∫
d3q

(2π)3

∞∑
�=1

1
�

(
− 1
ω2
n + q2 + m2

i (v)
Πi(0)

)�

(15.51)
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which, combined with the finite-temperature part of the one-loop poten-
tial, gives

Ωmat
φ (v) = −P0(m̃1) − 3P0(m̃2) (15.52)

where P0(m) is as in Section 15.2, m̃2
i = m2

i (v) + Πi(0), and the factor 3
is a degeneracy factor. For the gauge boson polarization tensors, as used
in Section 5.4,

Πμν(0) = ΠT(0)PTμν + ΠL(0)PLμν (15.53)

In the static infrared limit ΠAB
μν (0) = ΠAB

00 (0)PLμν , and ΠAB
00 is approxi-

mately diagonal if the ratio of the gauge boson masses and the tempera-
ture is small:

Π00(0) =

⎡⎢⎢⎢⎣
Π(2)

00 (0) 0 0 0
0 Π(2)

00 (0) 0 0
0 0 Π(2)

00 (0) 0
0 0 0 Π(1)

00 (0)

⎤⎥⎥⎥⎦ (15.54)

Here the superscripts (1) and (2) refer to the U(1) and SU(2) gauge
bosons, respectively. One defines as Π(2)

gb (0), Π(2)
φ (0), and Π(2)

ψ (0), the con-
tribution to the SU(2) gauge boson polarization tensor from the gauge
boson, Higgs boson, and t quark loops. One may use a similar notation
for the polarization of the U(1) gauge boson. Then

Π(1)
00 (0) = Π(1)

φ (0) + Π(1)
ψ (0)

Π(2)
00 (0) = Π(2)

gb (0) + Π(2)
φ (0) + Π(2)

ψ (0)
(15.55)

where

Π(1)
φ (0) =

1
6
g′2T 2 Π(1)

ψ (0) =
5
3
g′2T 2

Π(2)
gb (0) =

2
3
g2T 2 Π(2)

φ (0) =
1
6
g2T 2 Π(2)

ψ (0) = g2T 2
(15.56)

The rest of the calculation for the ring contribution to the gauge boson
effective potential proceeds as in the case of the Higgs particle. In terms
of the mass and self-energy matrices, it may be written as

Ωgb
ring(v) = − T

12π
Tr
{

[M2(v) + Π00(0)]3/2 −M3(v)
}

(15.57)
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Fig. 15.2. The ring-improved effective potential that is relevant for the elec-
troweak phase transition in the standard model. The physical parameters that
enter this calculation are the masses of the Higgs particle and the top quark. The
values here are mH = 120 GeV, and mt = 175 GeV. The curve at the critical
temperature Tc = 140.42 GeV is enclosed by curves at T = 140.40 (lower) and
140.43 GeV (upper).

One may show that

Tr[M2(v) + Π00(0)]3/2 = 2a3/2 +
1

2
√

2

[
(a + c) −

√
(a− c)2 + 4b2

]3/2
+
[
(a + c) +

√
(a− c)2 + 4b2

]3/2
(15.58)

where a = g2v4/4 + Π(2)
00 (0), b = −gg′v2/4, and c = g′2v2/4 + Π(1)

00 (0).
The final expression for the effective potential is obtained by adding to

the zero-temperature parts the ring-improved finite-temperature expres-
sions [10]. We remark that two-loop topologies have also been considered,
along with their contribution (with resummations) to the effective poten-
tial [11, 12, 13].

With the methods described here, it has been shown that the standard
model has a first-order phase transition, driven by the v3 term [10, 14].
Using modern values of the physical parameters yields the effective poten-
tial shown in Figure 15.2. One observes that the perturbation approach
appears to predict a very weak first-order phase transition with a critical

https://doi.org/10.1017/9781009401968 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968


374 Weak interactions

temperature Tc = 140.42 GeV. However, this brings us to the core of
the issue. Consider the behavior of the perturbative expansion in the
standard model. To make the discussion specific, consider a temperature
near Tc. A parameter can be associated with each loop in the expan-
sion of the effective potential. For example, the expansion parameter for
vector loops is g2Tc/mW (vc) (generically writing g2 for a linear combina-
tion of g2 and g′2), according to the analysis earlier in this section. We
may write g2Tc/mW (vc) ∼ gTc/vc ∼ λ/g2. This last value is ∼ m2

H/m2
W ,

evaluated at T = 0. The current experimental value of the mass of the
W boson is 80.425 ± 0.033 GeV [15], and comes from direct measure-
ments. The Higgs boson, at the time of this writing, is still a hypotheti-
cal particle. The bounds on its mass placed by self-consistent arguments
have been reviewed earlier. Indirect experimental bounds for the stan-
dard model Higgs mass can also be obtained from precision electroweak
measurements and from fits to measured top quark and W± masses. The
global electroweak fits give a preferred value of 96+40

−38 GeV [15]. However,
a recent high-precision measurement of the top quark mass raised the
world average for mt to 178.0 ± 4.3 GeV [16]. The impact on the best
standard-model fit of the Higgs mass is that it is raised from 96 to 117
GeV. In line with arguments presented earlier, those numbers clearly cast
doubt on the usefulness of a perturbative loop expansion in theoretical
searches for an electroweak phase transition in the standard model. It is
therefore important to consider lattice-based nonperturbative numerical
approaches.

15.4 Symmetry restoration in lattice theory

As the quartic self-coupling λ becomes large, the accuracy of perturbative
calculations decreases. For large enough λ, corresponding to a large Higgs
mass, the order of the phase transition, and even its existence, cannot
be determined using perturbation theory. As for QCD one might turn
to numerical calculations of electroweak theory on a lattice. In general
this is a more intensive numerical endeavor than in the QCD case for
several reasons: there are two types of gauge field, there is a scalar dou-
blet field, and there are three generations of fermion fields to deal with.
Also, surprisingly, the weaker gauge coupling makes the simulations more
demanding since it introduces a scale hierarchy that is very difficult to
handle numerically.

Significant progress in finite-temperature lattice calculations of
electroweak-like gauge theories has been realized in recent years with the
help of the technique of dimensional reduction. Provided that we are inter-
ested in the computation of static quantities, we may generically write a
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four-dimensional boson or fermion field in terms of its Matsubara modes:

φ(τ,x) =
∞∑

n=−∞
exp(i2nπTτ)φn(x)

ψ(τ,x) =
∞∑

n=−∞
exp(i(2n + 1)πTτ)ψn(x)

(15.59)

The original four-dimensional theory is formally equivalent to a three-
dimensional theory albeit with an infinite number of fields, each cor-
responding to a mode. The three-dimensional “masses” of bosons are
mB = 2πnT and those of fermions are mF = (2n + 1)πT . If we are con-
cerned with soft physics below some scale Λ, the heavier fields (on that
scale) may be integrated out. This leaves an effective field theory where
the parameters of the effective Lagrangian are functions of the temper-
ature and of the scale Λ. This integration over heavy modes might be
done perturbatively, and the expansion parameter would be Λ/πT . If the
relevant scale is T or smaller then all fermionic modes, and all bosonic
modes with n = 0, will have masses larger than πT and can be integrated
out.

The effective three-dimensional action can be written as

Seff = bV T 3 +
∫

d3xLeff +
∑
n

On

Tn
(15.60)

Here Leff is a three-dimensional effective Lagrangian with temperature-
dependent parameters, b is some number that is related to the number
of degrees of freedom, V is the volume, and the On represent the contri-
bution from operators of dimension n. The latter will be suppressed by
powers of the temperature but, in the high-T limit, the three-dimensional
couplings contained therein will also be large. A typical way to rewrite the
last term in the equation above is O(m2

i (T )/T 2), the mi(T ) being relevant
mass scales for the problem at hand, such as inverse screening lengths,
etc. The condition for omitting the last term in the effective action is
tantamount to that controlling the convergence of the zero-temperature
perturbative expansion, namely, g2 � 1 where g is a dimensionless cou-
pling constant. At first it would appear that little has been gained by for-
mulating the problem in a reduced number of dimensions. However, the
expansion parameter is different at zero and finite temperature. At finite
T the perturbative expansion should prove useful if g2T/Λ = g2

3/Λ � 1,
where g3 is the three-dimensional coupling. Therefore, at finite tempera-
ture it is entirely possible for the four-dimensional perturbation expansion
to be unsuitable but for the dimensionally reduced theory to be applica-
ble. For applications in the vicinity of a critical temperature, it turns out
that the criterion of applicability of dimensional reduction is satisfied for
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Fig. 15.3. A plot of the phase diagram of the standard model, investigated with
lattice Monte Carlo techniques. The broken line is the perturbative (first-order)
result; the solid line is a fit to the numerical results and shows a first-order
transition with a second-order endpoint. The figure is adapted from Ref. [18].

electroweak theory but not for QCD, since the four-dimensional gauge
coupling is not small at Tc.

Finite-temperature electroweak theory has been studied in lattice
Monte Carlo simulations for a number of Higgs mass values by Kajantie
et al. [17]. The effective Lagrangian they use is

Leff = 1
4f

a
ijf

a
ij + (DiΦ)†(DiΦ) + m2

3Φ
†Φ + λ3(Φ†Φ)2 (15.61)

This is electroweak theory in three-dimensions without the U(1) gauge
field, without fermions, and where the time component of the SU(2) gauge
field has been integrated out. There are three parameters: g3, that enters
via the covariant derivative Di, m3, and λ3. To lowest order (and ignoring
Yukawa couplings and g′) they are

g2
3 = g2T

m2
3 =

(
3
16g

2 + 1
2λ
)
T 2 − c2

λ3 = λT

(15.62)

where g, c, and λ are all parameters in the fundamental four-dimensional
theory (15.1). These parameters have been computed with one-loop
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corrections too. This allows for a precise connection between physically
measurable quantities such as the W, Z, and Higgs-boson masses and the
thermodynamic properties of the electroweak theory.

The numerical results indicate that the theory has a first-order phase
transition for small Higgs masses. The transition gets weaker as mH grows
and terminates around mH ∼ 80 GeV at a second-order endpoint. Those
results, together with those obtained in perturbation theory, are summa-
rized in Figure 15.3. It might be that these conclusions are modified by
physics beyond the standard model; this is a topic still under investiga-
tion.

15.5 Exercises

15.1 Find explicitly the “linear terms” in (15.32).
15.2 Verify that (15.34) is the propagator for the W and Z bosons.
15.3 Express Tc in (15.39) in terms of the observable parameters e and θW

and the zero-temperature Higgs mass. Assuming that perturbation
theory is valid and using the quoted bounds on mH , determine the
allowable range for Tc.

15.4 Show that the term in the effective potential that is cubic in the
vacuum expectation value of the scalar field is from the Matsubara
zero-mode.

15.5 Derive the three-dimensional couplings in (15.62).
15.6 How is the temperature dependence of m2

3 in (15.62) related to the
critical temperature given by (15.39)?
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16
Astrophysics and cosmology

Finite-temperature field theory finds extensive applications in astrophys-
ical environments and cosmology. This chapter is devoted to an introduc-
tion to these applications. A more comprehensive discussion could easily
fill whole books.

The end product of the evolution of any star is a white dwarf star, a
neutron star, or a black hole, depending on the initial mass of the star.
A white dwarf star is held up against gravitational contraction by elec-
tron degeneracy pressure (Section 16.1) whereas a neutron star is held up
by baryon degeneracy pressure and repulsive baryon interactions (Section
16.2). The sun will end its days by swelling up into a red giant and then
collapsing to a white dwarf. Neutron stars are formed in the gravitational
collapse of stars with initial mass in the range from about two to eight
solar masses. The collapse is sudden and may be seen as a supernova. The
resulting star is initially quite warm, perhaps 10 to 40 MeV in tempera-
ture, but cools rapidly by neutrino emission (Section 16.3). If the initial
mass of the dying star is too great then it will end as a black hole.

There was some excitement when it was realized that a first-order QCD
phase transition about one microsecond after the big bang could influ-
ence the abundances of the light isotopes such as deuterium, helium, and
lithium. However, quantitative calculations now show that this is very
unlikely (Section 16.4); in addition QCD, with its known set of quark
masses, probably does not undergo a first-order phase transition, as we
saw in Chapter 10.

Going further back in time, it seems quite likely that the final baryon
and lepton numbers of the universe were determined at around the elec-
troweak temperature scale of 100 GeV. Sphaleron transitions were the
last phenomena that were able to change these numbers (Section 16.5).
Baryogenesis and leptogenesis may have originated at some much ear-
lier epoch, in the context of grand unified or supersymmetric theories. It

379
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may be that some very massive particles in such a theory preferentially
decayed into baryons rather than antibaryons. The formation and decay
rates of such particles are considered in Section 16.6.

16.1 White dwarf stars

A white dwarf is the end result of a star of about one solar mass after it
has burned all its nuclear fuel. It is held up against gravitational collapse
by the degeneracy pressure of electrons, although essentially all its mass
is contributed by baryons. It is interesting to inquire to what extent the
equation of state of the degenerate electron gas influences the structure
of white dwarfs.

In a white dwarf, the pressure of the electrons dominates the pressure
of the atomic nuclei while the mass density of the baryons dominates the
total energy density. Therefore the energy density is approximately

ε =
mNne

Ye
(16.1)

where mN is the nucleon mass, ne is the electron density, and Ye is the
number of electrons per baryon. For a star composed predominantly of
helium Ye = 1/2, while for a star composed predominantly of iron Ye =
26/56. These values follow from the requirement of electrical neutrality.
There are small corrections due to the binding energy of the atomic nuclei
and to their average kinetic energy.

To determine the mass and structure of cold, nonrotating, spherically
symmetric stars, we use the Tolman–Oppenheimer–Volkoff equation from
general relativity,

r2dP

dr
= −G(ε + P )(M + 4πr3P )

(
1 − 2GM

r

)−1

(16.2)

where

M(r) = 4π
∫ r

0
ε(r′)r′2dr′

The function M(r) is the total mass contained within a sphere of radius
r. We can neglect the pressure in comparison with the energy density.
We can also neglect the general relativistic change in the metric. To an
excellent approximation Newtonian gravitational physics applies.

It turns out that as the central density εc of the star increases, the
mass increases at first while the radius decreases. As the central density
is increased further, an asymptotic limit is reached for the stellar mass.
White dwarfs with a mass greater than this “Chandrasekhar limit” cannot
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exist. To understand this limit we recognize that at very high density the
electrons become ultrarelativistic. The electron pressure for noninteract-
ing electrons is then

Pe =
μ4
e

12π2
(16.3)

and the density is

ne =
∂Pe

∂μe
=

μ3
e

3π2
(16.4)

Together with (16.1) this results in the equation of state

P = Kε4/3 (16.5)

where K is a constant. This has the form of a polytrope (pressure propor-
tional to the energy density raised to a power). Newtonian gravitational
physics then predicts the unique asymptotic mass

M∞ = 4.555
(
K

G

)3/2

= 5.735Y 2
e Msun (16.6)

where the second equality expresses it in terms of the mass of the sun [1].
This mass is independent of the central density and the radius, which is
given by

R = 3.891
(
K

G

)1/2

ε−1/3
c = 4.20

(
Msun

εc

)1/3

Y 2/3
e (16.7)

The physical constants used above are: the average nucleon mass mN =
0.939 GeV; Newton’s constant G = 6.707 × 10−39 GeV−2; the solar mass
Msun = 1.989 × 1030 kg; and the solar radius Rsun = 6.961 × 108 km. For
a white dwarf composed of helium M∞ = 1.43Msun. The Chandrasekhar
limit is one of the fundamental concepts in astrophysics.

The story is not complete. When the electron density becomes high
enough, roughly when μe = 5me, electrons are captured by protons to
form neutrons (the neutrinos escape from the star). The electron-to-
baryon ratio Ye decreases, and so does the mass. As a function of increas-
ing central density the mass goes up, reaches a maximum just below the
Chandrasekhar limit, and then decreases. When the star mass falls with
increasing central density the star is gravitationally unstable and collapses
further.

It is clear that several other more minor effects have been left out of
this analysis. Among these is the change in the equation of state of the
electron gas owing to interactions among the electrons. Let us see how
important these interactions are. From our previous studies we know that
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the first-order correction to the pressure in the limit μe � me, T is

Pe =
μ4
e

12π2

(
1 − 3

2
α

π

)
(16.8)

and the correction to the density is

ne =
∂Pe

∂μe
=

μ3
e

3π2

(
1 − 3

2
α

π

)
(16.9)

This means that the coefficient K is modified:

K → K

(
1 − 3

2
α

π

)−1/3

(16.10)

This changes the Chandrasekhar limit by only 0.2%. So, after all this
hard work we find that the perturbative corrections in an ultrarelativistic
electron gas are probably impossible to discern by measuring white dwarf
masses and radii.

16.2 Neutron stars

A neutron star consists of almost pure neutron matter with a central
density greater than that in atomic nuclei. This represent the final state
in the evolution of many stars. Owing to their high central density, neu-
tron stars serve as distant laboratories for the study of dense, relativistic,
strongly interacting systems. Their central cores may have some compo-
nent of hyperon matter or quark matter. Much theoretical work has been
published on this topic over the last forty years. Here we can just touch
on some of the important issues by studying a few illustrative theories of
cold dense baryonic matter.

To first approximation the star consists of pure neutron matter. How-
ever, neutrons undergo beta decay by the process n → p + e− + ν̄e. This
decay will continue until the density of protons and electrons is high
enough for the Pauli exclusion principle to prevent any further decays;
this happens when the chemical potentials satisfy μn = μp + μe. The neu-
trinos escape from the star. In fact, neutrino radiation is an important
mechanism for the cooling of a neutron star from its initial temperature
of 10 to 40 MeV following its birth by supernova. The details of neutrino
cooling are a fascinating, and complicated, story in themselves. The inter-
ested reader is referred to Section 16.3 and to the bibliography at the end
of the chapter.

As the central density increases, so does the baryon chemical potential.
Eventually it becomes high enough that hyperons can be produced and
coexist in chemical equilibrium with the neutrons and protons. The lowest
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spin-1/2 baryon octet consists of p, n,Λ,Σ+,Σ0,Σ−,Ξ0,Ξ−. If the baryon
density is high enough, muons may appear too.

We will consider three different models for the equation of state. The
first consists of relativistic but non-interacting neutrons. (It can be shown
that the inclusion of noninteracting protons, whose abundance is deter-
mined by beta equilibrium with neutrons, does not modify the equation
of state and therefore the structure of neutron stars by very much.) The
second model consists of protons and neutrons in beta equilibrium, inter-
acting via the exchange of σ, ω, and ρ mesons in the relativistic mean
field approximation. The first two mesons heve been discussed already,
in Chapter 11; the ρ meson is required here to reproduce the measured
charge-symmetry energy of nuclear matter. The third model starts with
the second and adds the six hyperons in the baryon octet. In addition, the
vector meson φ is included, since it couples to the hyperons and represents
vector repulsion among them.

All three models for the equation of state are based on the Lagrangian

Lstrong =
∑
j

ψ̄j(i∂ −mj + gσjσ − gωj ω − gφj φ− gρj ρaTa)ψj

+ 1
2

(
∂μσ∂

μσ −m2
σσ

2
)− 1

3bmN(gσσ)3 − 1
4c(gσσ)4

− 1
4ω

μνωμν + 1
2m

2
ωωμω

μ − 1
4φ

μνφμν + 1
2m

2
φφμφ

μ

− 1
4ρ

μν
a ρaμν + 1

2m
2
ρρ

a
μρ

μ
a (16.11)

Here j runs over the spin-1/2 baryons in the octet and T a is the isospin
generator. The various models discussed above correspond to the inclusion
or exclusion of some of the terms in Lstrong.

In the relativistic mean field approximation we allow the meson fields
to acquire density-dependent average values; the nonzero ones are σ̄, ω̄0,
φ̄0, and ρ̄3

0. These are driven by the finite densities of particle number,
baryon number, strangeness, and isospin asymmetry, respectively. From
the Lagrangian, one can read off the effective baryon masses m∗

j ,

m∗
j = mj − gσj σ̄ (16.12)

and effective baryon chemical potentials μ∗
j ,

μ∗
j = μj − gωjω̄0 − gφjφ̄0 − I3jgρj ρ̄

3
0 (16.13)

where I3j is the third component of the isospin of the jth baryon (1/2 for
the proton,−1/2 for the neutron, etc.).

The particle densities are given in terms of the Fermi momenta by

nj = p3
Fj/3π

2 (16.14)
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The Fermi momenta, in turn, are related to the effective chemical poten-
tials by

μ∗
j =

√
m∗2

j + p2
Fj (16.15)

In a neutron star the matter is electrically neutral and in equilibrium
under the strong, electromagnetic, and weak interactions. Chemical equi-
librium among the baryons listed above, as well as the electrons and
muons, implies the relations

μp = μn − μe μΛ = μn

μΣ+ = μn − μe μΣ0 = μn (16.16)
μΣ− = μn + μe μΞ0 = μn

μΞ− = μn + μe

where μe =
√
m2

e + p2
Fe, ne = p3

Fe/3π
2, and similarly for the muons. Elec-

trical neutrality then requires

np + nΣ+ = ne + nμ + nΣ− + nΞ− (16.17)

The hyperons and muons will only appear when the baryon chemical
potential μn is high enough to give them a nonvanishing Fermi momen-
tum.

The total pressure and energy density are expressed in terms of the
effective masses and chemical potentials as

P =
∑
j

PFG(μ∗
j ,m

∗
j ) + PFG(μe,me) + PFG(μμ,mμ)

− 1
2m

2
σσ̄

2 − 1
3bmN(gσσ̄)3 − 1

4c(gσσ̄)4

+ 1
2m

2
ωω̄

2
0 + 1

2m
2
φφ̄

2
0 + 1

2m
2
ρ(ρ̄

3
0)

2 (16.18)

ε =
∑
j

εFG(μ∗
j ,m

∗
j ) + εFG(μe,me) + εFG(μμ,mμ)

+ 1
2m

2
σσ̄

2 + 1
3bmN(gσσ̄)3 + 1

4c(gσσ̄)4

+ 1
2m

2
ωω̄

2
0 + 1

2m
2
φφ̄

2
0 + 1

2m
2
ρ(ρ̄

3
0)

2 (16.19)

where PFG and εFG are the Fermi-gas expressions with the quoted effective
masses and chemical potentials
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The values of the mean vector fields are determined in a transparent
way:

m2
ωω̄0 =

∑
j

gωjnj

m2
φφ̄0 =

∑
j

gφjnj (16.20)

m2
ρρ̄

3
0 =

∑
j

I3jgρjnj

The mean value of the scalar field must be determined numerically from
the self-consistency condition

m2
σσ̄ + bmNg

3
σN σ̄2 + cg4

σN σ̄3 =
∑
j

gσjn
s
j (16.21)

where ns
j is the scalar density of the jth baryon.

There are many parameters in Lstrong. The masses are known. The
coupling constants gωN , gσN , b, and c were determined in Chapter 11 on
the basis of the nuclear saturation density, binding energy, compressibility,
and Landau mass. The ρ–nucleon coupling constant can be determined
from the charge symmetry coefficient in the symmetry energy:

asym =
(
gρN
mρ

)2 p3
F

12π2
+

p2
F

6mL
= 32.5 MeV (16.22)

There is considerable uncertainty surrounding the coupling constants
in the strange sector. Here we choose gφN = 0 on the basis that the nucle-
ons have no strange valence quarks while the φ meson is composed of ss̄.
A study of Λ hypernuclei by Rufa et al. [2] in the relativistic mean field
approximation gives gσΛ = 0.48gσN and gωΛ = 0.56gωN . A study by Keil,
Hofmann, and Lenske [3] gives similar numbers, namely, gσΛ = 0.49gσN
and gωΛ = 0.55gωN . (For comparison, a study of low-energy nucleon–
nucleon and hyperon–nucleon scattering by Maessen, Rijken, and de Swart
[4] gives gσΛ = 0.58gσN and gωΛ = 0.66gωN .) These two coupling con-
stants are highly correlated, gσΛ being somewhat smaller than gωΛ. The
reason is that the binding energy of a Λ hyperon in a nucleus or in
nuclear matter depends mainly on the depth of the mean field potential,
which is gωΛω̄0 − gσΛσ̄0. Thus both coupling constants can be increased
or decreased together to yield the same mean field potential. For the
sake of illustration we shall use the values from Keil et al.; based on
quark-counting we then estimate that gσΣ = gσΞ = 0.49gσN , gφΛ = gωΛ,
gωΞ = gωN/3, and gφΞ = 2gφΛ.

The equation of state for electrically neutral matter, P versus ε, is
plotted in Figure 16.1. At low energy density the pressure of a gas of
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Fig. 16.1. Equation of state for electrically neutral dense nuclear matter.

noninteracting nucleons (including electrons and muons) is greater than
that of nuclear matter that takes into account interactions. The reason
is that attractive interactions lower the pressure; in fact, for isospin-
symmetric nuclear matter the pressure is zero at the saturation density of
nuclear matter. At high energy density the situation is reversed; repulsive
interactions involving vector mesons cause an increase in the pressure.
When hyperons are included the pressure is reduced and the equation of
state is said to be softened, on account of energy having been put into
hyperon masses rather than into the kinetic energy of nucleons.

The star mass as a function of central energy density, for each of
the three model equations of state, is plotted in Figure 16.2. These are
obtained as solutions to the Tolman–Oppenheimer–Volkoff equation. The
star mass at first increases with central density, reaches a maximum, and
then decreases. The maximum mass represents the limit of stability. A star
cannot be supported against gravitational collapse to a black hole by going
beyond that limit. As can be seen by comparing Figures 16.1 and 16.2,
a stiffer equation of state can support a higher maximum mass. A large
number of neutron star masses have been measured in binary star systems.
The most accurately measured ones tend to fall in the range between 1.4
and 1.5 solar masses. This proves observationally that nuclear interactions
are crucial in supporting a neutron star from gravitational collapse; a gas
of free neutrons, protons, electrons, and muons can only produce a star
with maximum mass less than 0.7 solar mass.
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Fig. 16.2. Star mass as a function of central energy density for the three equa-
tions of state represented in Figure 16.1.

The chemical abundances of the baryons are very interesting. These
are shown in Figure 16.3 for the model equation of state that includes
hyperons. At low baryon density the matter is dominated by neutrons.
Neutron decay is Pauli-blocked by a small admixture of protons and elec-
trons. As the density goes up it is advantageous for more neutrons to be
converted to protons and electrons. Eventually it becomes favorable for
nucleons to be converted into hyperons. This is a general feature. How-
ever, the order of appearance of hyperons with density and their relative
abundances depend sensitively on the numerical values of the coupling
constants. Increasing the coupling to the scalar field decreases the effec-
tive mass, and decreasing the coupling to the vector fields increases the
effective chemical potential, both of which work to favor the appearance
of a given hyperon. Note, however, that the maximum-mass star only
probes the equation of state up to an energy density of about 1 GeV fm−3

and a baryon density of about 0.9 fm−3 ≈ 6n0, where n0 is the nuclear
saturation density.

Whether the central density in the most massive neutron stars is great
enough to support a core of quark matter has been a topic of much study
and debate over the last three decades; if so, the core may be a color
superconductor, as described in Section 8.9. Unfortunately, it is very dif-
ficult to probe the deep interior of a cold neutron star. A neutron star is
born in a supernova, however, and therefore has an initial temperature
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Fig. 16.3. Baryon chemical composition for the equation of state that includes
hyperons. Note that the cusps correspond to particle production thresholds.

that may be as high as 40 MeV. The interior of the star cools by several
mechanisms, including neutrino production. This is a topic to which we
turn our attention now.

16.3 Neutrino emissivity

As mentioned in the previous section, neutron stars are born with a sig-
nificant amount of thermal energy. A great deal of this is lost by neutrino
emission. The microscopic processes are quite varied and complicated.
The environments for these processes are usually separated into the outer
crust and the inner core; the inner core may be nonsuperfluid or it may
be superfluid and magnetized.

Two of the most important reactions in the crust are pair annihila-
tion, e+e− → νν̄, and plasma decay, γ → νν̄. Pair annihilation is quite
straightforward, but it was not until 1993 that a fully relativistic treat-
ment of plasma decay (actually the decay of collective excitations of the
plasma) was carried out, by Braaten and Segel [5]. One of the most impor-
tant reactions in the crust is the direct Urca process, n → pe−ν̄e, and the
related reaction pe− → nνe. (The process was named after a casino in Rio
de Janeiro by Gamow and Schoenberg [6] who likened thermal energy to
money and neutrinos to the casino that takes it away.) There is also a
modified Urca process, in which a spectator nucleon N facilitates the
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process, namely, nN → pNe−ν̄e and pNe− → nNνe. The nucleon N , or
the neutron or proton for that matter, may be replaced by a hyperon,
depending on the chemical conditions in the core. Then there is neu-
trino cooling by more exotic processes, such as pion condensation, kaon
condensation, the Urca process for quarks, or color superconductivity. We
shall consider some of these processes in this section. For a comprehensive
survey the reader should consult the review by Yakovlev et al. [7].

16.3.1 Pair annihilation

When the temperature of the crust or the core reaches 100 keV or so,
which is a significant fraction of the electron mass, there will be a sig-
nificant number of electrons and positrons which can annihilate into
neutrino–antineutrino pairs. The rate (number of reactions per unit time
per unit volume) can be calculated directly from the cross section:

dR = σ(e+e− → νlν̄l)vrel

(
2
d3p−
(2π)3

N−
F (p−)

)(
2
d3p+

(2π)3
N+

F (p+)
)

(16.23)

Here the subscript l specifies the neutrino flavor and vrel =√
(p+ · p−)2 −m4

e/E+E−; the quantities in large parentheses represent
the thermal phase space for electrons and positrons, including the spin
factor 2 (the Fermi–Dirac occupation numbers are the same as in (5.57)).
This expression assumes that neutrinos escape so that there is no Pauli-
blocking in the final state. Note that the cross section is proportional to
the imaginary part of the forward scattering amplitude and to the square
of the invariant amplitude, as discussed in Section 12.2. The same expres-
sion can be derived from the finite-temperature field theory rules using
the standard model Lagrangian. For the present situation, where the tem-
perature and chemical potential are smaller than the electroweak scale of
100 GeV, we might as well use the cross section as calculated in many
texts on the standard model.

The neutrino emissivity Q is the energy radiated into neutrinos per
unit time per unit volume. This involves multiplication of dR by the total
energy E+ + E− and integration over all phase space:

Qpair =
G2

F

3π

∫ (
d3p−
(2π)3

N−
F (p−)

)(
d3p+

(2π)3
N+

F (p+)
)

(E+ + E−)

× {C2
+

[
m4

e + 3m2
e(p− · p+) + 2(p− · p+)2

]
+ 3m2

eC
2
−
[
m2

e + (p− · p+)
]}

(16.24)

The Fermi constant is denoted by GF. The quantities C2± =
∑

l(C
2
V l ±

C2
Al) are sums over neutrino flavors of the vector and axial-vector
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constants. Electron neutrinos can be produced via charged or neutral
current interactions, involving W and Z vector bosons, respectively, while
muon and tau neutrinos can only be produced via neutral current interac-
tions. Thus CV e = 2 sin2 θW + 1/2, CAe = 1/2, CV μ = CV τ = 2 sin2 θW −
1/2, CAμ = CAτ = −1/2, with sin2 θW ≈ 0.23. The six-dimensional inte-
gral for Qpair can be reduced to products of one-dimensional integrals.
The latter cannot be found in closed form in general, but they can be
evaluated numerically; simple parametrizations for them also exist (see
[7]).

A particularly simple limit, although not the most relevant for the
majority of periods of neutron star cooling, is the nondegenerate (NF � 1)
ultrarelativistic (T � me) limit;

Qpair → 7ζ(5)
12π

C2
+G

2
FT

9 (16.25)

This illustrates how rapidly the cooling rate increases with temperature.
In this limit, a ten-fold increase in T results in a billion-fold increase in
the emissivity!

16.3.2 Plasma decay

We saw in Chapter 6 that the photon propagator at finite temperature
has singularities corresponding to the propagation of transverse and lon-
gitudinal modes. Both modes have a finite energy at zero momentum.
As a consequence, they will decay into a neutrino–antineutrino pair. This
occurs via the coupling of the photon to a (virtual) e+e− pair, which
then annihilates into neutrinos. The general expression for the emissivity
is

Qplasma =
∫

d3k

(2π)3
[2NB(ωT)ωTΓT(ωT) + NB(ωL)ωLΓL(ωL)] (16.26)

The NB are the Bose-Einstein distributions, ωT and ωL are the energies
of the transverse and longitudinal modes with momentum k, and ΓT and
ΓL are the decay rates into a νν̄ pair.

The complete one-loop analysis of the plasma decay rates at arbi-
trary temperature and chemical potential was carried out by Braaten
and Segel [5]. The rates are expressed in terms of the photon lon-
gitudinal and transverse self-energies, F and G, and the residues of
their poles, ZL and ZT. Specifically, Z−1

L (k0,k) = 1 − ∂F (k0,k)/∂k2
0 and
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Z−1
T (k0,k) = 1 − ∂G(k0,k)/∂k2

0. We have

ΓT(k0,k) =
G2

F

48π2α
ZT(k0,k)

k2

k0

[
C2
V G

2(k0,k) + C2
AΠ2

A(k0,k)
]

ΓL(k0,k) =
G2

F

48π2α
ZL(k0,k)

k2

k0
C2
V F

2(k0,k)

(16.27)

The transverse rate also involves a new axial self-energy ΠA. To leading
order in α it is given by

ΠA(k) = e2 k
2

|k|
∫

d3p

(2π)3E
[
N−

F (E) −N+
F (E)

] k0(p · k) − Ek2

(p · k)2 − (k2)2/4
(16.28)

where E =
√

p2 + m2
e. To first order in α, the term (k2)2/4 in the denom-

inator can be set to zero; it corresponds to an imaginary part arising
from the production of electron–positron pairs. This is unphysical since
it does not take into account the dispersion relation of electrons to the
same order in α. The resulting expression for ΠA can be expressed as a
one-dimensional integral that in general must be done numerically. When
used to calculate the emissivity, all functions above are evaluated using
the appropriate dispersion relation, either k0 = ωL(k) or k0 = ωT(k).

For neutron star cooling it is numerically efficient to have simple, accu-
rate, analytic formulas for the emissivity. Nice formulas were derived by
Braaten and Segel with this in mind. The following expressions were
shown to be correct in the classical, degenerate, and relativistic limits
for all momenta and correct at small momenta for all temperatures and
densities; they were interpolated to an accuracy of order α in between
these limits (in what follows k = |k|):

ω2
T = k2 + ω2

P

3ω2
T

2v2∗k2

[
1 − ω2

T − v2∗k2

2v∗kωT
ln
(
ωT + v∗k
ωT − v∗k

)]
0 ≤ k < ∞

(16.29)

ω2
L = ω2

P

3ω2
L

v2∗k2

[
ωL

2v∗k
ln
(
ωT + v∗k
ωT − v∗k

)
− 1
]

0 ≤ k < kmax (16.30)

kmax =

√
3
v2∗

[
1

2v∗
ln
(

1 + v∗
1 − v∗

)
− 1
]
ωP (16.31)

v2
∗ω

2
P =

4α
3π

∫ ∞

0

dp p2

E

[
5
( p

E

)2 − 3
( p

E

)4
]
NF(E) (16.32)

In these expressions ωP is the plasma frequency, defined in Chapter 6.
The variable v∗ lies between 0 and 1. Since we start with two independent
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variables, T and μ, it is quite natural that the two independent variables
ωP and v∗ appear in the result. The longitudinal and transverse energies
must still be solved self-consistently from this set of equations.

When evaluated with the dispersion relations calculated above, the self-
energies and residues are approximated to the same accuracy, as follows:

F = ω2
L − k2 (16.33)

G = ω2
T − k2 (16.34)

ZT =
2ω2

T(ω2
T − v2∗k2)

3ω2
Pω

2
T + (ω2

T + k2)(ω2
T − v2∗k2) − 2ω2

T(ω2
T − k2)

(16.35)

ZL =
2ω2

L(ω2
L − v2∗k2)

(ω2
L − k2)[3ω2

P − (ω2
L − v2∗k2)]

(16.36)

ΠA = ωAk
(ω2

T − k2)[3ω2
P − 2(ω2

T − k2)]
ω2

P(ω2
T − v2∗k2)

(16.37)

One new frequency appears, which is

ωA =
2α
3π

∫ ∞

0
dp

[
3
( p

E

)2 − 2
( p

E

)4
]

[N−
F (E) −N+

F (E)] (16.38)

To calculate the emissivity, first the two dispersion relations must be
solved numerically and inserted into the functions appearing in the inte-
grand, and then the one-dimensional integral must be evaluated numeri-
cally. However, several limits can be evaluated analytically. Consider the
high-temperature limit defined by T � ωP. It can be shown that the con-
tribution of the longitudinal part is smaller than that of the transverse
part by a factor of order ω2

P/T
2, and the axial part is smaller by a factor of

order ω2
A/T

2. The transverse part can be evaluated by setting the factor
ω2

T − k2 equal to m2
P = G(k0 = |k|) (see Section 6.7) because the integral

is dominated by k � ωT, and otherwise setting ωT = k. The emissivity is
then given by

Qplasma → G2
F

24π4α
C2
V ζ(3)m6

PT
3 (16.39)

In the limit T � |μe| and T � me, m2
P ∝ αT 2. Then the emissivity goes

as α2G2
FT

9. The powers of the couplings follow from the lowest-order
diagrams needed to make the process go, and the power of the temperature
follows from dimensional analysis.

16.3.3 Direct Urca process for quarks

The analog of the direct Urca process for quarks is d → u + e− + ν̄e and
u + e− → d + νe. In beta equilibrium the chemical potentials are related
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by

μd = μs = μu + μe (16.40)

If the particles are assumed to be massless, electrical neutrality is achieved
without any electrons:

nu = nd = ns = n

ne = 0
(16.41)

where n is the baryon density. At low temperatures the quark Urca process
can only occur when all particles are near their Fermi surface; hence, there
is very little phase space for the reactions to occur. In particular, if all
particles are massless then energy and momentum conservation requires
the up quark, down quark, and electron momenta all to be collinear. Giv-
ing the d quark a slightly greater mass than the u quark, say 7 MeV
versus 5 MeV, does allow the decay to proceed, but very slowly. Iwamoto
[8] showed that interactions among the quarks change the situation dra-
matically.

From Chapter 8 we know that the relation between the Fermi momen-
tum, defined via the density, and the chemical potential is

μq =
(

1 +
2
3π

αs

)
pFq (16.42)

for quark flavors q = u, d. For relativistic electrons,

μe ≈ pFe (16.43)

Therefore pFd − pFu − pFe ≈ −(2/3π)αspFe < 0. This opens up the phase
space for the reactions and allows them to occur at a much higher rate.
Knowing the decay rate for the down quark, and the cross section for the
flavor-changing reaction, both of which could easily be calculated within
the standard model, Iwamoto found their sum to be

QquarkUrca =
457
630

G2
Fαs cos2 θC pFd pFu pFe T

6 (16.44)

where θC is the Cabibbo angle with cos2 θC ≈ 0.948. The electron Fermi
momentum would be zero if the strange quark mass were zero, but it is
not. For the temperatures of interest, say 5 to 50 MeV, pFe is comparable
to T , while pFd and pFu are definitely larger than T . The QCD coupling
is in the range of 0.1 to 1.0. Therefore the quark Urca process provides
quite a large emissivity.

There is also the direct Urca process in which the strange quark replaces
the down quark. The current-quark value of the strange quark mass at
the scales of relevance is around 105 to 150 MeV. This suppresses the
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reaction u + e− → s + νe but enhances the decay s → u + e− + ν̄e. How-
ever, the latter is suppressed by the factor sin2 θC ≈ 0.052 because it is
a strangeness-changing process. Overall one finds that the direct Urca
process with the strange quark is smaller than with the down quark.

If the electron Fermi momentum becomes too small then the modified
quark Urca process d + q → u + q + e− + ν̄e and u + q + e− → d + q + νe
dominates. This was calculated by Burrows [9].

16.4 Cosmological QCD phase transition

The main interest in a cosmological quark–gluon to hadron phase tran-
sition arises from its potential to influence the big bang nucleosynthesis.
Whether QCD with its known set of parameters undergoes a first-order
transition or something smoother is still not completely settled. Assum-
ing that there is a first-order phase transition one needs nucleation the-
ory to understand how the transition proceeds; this topic was discussed
in Chapter 13. In this section we first discuss how it can be that nucle-
osynthesis is affected by a QCD phase transition, and then we analyze
the dynamics of a first-order phase transition during the expanding early
universe.

16.4.1 Inhomogeneous big bang nucleosynthesis

A cosmological first-order phase transition at T ∼ 160−180 MeV could
leave spatial inhomogeneities in the baryon-to-entropy ratio and in the
ratio of protons and neutrons. If these inhomogeneities survive to T ∼
0.1−1 MeV then they could influence nucleosynthesis. This was first
pointed out and analyzed by Witten [10], by Applegate, Hogan, and Scher-
rer [11], and by Alcock, Fuller, and Mathews [12]. In thermal and chemical
equilibrium one might expect that the baryon density in the quark–gluon
phase is higher than in the hadron phase. This is called the baryon den-
sity contrast. Assuming a critical temperature of 160 < Tc < 180 MeV,
Kapusta and Olive [13] computed this baryon density contrast to be 1.5
to 2.5 when hadronic interactions were neglected and 5 to 7 when they
were included. One would expect that the last regions of space to undergo
the phase conversion would contain more baryons per unit volume than
the first regions to phase-convert because of the lack of time for baryons
to diffuse. After phase completion the neutrons will diffuse more rapidly
than protons because they are electrically neutral and therefore do not
Coulomb-scatter on electrons. This leads to isospin inhomogeneities, at
least temporarily.

A detailed calculation of inhomogeneous nucleosynthesis with a com-
parison to the observed abundances of the light elements was performed
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Fig. 16.4. Conservative upper limit to the baryon-to-photon ratio η from the
4He abundance Yp ≤ 0.248 and the deuterium abundance D/H ≥ 1.5 × 10−5.
The three thicker curves are for volume fractions covered by the high-density
regions of 1/(2

√
2) (solid), 1/8 (broken), and 1/(16

√
2) (broken and dotted).

The two thinner curves are for volume fractions 1/64 (solid) and 1/256 (broken).
From [15].

by Kurki-Suonio et al. [14]. They considered baryon density contrasts
ranging from 1 to 100 and matter-fractions in the high-density regions
ranging from 1/64 to 1/4. The average separation of the high-density
regions l was left as a free parameter, as was the average baryon-to-photon
ratio of the universe. The differential diffusion of protons and neutrons
was accounted for and then a standard nucleosynthesis code was run.
By fitting the observed abundances of 4He, D, 3He, and 7Li they con-
cluded that the baryon-to-photon ratio must lie between 2 × 10−10 and
7 × 10−10 (or 20 × 10−10 if certain constraints on 7Li were relaxed). They
also concluded that l < 150 m at the time of nucleosynthesis, whereas at
the completion of the QCD phase transition this upper limit would have
been only about 1 m. A quantitative theoretical estimate of the latter
scale is the purpose of the next subsection.
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Recently the inhomogeneous nucleosynthesis calculation was redone,
with technical improvements and updated estimates of the cosmic abun-
dances of the relevant light elements, by Kainulainen, Kurki-Suonio, and
Sihvola [15]. Their results are shown in Figure 16.4. The high-density
matter was distributed in spheres. The inhomogeneities are ineffective in
influencing nucleosynthesis unless the high-density regions are separated
by more than about 150 m at T = 1 MeV.

16.4.2 Dynamics of the phase transition

The nucleation rate for a system of particles or fields that has negligible
baryon number compared with the entropy was derived in Section 13.4.
Here we mention only the essential details. The change in free energy due
to the appearance of a bubble of hadronic matter in quark–gluon plasma
is

ΔF =
4π
3
r3 [Pq(T ) − Ph(T )] + 4πr2σ (16.45)

where r is the radius. The critical-sized bubble has radius

r∗ =
2σ

Ph(T ) − Pq(T )
(16.46)

which leads to

ΔF∗ =
4π
3
σr2

∗ (16.47)

The nucleation rate is

I =
4
π

( σ

3T

)3/2 σ(3ζq + 4ηq)r∗
3(Δw)2ξ4

q

e−ΔF∗/T (16.48)

It is proportional to the shear viscosity ηq and the bulk viscosity ζq in
the quark–gluon plasma and is inversely proportional to the square of the
enthalpy (w = ε + P ) difference between the two phases.

For numerical purposes we use a simple bag-model-type equation of
state with

Pq = (45.5 + 14.25)
π2

90
T 4 −B

Ph = (5.5 + 14.25)
π2

90
T 4

(16.49)

The constant 45.5 approximates the effective number of degrees of freedom
arising from massless gluons and up and down quarks and a strange quark
mass comparable with the temperature. The constant 5.5 approximates
the hadronic equation of state near Tc arising from a multitude of massive
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hadrons. The constant 14.25 arises from photons, neutrinos, electrons,
and muons common to both phases. The bag constant B is chosen to give
Tc = 160 MeV. For definiteness we take σ = 50 MeV/fm2, ξq = 0.7 fm,
and ηq = 18T 3 (see Section 9.6 and Baym et al. [16]).

Given the nucleation rate one would like to know the (volume) fraction
of space h(t) that has been converted from the quark–gluon plasma to
hadronic gas at proper time t in the early universe. This requires kinetic
equations that use the nucleation rate I as an input. Here we use a rate
equation first proposed by Csernai and Kapusta [17]. The nucleation rate
I is the probability of forming a bubble of critical size per unit time per
unit volume. If the system cools to Tc at time tc then at some later time
t the fraction of space that has been converted to the hadronic phase is

h(t) =
∫ t

tc

dt′ I(T (t′))[1 − h(t′)]V (t′, t) (16.50)

Here V (t′, t) is the volume of a hadronic bubble at time t that was nucle-
ated at an earlier time t′; this takes into account bubble growth. The
factor 1 − h(t′) takes into account the fact that new bubbles can only be
nucleated in the fraction of space not already occupied by the hadronic
gas. This conservative approach neglects any spatial variation in the tem-
perature. However, it does allow for completion of the transition without
violating any of the fundamental laws of thermodynamics.

Next we need a dynamical equation that couples the time evolution of
the temperature to the fraction of space converted to the hadronic phase.
We use Einstein’s equations as applied to the early universe, neglecting
curvature. The evolution of the energy density is

dε

dR
= −3w

R
(16.51)

where R is the scale factor at time t. This assumes kinetic but not
phase equilibrium and is basically a statement of energy conservation.
We express the energy density as

ε = hεh(T ) + (1 − h)εq(T ) (16.52)

where εh and εq are the energy densities in the two phases at the tem-
perature T . There is a similar equation for the enthalpy w. The time
dependence of the scale factor is determined by the equation of motion

1
R

dR

dt
=

√
8πGε

3
(16.53)

This expression can be used to relate the time to the scale factor using
the normalization R(tc) = 1.
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Fig. 16.5. Temperature as a function of scale factor.

We also need to know how fast a bubble expands once it is created. This
is a subtle issue since by definition a critical-sized bubble is metastable
and will not grow without a perturbation. After applying a perturbation,
a critical-sized bubble begins to grow. As the radius increases the surface
curvature decreases, and an asymptotic interfacial velocity is approached.
The asymptotic radial-growth velocity will be referred to as v(T ). The
expected qualitative behavior of v(T ) is that the closer T is to Tc the
more slowly the bubbles grow. At Tc there is no motivation for bubbles
to grow at all since one phase is as good as the other. The bubble-growth
velocity was studied by Miller and Pantano [18]. Their hydrodynamical
results may be parametrized by the simple formula

vγ = 3
(

1 − T

Tc

)3/2

(16.54)

which indeed has the expected behavior. A simple illustrative model for
bubble growth is then

V (t′, t) =
4π
3

[
r∗(T (t′)) +

∫ t

t′
dt′′v(T (t′′))

]3

(16.55)

This expression can also be written in terms of R,R′, R′′ instead of t, t′, t′′.
We now have a complete set of coupled integro-differential equations,

which must be solved numerically. These equation take into account bub-
ble nucleation and growth, energy conservation, and Einstein’s equations.
They make no assumption about entropy conservation.

Figure 16.5 shows the temperature as a function of the scale factor.
For practical purposes, nucleation begins near the bottom of the cooling
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Fig. 16.6. Average bubble density as a function of scale factor.

line. Thereafter, the nucleation and growth of bubbles release latent heat
that causes the temperature to rise. The increasing temperature shuts
off nucleation, and the phase transition continues owing to the growth
of already nucleated bubbles. The temperature can never quite reach
Tc; if it did, bubble growth would cease and the transition would never
complete. This is a result of the equations of motion and is not an
imposition.

Figure 16.6 shows the average bubble density

n(R(t)) =
∫ t

tc

dt′ I(T (t′))[1 − h(t′)] (16.56)

as a function of the scale factor. The bubble density rises rapidly just
before R reaches 1.007 and reaches its asymptotic value just after 1.007.

Figure 16.7 shows the nucleation rate as a function of scale factor. The
rate has a very sharp maximum between 1.0070 and 1.0071. The turn-on
and turn-off of the nucleation rate corresponds precisely with the fall and
rise of the temperature shown in Figure 16.5.

Figure 16.8 shows the fraction of space h that has made the conversion
to the hadronic phase. When h = 1 the transition is complete and the
temperature will begin to fall again. This occurs when R ≈ 1.4464, to
be compared with the value one would obtain from an ideal Maxwell
construction, RMaxwell = (239/79)1/3 = 1.446 30. . . . In fact the whole
curve h(R) is very close to the ideal Maxwell construction, apart from its
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Fig. 16.7. Nucleation rate as a function of scale factor.

Fig. 16.8. Volume fraction of space h occupied by the hadronic phase as a
function of scale factor.

delayed start, apparent in the figure. The interested reader could work
out the Maxwell formula from the equations given here.

Figure 16.9 shows the average bubble radius r̄ as a function of scale
factor, obtained from

4π
3
r3n = h (16.57)
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Fig. 16.9. Average bubble radius as a function of scale factor.

It grows with time and with the scale factor, of course. At the end of the
phase transition it is of order 1 cm. This is also the order of magnitude of
the distance between the final quark–gluon plasma regions. Unfortunately,
it is two orders of magnitude too small to affect nucleosynthesis. This
result is rather robust against reasonable variations in any of the input
parameters.

Nucleosynthesis is affected by remnant inhomogeneities in the baryon-
to-entropy ratio and in isospin if the high-baryon-density regions imme-
diately following a QCD phase transition are separated by at least 1 m.
A set of dynamical equations can be written and solved for the evolution
of the universe through such a phase transition all the way to completion.
The evolution of the temperature and hadronic volume fraction as func-
tions of time and scale factor are hardly different from the results of an
idealized Maxwell construction. The information not available in the lat-
ter construction is the length scale of the inhomogeneities, that is, bubble
sizes and so on. The characteristic distance between the last regions of
quark–gluon plasma seem to be of order 1 cm, too small to affect nucle-
osynthesis. However, qualifications and improvements can be made. For
example, when the fraction of space occupied by bubbles exceeds about
50%, interactions among the bubbles probably cannot be neglected. It
is unlikely, though, that further improvements in the dynamics would
qualitatively change the current picture of the transition. Indeed, crude
estimates of the effects of bubble fusion on the dynamics of the QCD
transition in heavy ion collisions indicate that the transition completes
only a little faster, and that the average bubble size is greater (Csernai
et al. [19]). At least this is in the right direction to be interesting.
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16.5 Electroweak phase transition and baryogenesis

The standard model conserves baryon and lepton number at the classical
level but not at the quantum level. This violation is always a possibility
when the current is associated with a global symmetry rather than with a
local gauge symmetry. Electric charge, for example, is conserved at both
the classical and quantum levels. This phenomenon is called the Adler–
Bell–Jackiw anomaly (Bell and Jackiw [20]; Adler [21]). In the standard
model the divergence of the baryon current is

∂μJ
μ
B =

Nfam

64π2
εμνρσ

(
g2fa

μνf
a
ρσ + g′2gμνgρσ

)
(16.58)

Entering on the right-hand side are the field strength tensors for the SU(2)
and U(1) gauge fields, in the same notation as in Chapter 15. There is a
factor Nfam on the right-hand side equal to the number of quark families
(the standard model has three). The divergence of the lepton current is
exactly the same, so that if the numbers of families of quarks and leptons
are the same, as in the standard model, the baryon number minus the
lepton number, B − L, is conserved. Of course, baryon and lepton number
will change only if the field configurations are such that the right-hand
side does not vanish.

Gerard ’t Hooft [22] showed that, indeed, the conservation of baryon
number is violated by the instanton of the weak SU(2) group. (For instan-
tons in QCD see Chapter 8.) The rate for baryon number violation is
proportional to the factor exp(−16π2/g2) ≈ 10−170. The probability of
observing this effect is exceedingly small with any reasonable estimate of
the prefactor. The proton lifetime, for example, has been estimated to be
many orders of magnitude larger than the age of the universe. It would
seem that this effect is merely a curiosity of quantum field theory.

However, Kuzmin, Rubakov, and Shaposhnikov [23] showed that this
is not the case at high temperatures. The reason that baryon number
can be violated at zero or low temperatures is that the weak instanton
involves tunneling between inequivalent vacua with different baryon num-
bers. This tunneling is exponentially suppressed by the aforementioned
factor. At high temperatures the transition can occur because of thermal
fluctuations, and if the temperature is high enough the corresponding
Boltzmann factor may not be nearly as small as the tunneling probabil-
ity. Specifically, they calculated the free energy of a static classical field
configuration involving the SU(2) gauge field and the Higgs field. The
Boltzmann factor for the baryon-number-violating process is

exp
(−Fsphaleron

T

)
= exp

[∫ β

0
dτ

∫
d3xLeff(Aa

i (x),Φ(x))
]

(16.59)
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The calculation is done at fixed temperature. Therefore the resummed
effective Lagrangian derived in Sections 9.3 and 15.4 can be used. This
is a beautiful example of the use of the effective resummed theory. To
lowest order, this means that the coupling constant and the Higgs con-
densate become functions of temperature, g(T ), v(T ). Before describing
the relevant classical solution to the field equations, let us understand the
connection between baryon (and lepton) number violation and the Adler–
Bell–Jackiw anomaly. Here we follow Klinkhamer and Manton [24], who
coined the word sphaleron to refer to this and related classical solutions.

We compute the time rate of change of total baryon number as dB/dt =∫
d3x∂J0

B/∂t. Let us assume that either the spatial baryon current JB

vanishes at spatial infinity or that it is periodic in a large box of volume V .
In either case Gauss’s theorem can be used to express the volume integral
of the divergence of the spatial current in terms of a surface integral,
which vanishes under the above assumptions. The change in the baryon
number, relative to its value as t → −∞, is associated with the baryon
number of the sphaleron,

Bsphaleron =
Nfamg2

64π2

∫ t

−∞
dt′
∫

d3x εμνρσfa
μνf

a
ρσ (16.60)

The integrand can be expressed as the divergence of a current:

∂μK
μ =

1
2
εμνρσfa

μνf
a
ρσ

Kμ = εμνρσ
(
fa
νρA

a
σ − 2

3
εabcA

a
νA

b
ρA

c
σ

) (16.61)

This can be proven by using the classical equations of motion.
To proceed we must have time-dependent fields with finite energy at

all times. Furthermore, we want these fields to evolve from the trivial
vacuum, Aa

μ = 0, at t → −∞ to the sphaleron configuration at time t.
Moreover, we want Aa

μ to be a pure gauge field at spatial infinity such
that K = 0 there. Then we can write

Bsphaleron =
Nfamg2

32π2

∫
d3x K0(x, t) (16.62)

Whether this is nonzero depends on the field configuration. Notice that
the sphaleron configuration we discussed earlier was time independent. In
fact, to make the identification of baryon number with sphaleron, we first
find a static configuration of fields and then make a gauge transformation
to satisfy the conditions given above.

https://doi.org/10.1017/9781009401968 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968


404 Astrophysics and cosmology

Define the dimensionless variable ζ = gvr. The static sphaleron ansatz
is

A0 = 0

A = v
f(ζ)
ζ

r̂ × σ (16.63)

Φ =
v√
2
h(ζ)r̂ · σ

(
0
1

)
with boundary conditions f(0) = h(0) = 0, f(∞) = h(∞) = 1. The result-
ing equations of motion are

ζ2f ′′ = 2f(1 − f)(1 − 2f) − ζ2

4
(1 − f)h2 (16.64)

ζ2h′′ = −2ζh′ + 2(1 − f)2h− λ

g2
(1 − h2)h (16.65)

These cannot be solved exactly in closed form, although analytic approxi-
mations can be found. Klinkhamer and Manton showed that the resulting
free energy is Fsphaleron = (4πv/g)F0(λ/g2). The factor F0 varies smoothly
from 1.566 at λ = 0 to 2.722 at λ = ∞, with F0(1) = 2.10. The charac-
teristic size of the sphaleron is found to be 1/gv simply from dimensional
analysis. Note that the characteristic energy is 4πv/g ≈ 5 TeV when the
parameters are those appropriate to the vacuum.

In order to compute the baryon number of the sphaleron we must make
a gauge transformation. We choose the gauge transformation

U(x) = exp
(
i

2
Θ(r)σ · x

)
(16.66)

with a function Θ(r) that varies smoothly from 0 to π as r varies from 0
to ∞. The function should be chosen so that A goes to zero faster than
1/r as r → ∞, so that K does not contribute to the integral yielding the
baryon number. In particular

Aa
i =

[1 − 2f(gvr)] cosΘ(r) − 1
gr2

εiabxb

+
[1 − 2f(gvr)] sin Θ(r)

gr2

(
δiar

2 − xixa
)

+
1
g

dΘ
dr

xixa
r2

(16.67)

By using this formula in K0 it is easy to show that the baryon num-
ber of the sphaleron is Bsphaleron = Nfam/2. This is reasonable since the
sphaleron interpolates between two sectors that differ by baryon number
1 for each family. The same holds true for lepton number.

The rate of sphaleron transitions involves primarily the Boltzmann fac-
tor, but for numerical purposes the prefactor is needed too. Calculation of
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the prefactor is analogous to that for the nucleation of bubbles in a first-
order phase transition, as analyzed in Chapter 13. The first calculation
was performed by Arnold and McLerran [25] who found that

Γsphaleron =
ω−
2π

(gv)3VNtran8π2Nrot

(
gT

v

)3

κ exp
(−Fsphaleron

T

)
(16.68)

Here ω− is the magnitude of the negative mode causing the instability. It
was estimated to be of order gv. The volume of phase space associated
with translational zero modes is (gv)3V , where the volume of the box or
universe is V . The volume of rotation space, SO(3), is 8π2. The factors
Ntran and Nrot relate to the normalization. They are given as integrals
involving the functions f and h describing the sphaleron. Finally there
is a determinantal factor κ (not to be confused with the quantity used
in Chapter 13), that depends on the ratio λ/g2. It is this last quantity
that is very difficult to compute; this must be done numerically with
great care. Carson et al. [26] found that Ntran is a smoothly increasing
function, and Nrot a smoothly decreasing function, of λ/g2. However, their
product has the approximately constant value 90 for 0.1 < λ/g2 < 10.
They found that ω− is a slowly increasing function of the same ratio of
couplings and differs from gv by only 30% as λ/g2 varies by two orders
of magnitude. They calculated κ for four different values of λ/g2. Baacke
and Junker [27] also calculated κ for seven values of λ/g2. Their results
are in approximate numerical agreement. It turns out that κ peaks at
λ/g2 ≈ 0.4 and falls off rapidly for both smaller and larger values of λ/g2.
A simple parametrization that captures this feature is

lnκ = lnκmax − 0.09
(

λ

g2
− 0.4

)2

− 0.13
(
g2

λ
− 2.5

)2

lnκmax = −3
(16.69)

If we now put everything together we find the rate per unit volume,

Γsphaleron

V
= 56.3gv(g2T )3

κ(λ/g2)
κmax

exp
(
−4πv

gT
F0(λ/g2)

)
(16.70)

This depends on two scales, gv and g2T , as well as on the ratio of the
quartic and gauge couplings.

For what range of temperature is the sphaleron rate formula given above
valid? It assumes that the baryon- and lepton-changing transitions are
dominated by the sphaleron configuration and that higher excitations are
unimportant. This means that on the one hand the argument of the expo-
nential must be larger than unity, or T < 4πv/g. On the other hand, it
assumes that gv provides an infrared cutoff smaller than the temperature,

https://doi.org/10.1017/9781009401968 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968


406 Astrophysics and cosmology

gv < T . Therefore the expected range of validity is

gv < T < 4πv/g (16.71)

The values of v, λ, and g are those appropriate to T , not the zero-
temperature values. Of these, v changes the most rapidly with T , as we
saw in Sections 15.2 and 15.3. If we use the vacuum value g = 0.637 and
10% of the vacuum value of v = 246 GeV, the temperature range is 16
to 480 GeV. This is centered directly on the electroweak energy scale,
which suggests that the baryon and lepton numbers of the universe were
essentially determined when the universe had that range of temperatures.

To relate the sphaleron rate to the baryon-number-changing rate we
follow Arnold and McLerran [25]. Suppose that the universe has different
sectors of baryon and lepton number and a sphaleron appears. It is associ-
ated with baryon and lepton numbers equal to Nfam/2. The change in free
energy of the universe when a sphaleron is formed now involves the extra
term (ΔNBμB + ΔNLμL)/T ; ΔNB = ΔNL = ±Nfam/2, the sign being
determined by whether the sphaleron increases or decreases the baryon
and lepton numbers. The difference in the forward and backward rates
involves the factor

e(μB+μL)Nfam/2T − e−(μB+μL)Nfam/2T ≈ (μB + μL)Nfam/T (16.72)

where the last approximate equality follows because the chemical poten-
tials are extremely small (the observed baryon-to-photon ratio is about
10−9). Furthermore, the sphaleron facilitates the transition between two
sectors that differ by a baryon number value equal to the number of fam-
ilies Nfam. Therefore the baryon-changing rate is

dNB

dt
= −N2

fam

μB + μL

T
Γsphaleron (16.73)

We need to relate the baryon number to the chemical potentials. We
allow for a third chemical potential μE associated with electric charge.
Taking three families of fermions, calculating the electric charge density
and setting it to zero, and solving for the chemical potentials we find that
μE = (3μL − μB)/8. Then the densities are

nB =
5μB + μL

8
T 2

nL =
9μL + μB

8
T 2

(16.74)

If we further assume that the baryon and lepton numbers of the universe
are equal we get μL = μB/2 and finally nB = (11/16)μBT

2. Putting this
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into the baryon-changing rate we finally get

1
NB

dNB

dt
= −1100

κ(λ/g2)
κmax

g7v exp
(
−4πv

gT
F0(λ/g2)

)
(16.75)

The absolute baryon number is decreased by sphalerons no matter
whether it starts out positive or negative.

The characteristic time for the relaxation of baryon and lepton numbers
to their equilibrium value of 0 is just given by the previous equation. This
should be compared with the expansion rate of the universe. According
to Einstein’s equations the scale factor of the universe evolves according
to (16.53). For an equation of state corresponding to Ndof ≈ 100 massless
bosonic degrees of freedom the characteristic expansion time scale is found
from

1
R

dR

dt
= 1.66

√
Ndof

T 2

mPlanck
(16.76)

where mPlanck = G−1/2 = 1.22 × 1019 GeV. The baryon-number-changing
rate is greater than the expansion rate of the universe for temperatures
greater than T∗, that is determined approximately by

T∗ ln
(
vmPlanck

T 2∗

)
=

4πvF0

g
(16.77)

The solution to this equation is approximately given by T∗ = v(T∗).
Within a factor 2 we can estimate T∗ to be about 100 GeV, the electroweak
scale, that is within the range of validity of the sphaleron approximation
to the baryon-changing rate. We would expect the net baryon and lepton
numbers of the universe to be determined somewhere around T∗.

For some range of temperatures above the regime of validity of the
sphaleron calculation the baryon- and lepton-number-changing reactions
are not expected to be suppressed. When T > 4πv/g there is no longer
a barrier to these reactions. On dimensional grounds the rate per unit
volume is then expected to be Ag10 ln(1/g2)T 4, where A is a constant
[28, 29]. This involves a factor (g2T )3, arising from the spatial volume
associated with the scale g2T , and a factor g4 ln(1/g2)T arising from the
relaxation time. Since the rate per unit volume grows as T 4 and the
particle density grows approximately as T 3, the rate per particle grows
as T . This should be compared with the T 2 growth of the expansion rate
of the universe. Therefore baryon- and lepton-number-changing processes
will be predominant for T∗∗ > T > T∗; it is left as an exercise for the
reader to estimate T∗∗.

One can ask a different question. Is it possible for the net baryon and
lepton numbers of the universe to be generated at the electroweak scale?
This requires three ingredients: baryon- and lepton-changing processes;
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CP violation; and a system out of equilibrium. The first has already been
demonstrated in the standard model. CP violation also exists in the stan-
dard model, as evidenced by neutral kaon oscillations. The requirement
that the universe be out of equilibrium is certainly possible if the stan-
dard model has a first-order electroweak phase transition. Much work has
been done in this context, but the consensus is that there is no first-order
electroweak phase transition in the minimal standard model; see Section
15.4. An extension of the minimal standard model to include extra Higgs
bosons generally does allow for a first-order phase transition. There also
seems to be a consensus that a second-order phase transition is not suffi-
cient to generate baryon and lepton numbers anywhere near their observed
values. What happens beyond the minimal standard model is a topic of
much current research.

16.6 Decay of a heavy particle

Presumably there is physics beyond the standard model. This may include
grand unified theories (GUT), supersymmetry (SUSY), and string theory.
A feature common to all of these is the existence of new particles that have
masses well above the electroweak scale of 100 GeV. These particles could
have been in thermal and chemical equilibrium in the very early universe
when the temperature was comparable with or greater than their masses.
Since these particles are not observed today they must have been unstable
and have decayed to lighter particles. The methods developed in previous
chapters are perfectly adapted to describe the physics of these decays at
finite temperature.

Following Weldon [30], consider a very heavy scalar field Φ with mass
M that decays into a pair of lighter scalar fields φa and φb with masses
ma and mb (M > ma + mb). The interaction responsible for the decay is
taken to be Lint = gsΦφaφb. The self-energy of the Φ can be computed in
the one-loop approximation in the usual way:

Π(k0 = iωn,k)

= −g2
sT

∞∑
j=−∞

∫
d3p

(2π)3
1

ω2
j + p2 + m2

a

1
(ωj − ωn)2 + (p − k)2 + m2

b

(16.78)

Here ωn and ωj are the Matsubara frequencies. After performing the sum
the self-energy may be expressed as

Π(k0 = iωn, k) = g2
s

∫
d3p

(2π)3
1

2Ea2Eb

(
1 + na + nb

k0 − Ea − Eb
+

na − nb

k0 + Ea − Eb

+
nb − na

k0 − Ea + Eb
− 1 + na + nb

k0 + Ea + Eb

)
(16.79)
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The energies are Ea =
√

p2 + m2
a and Eb =

√
(p − k)2 + m2

b , and the na

and nb are the Bose–Einstein occupation numbers.
Since the Φ is unstable its self-energy has both real and imaginary

parts. The imaginary part is what concerns us most here. As in Section
6.6, we write k0 = ω − iγ and assume weak damping, γ � ω. Then it is
easy to see that

ImΠ(ω,k) = −πg2
s

∫
d3p

(2π)3
1

2Ea2Eb

×{[(1 + na)(1 + nb) − nanb]
× [δ(ω − Ea − Eb) − δ(ω + Ea + Eb)]
+ [na(1 + nb) − nb(1 + na)]
× [δ(ω + Ea − Eb) − δ(ω − Ea + Eb)]} (16.80)

The product nanb has been added and subtracted in each of the terms
to provide a transparent physical interpretation. Under the conditions
stated above, the kinematically allowed processes are the decay Φ →
φa + φb and the formation φa + φb → Φ. The former involves the factor
(1 + na)(1 + nb), that is a Bose enhancement of the final state. The lat-
ter involves the factor nanb and a relative minus sign as is appropriate
for a formation reaction. The overall normalization is governed by the
decay amplitude gs times kinematic factors. At zero temperature all the
Bose–Einstein occupation numbers go to zero and γ = −ImΠ/2ω just
represents the in-vacuum decay. The other terms represent processes that
are kinematically forbidden in the present situation but could occur under
different ones. They include Φ + φa → φb, Φ + φb → φa, Φ + φa + φb → 0,
φa → Φ + φb, φb → Φ + φa, 0 → Φ + φa + φb.

It may also be possible for the Φ to decay into a fermion–antifermion
pair. This could happen via the interaction Lint = gf ψ̄ψΦ. In that case
the imaginary part would be

ImΠ(ω,k) = −2πg2
f

∫
d3p

(2π)3
s− 4m2

f

2Ea2Eb

×{[(1 + na)(1 + nb) − nanb]
× [δ(ω − Ea − Eb) − δ(ω + Ea + Eb)]
+ [na(1 + nb) − nb(1 + na)]
× [δ(ω + Ea − Eb) − δ(ω − Ea + Eb)]} (16.81)

The physical interpretation of these terms is exactly analogous to those
for the decay of the Φ into bosons.
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The imaginary part due to the coupling to either bosons or fermions
can be written in a universal format:

ImΠ(ω,k) = −1
2

∫
d3pa

2Ea(2π)3
d3pb

2Eb(2π)3
(2π)4

×{δ4(k − pa − pb)|M(Φ → a + b)|2
× [(1 − na)(1 − nb) − nanb]

+ δ4(k + pa − pb)|M(Φ + a → b)|2
× [na(1 − nb) − nb(1 − na)]

+ δ4(k − pa + pb)|M(Φ + b → a)|2
× [nb(1 − na) − na(1 − nb)]

+ δ4(k + pa + pb)|M(Φ + a + b → 0)|2
× [nanb − (1 − na)(1 − nb)]} (16.82)

Here M is the corresponding amplitude for a given process, whether for
bosons or fermions.

This result is of wide application. It applies to final states involving
more than two particles also. It easily generalizes to the decay of vector
mesons and to the decay of a heavy fermion in an obvious way.

16.7 Exercises

16.1 Derive the formulas for the asymptotic mass and radius of a white
dwarf star given in Section 16.1.

16.2 Derive the expression for the charge symmetry coefficient (16.22)
given in Section 16.2.

16.3 Using the numbers given in the text, calculate the mean field
potential at nuclear saturation density for nucleons and for the
Λ, Σ, and Ξ hyperons.

16.4 Calculate the neutrino emissivity for an ultrarelativistic degener-
ate electron gas (μe � T � me).

16.5 Show that the formulas for ZT and ZL, (16.35), (16.36), follow
from the previous formulae.

16.6 Look up the relevant matrix element and use it to calculate
(16.44).

16.7 Derive formulae for and plot the temperature T (R) and hadronic
volume fraction h(R) assuming an idealized Maxwell construction
for a QCD phase transition in the early universe.

16.8 Derive the equations of motion for f and h that start from the
sphaleron ansatz (16.63).

16.9 Show that the baryon number of a sphaleron is Nfam/2 by using
(16.67).
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16.10 Derive the formulae (16.74) for the baryon and lepton densities.
16.11 Suppose that the baryon-changing rate is given by

Ag10 ln(1/g2)T 4. If the baryon-to-photon ratio η has the
value 10−9 at T = 100 GeV, what would it have been at ear-
lier times and temperatures? What is your estimate for the
temperature T∗∗ discussed in the text?

16.12 Consider a very heavy boson of mass M that decays into a mass-
less fermion–antifermion pair. Write down the rate equation for
the abundance of these heavy bosons. Solve this equation in the
temperature range M � T0 > T > 100 GeV in terms of the initial
density nM (T0).
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Conclusion

In this book we have developed relativistic quantum field theory at finite
temperature and density. We have studied extensively the theories of three
of the four fundamental forces of nature: QED, QCD, and the Glashow–
Weinberg–Salam theory of the weak interactions. In its nonrelativistic
quantum mechanical guise, QED is responsible for the structure of atomic
and molecular systems. Here we have focused on the properties of rela-
tivistic plasmas as realized in astrophysical environments. We have stud-
ied the screening of static electric charges, the propagation of collective
excitations with the quantum numbers of the photon and the electron,
shear and bulk viscosities, and thermal and electrical conductivities. We
have also used the cold equation of state of dense electrons to calculate
the masses and radii of white dwarf stars.

Spontaneous symmetry breaking is an important concept in both the
strong and the electroweak interactions. When such symmetries are bro-
ken, the result is Goldstone bosons that reflect the underlying symmetry.
In simple models illustrating this phenomenon, the spontaneously broken
symmetry is restored at high enough temperatures, often via a second-
order phase transition. An extension of these models to include gauge
bosons reveals the Higgs mechanism, whereby one of the would-be Gold-
stone bosons combines with a gauge boson to produce a massive vector
boson with three spin states. In simple enough models, this symmetry is
restored at high temperatures.

QCD is the theory of quarks and gluons. We have studied it using
perturbation theory and have found the limitations of the latter. The
minimum extension is to sum the set of ring diagrams. This gives a con-
tribution of order g3 to the pressure at high temperature. Contributions
of order g4, g4 ln g2, g5, and g6 ln g2 have all been computed at high tem-
perature, with rather slow convergence. The ring diagrams spawned a
more elaborate technique that goes under the title of hard thermal loops.
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They are important for calculating various linear-response properties of
quark–gluon plasma, such as the emission of electromagnetic radiation in
the form of photons and lepton pairs. At asymptotically high tempera-
tures asymptotic freedom forces g2(T ) to go to zero, albeit only logarith-
mically. Since individual quarks and gluons are never observed at zero
and low temperatures, due to confinement, only color-neutral objects, or
hadrons, can exist there. Numerical calculations with lattice gauge theory
show conclusively that for the physical three-color theory without quarks,
there is a first-order phase transition separating the two phases. For two
flavors of massless quarks it should be a second-order transition, and for
three massless flavors it should be first order. The answer for two up and
down quarks, which are light, and one slightly heavier strange quark is still
not known with certainty. Cold dense quark matter has been shown to be
color superconducting. Various ways of pairing quarks can occur, includ-
ing two-flavor superconducting and color-flavor-locked superconducting.

At subcritical baryon densities, the most economical way to describe
the system is in terms of nucleon and hyperon degrees of freedom. The
simplest model that displays the main features of nuclear matter is the
Walecka model, which is readily solved in the mean field approximation.
Sophistications can include more interactions and more fields, and solv-
ing to a higher number of loops. Complications with the former occur
at high densities when the baryons are densely packed and multipar-
ticle interactions become important. Complications with the latter are
due to the large, order of 10, coupling constants. In any case, the phi-
losophy is to construct the most sophisticated Lagrangian possible, that
reflects the symmetries of QCD and low-energy scattering properties, and
then to calculate the partition function to the best of one’s abilities. The
goal is to extrapolate to high densities, such as those in a neutron star.
In fact, dozens of such stars have been observed with masses measured
to be twice that of a star composed of neutrons alone, thereby showing
the crucial importance of including interactions and/or other degrees of
freedom.

Hot hadronic matter occurs at subcritical energy densities and with
small or zero baryon density. The symmetries of QCD, particularly chi-
ral symmetry, again restrict the form of effective Lagrangians used to
describe the properties of this matter. The equation of state at small
temperatures is quite well determined. As the temperature rises, more
and more of the hundreds of hadrons observed in particle physics experi-
ments are created, and the interactions among them are complicated and
generally unknown. Still, it is important to understand this type of matter
for it is the ultimate fate of quark–gluon plasma created in high-energy
heavy ion collisions, as explored at accelerators at Brookhaven National
Laboratory and at CERN. Signatures of the formation of quark–gluon
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plasma include the thermal emission of photons and lepton pairs, J/ψ
production, strangeness production, and the relative abundances of
numerous species of mesons and baryons.

The early universe provides an ideal setting to study matter at extraor-
dinarily high temperatures. If QCD, for example, does undergo a first-
order phase transition with its physical parameters then one may study
the nucleation of the low-density hadronic phase from the high-density
quark–gluon phase and the subsequent evolution of the bubbles and
drops. The resulting inhomogeneities in energy density, baryon density,
and isospin density may even influence nucleosynthesis at later times. At
an even earlier epoch it was suspected that the spontaneously broken sym-
metry of the combined electroweak interactions might have been restored.
A mean field approximation yields a second-order phase transition, but
this becomes a very weak first-order transition when a resummation of the
ring diagrams is done. This might have bided well for baryogensis occur-
ring at this time via nonperturbative field configurations or sphalerons.
However, it turns out that the order and even existence of a transition
depends on the value of the quartic coupling in the Higgs sector, or rather
on the Higgs mass. Lattice calculations in the three-dimensional sector
show that present limits on the as yet undiscovered Higgs boson preclude
a phase transition.

The reader should now be in a position to read the current literature on
finite-temperature field theory and to make original contributions. There
are a large number and variety of topics that require investigation. Neu-
tron stars are being discovered all the time. Refined calculations of dense
nuclear matter are still needed. Comparing their computed mass, radius,
glitch characteristics, and cooling rates with observation should be invalu-
able for learning about the matter inside the densest objects in the uni-
verse. Since this is likely to be the only environment where superconduct-
ing quark matter may exist, it is necessary to understand it thoroughly.
It has been suggested that quark matter at modest densities is actually
in a color-superconducting crystalline state; this need to be worked out.
The matter formed in high-energy nuclear collisions at RHIC seems to be
behaving as a near perfect fluid. What is the nature of quark–gluon matter
just above the critical, or crossover, temperature? What are the correla-
tions between quarks and gluons there and how strong are they? Lattice
calculations may be the best approach for studying the strongly coupled
region in this vicinity. Much has been accomplished, but more work needs
to be done even though the first lattice calculations at finite temperature
were made twenty-five years ago. Analytical results are always appealing
and welcome; the order g6 and g7 contributions to QCD should be avail-
able in the near future. How far can one go? A topic that has not been
covered in this text is the absorption of high-energy jets at RHIC. This
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may well provide important information on the nature of the matter the
jets traverse.

The full equation of state of electroweak theory has not been computed
to the same level as it has for QCD. The importance of this theory for the
early universe, and the possibility that it affects baryogenesis, strongly
suggests that more work ought to be done. The same is true of grand
unified theories (GUTs), which attempt to unify the strong, weak, and
electromagnetic forces. Supersymmetry and supersymmetric extensions
of the standard model have been studied to some extent in the literature
but not at the level that QCD has. Hawking radiation has been discussed
briefly in this book. It is unique in the sense that so far it is the only
concrete connection we have between quantum theory and gravity. How
was it manifested in the early universe, and where might it possibly be
manifested today? More generally, how can one use thermal field theory in
a possible theory-of-everything, namely, string theory? What about dark
matter and dark energy?

We hope that, in some way, this book stimulates people to make further
progress. There is much to be done. There is work for all!
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Appendix

A1.1 Thermodynamic relations

Following is a list of the most commonly encountered thermodynamic
functions. They are expressed in terms of their natural variables. This
means that if a variational parameter, such as a condensate field, is intro-
duced, the given function is an extremum with respect to variations in
the parameter with all natural variables held fixed. To obtain an inten-
sive function from an extensive function in the large-volume, thermody-
namic, limit either divide by the volume or differentiate with respect to
it. Only one chemical potential is indicated; the generalization to an arbi-
trary number of conserved charges is obvious. For a general reference, see
Landau and Lifshitz [1] and Reif [2].

Grand canonical partition function:

Z(μ, T, V ) = Tr exp[−β(H − μN̂)] (A1.1)

Thermodynamic potential density:

Ω(μ, T ) = −T lnZ

V
= −P (μ, T )

V dΩ = −SdT − PdV −Ndμ

S

V
=
(
∂P

∂T

)
μ

N

V
=
(
∂P

∂μ

)
T

(A1.2)
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Energy:

E = E(N,S, V )
dE = TdS − PdV + μdN

T =
(
∂E

∂S

)
N,V

(A1.3)
P = −

(
∂E

∂V

)
N,S

μ =
(
∂E

∂N

)
S,V

Helmholtz free energy:

F = F (N,T, V ) = E − TS

dF = −SdT + PdV + μdN

S = −
(
∂F

∂T

)
N,V

(A1.4)
P = −

(
∂F

∂V

)
N,T

μ =
(
∂F

∂N

)
T,V

Gibbs free energy:

G = G(N,P, T ) = E − TS + PV

dG = −SdT + V dP + μdN

S = −
(
∂G

∂T

)
N,P

(A1.5)
V =

(
∂G

∂P

)
N,T

μ =
(
∂G

∂N

)
P,T

A1.2 Microcanonical and canonical ensembles

The level density is defined as

σ(E) =
∑

states s

δ(E − Es) (A1.6)
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The number of states with energies between E and E + ΔE is the integral

N (E,ΔE) =
∫ E+ΔE

E
dE′σ(E′) (A1.7)

This will be a choppy discontinuous function for low energies but will
approach a smooth continuous function at high energies when many
states are contained within the energy window ΔE. If there are con-
served charges, such as baryon number or electric charge, the sum over
states should be restricted to those that have the specified values. For one
conserved charge with fixed value N ,

σ(E,N) =
∑
s

δ(E − Es)δN,Ns
(A1.8)

The conserved charge involves a Kronecker rather than a Dirac delta
function because charge is always discrete. Specifying the exact energy
and charge numbers of a system leads to the microcanonical ensemble.
This is the situation for an isolated system.

The level density can always be expressed as the Laplace transform of
the grand canonical partition function. For example, for a system with no
conserved charges,

σ(E) =
1

2πi

∫ i∞+ε

−i∞+ε
dβ eβEZ(β) (A1.9)

where

Z(β) = Tr e−βH

This may be illustrated by applying it to the massless, self-interacting,
scalar field theory discussed in Chapter 3. From (3.56) we know that

lnZ = V

(
π2

90β3

)
c(λ) (A1.10)

where

c(λ) = 1 − 5
24

(
9λ
π2

)
+

5
18

(
9λ
π2

)3/2

+ · · ·

Hence

σ(E) =
1

2πi

∫ i∞+ε

−i∞+ε
dβ ef(β) (A1.11)

where

f(β) = βE + lnZ (A1.12)
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Asymptotically, when V → ∞ and E → ∞ with E/V fixed, we can eval-
uate the level density using the saddle-point approximation. The location
of the saddle point is determined by df/dβ = 0. This occurs when

β4 =
π2V

30E
c(λ) (A1.13)

(It is legitimate to neglect the β-dependence of λ induced by the renor-
malization group to the order λ3/2 at that we are working.) Then

σ(E) ≈
[

ef√
2πd2f/dβ2

]
saddle point

= aV 1/8E−5/8 exp
(
bV 1/4E3/4

)
(A1.14)

where

a =
1
2

(
c(λ)

480π2

)1/8

b =
4
3

(
π2c(λ)

30

)1/4

(A1.15)

The saddle point value of β is therefore just the inverse temperature.
Notice that the saddle point condition (A1.13) can also be written as

E

V
=

π2

30
T 4c(λ) (A1.16)

that agrees with the energy density obtained via −P + TdP/dT from
(3.56). Furthermore, the level density (A1.14) agrees with that derived
on the basis of single-particle phase space [3] when we set λ = 0.

The canonical ensemble refers to a system in a box of volume V , main-
tained at temperature T by thermal contact with a heat reservoir but
with a fixed number of conserved charges. For a system with just one
conserved charge, say baryon number, the canonical partition function is

Zc(N,T, V ) =
1
2π

∫ π

−π
dθ e−iθNZ(θ) (A1.17)

where

Z(θ) = Tr e−βH+iθN̂

Notice the integral representation of the Kronecker delta on account of
the discreteness of baryon number. Make the change of variable θ = −iβμ.
Then

Z = Tr e−β(H−μN̂) (A1.18)

that is the familiar form, albeit with an imaginary chemical potential.
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As an illustration, recall the partition function for a massless noninter-
acting gas of fermions:

lnZ =
V

12π2β3

(
β4μ4 + 2π2β2μ2 +

7
15

π4

)
(A1.19)

Then

Zc =
β

2πi

∫
dμ ef(μ) (A1.20)

where

f = −βμN + lnZ

The saddle point is determined by the condition

N

V
=

μ

3π2

(
μ2 + π2T 2

)
(A1.21)

which is just the expression for the baryon density in the grand canoni-
cal ensemble, namely, ∂P (μ, T )/∂μ. In the large-volume limit with fixed
intensive quantities,

Zc(N,T, V ) ≈ V −1/2

(
2Tμ2

π
+

2πT 3

3

)−1/2

× exp
[

V

12π2

(
−3μ4

T
− 2π2Tμ2 +

7π4T 3

15

)]
(A1.22)

In this equation, μ is given by (A1.21) as a function of N/V and T . Up
to corrections of relative order (lnV )/V the canonical partition function
is

T lnZc = T lnZ − μN = PV − μN = −F (A1.23)

It is also possible to fix the total three-momentum of the system [4]
and to pick out the singlet states of SU(N) gauge theories [5]. Different
boundary conditions on the surface, such as periodic, Dirichlet, Neumann,
and Cauchy, result in contributions to the free energies that scale as the
surface area but with differing coefficients. Compared with the volume
contributions they are of no importance in the large-volume, thermody-
namic, limit and so we do not discuss them further.

A1.3 High-temperature expansions

Frequently a high-temperature (T � m) expansion of an integral like

hn(y) =
1

Γ(n)

∫ ∞

0

dx xn−1√
x2 + y2

1
e
√
x2+y2 − 1

(A1.24)
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is desired, where y = m/T . These integrals satisfy the differential equation

dhn+1

dy
= −yhn−1

n
(A1.25)

The high-temperature expansion is obtained by using the identity

1
ez − 1

=
1
z
− 1

2
+ 2

∞∑
l=1

z

z2 + (2πl)2
(A1.26)

multiplying the integrand by x−ε, integrating term by term, and letting
ε → 0 at the end. One obtains

h1(y) =
π

2y
+

1
2

ln
( y

4π

)
+

1
2
γE − 1

4
ζ(3)

( y

2π

)2
+

3
16

ζ(5)
( y

2π

)4
+ · · ·
(A1.27)

where γE = 0.5772 . . . is Euler’s constant and ζ(3) = 1.202 . . ., ζ(5) =
1.037 . . . are specific values of the Riemann zeta function ζ(n). Also

h2(y) = − ln
(
1 − e−y

)
(A1.28)

For example, the pressure of a noninteracting spinless boson field is

P =
4T 4

π2
h5

(m
T

)
=

π2

90
T 4 − m2T 2

24
+

m3T

12π

− m4

32π2

[
ln
(

4πT
m

)
− γE +

3
4

]
+ O

(
m6

T 2

)
(A1.29)

The analysis for a noninteracting charged spinless boson field is only
slightly more complicated. See Haber and Weldon [6] for details. In the
limit T � m > |μ| the pressure is

P =
π2

45
T 4 − (m2 − 2μ2)T 2

12
+

(m2 − μ2)3/2T
6π

+
(3m2 − μ2)μ2

24π2

− m4

16π2

[
ln
(

4πT
m

)
− γE +

3
4

]
+ O

(
m6

T 2
,
m4μ2

T 2

)
(A1.30)

For fermions with zero chemical potential the integral of interest is

fn(y) =
1

Γ(n)

∫ ∞

0

dx xn−1√
x2 + y2

1
e
√
x2+y2 + 1

(A1.31)

The fn satisfy the same differential equation as the hn,

dfn+1

dy
= −yfn−1

n
(A1.32)
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To evaluate the fermion integral, insert the factor x−ε, integrate term by
term using the expansion

1
ez + 1

=
1
2
−

∞∑
l=−∞

z

z2 + (2l + 1)2π2
(A1.33)

and let ε → 0 at the end. One obtains [7]

f1(y) = −1
2

ln
( y
π

)
− 1

2
γE + · · ·

f2(y) = ln(1 + e−y)
(A1.34)

For a noninteracting gas of fermions with μ = 0 the pressure is

P =
16T 4

π2
f5

(m
T

)
=

7π2

180
T 4 − m2T 2

12

+
m4

8π2

[
ln
(
πT

m

)
− γE +

3
4

]
+ O

(
m6

T 2

)
(A1.35)

Notice the absence of an m3T term, that is present for bosons. For small
mass and small chemical potential the high-temperature expansion begins
as

P =
7π2

180
T 4 +

(2μ2 −m2)T 2

12
+ · · · (A1.36)

A1.4 Expansion in the degeneracy

The pressure of a noninteracting gas may be expressed as

P = (2s + 1)T
∫

d3p

(2π)3
ln
(
1 ± e−β(ω−μ)

)±1
(A1.37)

Here s is the spin, while the upper sign refers to fermions and the lower
sign to bosons. The logarithm may be expanded in powers of the expo-
nential and then integrated term by term:

P =
(2s + 1)m2T 2

2π2

∞∑
l=1

(∓)l+1

l2
elμβK2(lmβ) (A1.38)

Here K2 is a modified Bessel function of the second kind. This is an
expansion in powers of the quantum degeneracy.
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The number density, entropy density, and energy density may be cal-
culated using the thermodynamic identities:

n =
(2s + 1)m2T

2π2

∞∑
l=1

(∓)l+1

l
elβμK2(lβm)

s =
(2s + 1)m2T 2

2π2

∞∑
l=1

(∓)l+1

l2
elβμ

[
(2 − lβμ)K2(lβm)

+ 1
2βm (K1(lβm) + K3(lβm))

]
ε =

(2s + 1)m3T

2π2

∞∑
l=1

(∓)l+1

l
elβμ

[
K1(lβm) +

3
lβm

K3(lβm)
]

(A1.39)

These expressions do not include contributions from the antiparticles,
if they exist; they may be obtained by the substitution μ → −μ. The
nonrelativistic limit may be obtained by using the expansions of the Bessel
functions Kn(x) when x � 1:

Kn(x) =
√

π

2x
e−x

[
1 +

4n2 − 1
8x

+
(4n2 − 1)(4n2 − 9)

2!(8x)2
+ · · ·

]
(A1.40)

Numerical approximations for both bosons and fermions have been
worked out for arbitrary values of m,T, μ by Johns, Ellis, and Lattimer
[8].
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action, 17, 33, 117, 129, 157–158, 203,
205–206, 208, 244, 271–272, 291–293,
375

Adler–Bell–Jackiw anomaly, 242, 402
analytic continuation, 41–43, 50, 74–76, 89,

153, 177, 215
anomalous dimension, 59, 142
antiparticle, 10, 19, 29, 50, 167
asymptotic freedom, 135–136, 139–145
axial anomaly, 213–214, 242
axial gauge, 65–69, 92, 101, 103, 143, 147,

152–156
axial symmetry, 213
axial-vector current, 254, 277–278, 280, 282

bag constant, 164–165, 321, 396–397
Bardeen–Cooper–Schrieffer (BCS) theory,

123, 166
baryogenesis, 402–408
beta function, 58–59, 81, 139, 142–145
Bjorken model, 318–324, 355
blackbody radiation, 1, 6, 68–70
Boltzmann equation, see also Vlasov

equation, 190–192, 324
Bose–Einstein condensation, 19–23, 31–32,

50, 118
Bose–Einstein distribution, 4, 18–19, 22, 42,

45, 75–76
bounce solution, 291–294, 299
boundary condition

antiperiodic (fermions), 28–29, 375
periodic (bosons), 15, 17, 27, 160, 375
spatial, 7, 207, 291, 404

Brillouin zone, 206

Cabibbo–Kobayashi–Maskawa matrix, 364
Chandrasekhar limit, 380–382

charge symmetry energy, 385
charmonium, 345–349
chemical equilibrium, 164, 326–327, 356, 384
chiral perturbation theory, 240–247
chiral symmetry, 196, 213–216, 237, 241–242,

254, 256, 261–264
coarse graining, 296, 299–303
collective excitations, 7, 8, 101–107, 156, 193,
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color–flavor locking, 172
color superconductivity, 166–174
color symmetry, 136–137
commutation relations

bosons, 4, 25, 90–91
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fermions, 6, 25, 204

completeness, 3, 30, 45
compressibility, 224, 232, 237
condensate, 50, 221–222, 266–267, 271,

273–274, 284–286, 362, 366, 383, 385
conductivity

electrical, 113–115
thermal, 109–115, 298, 309, 313

confinement, 135–138, 157, 160, 201–202,
321, 345

connected diagram, 37–38, 40–41, 49
conserved current, 19–20, 24–25, 108–112,

124, 137
contour integral, 41–42, 50, 75–76
correlation length, 128, 294, 300, 304–306,

309, 396–397
correlations, 46, 154, 224
Coulomb field, 94, 123, 201, 219, 236
Coulomb gauge, 92, 101, 103, 143, 147, 156,

168, 182
covariant gauge, 69–73, 92, 101, 103–104,

138–145, 147, 154
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critical point, 128, 216, 234–235, 376
critical sized bubble or droplet, 294–295,

297, 299, 305–306, 396
critical temperature

Bose–Einstein condensation, 19–23
chiral, 213–216, 268, 274, 277
deconfinement, 201, 206–207, 210–216,

321–324, 396–397
electroweak, 368, 373–374, 376
nuclear liquid–gas, 234–235, 237
symmetry restoration, 121–122, 127, 132,

268, 274, 277, 361, 368, 373–374, 376
cutoff, 43, 45, 55, 57–58, 61, 63, 125–126,

227, 229–231, 333–334, 337–338, 366,
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Debye–Hückel formula, 78
deconfinement, 135–136, 172–174, 196,

201–202, 206–212, 215, 321–324
density matrix, 2, 325
Dey–Eletsky–Ioffe mixing, 262, 287
diagrammatic rules

QCD, 140
QED, 71
scalar field theory, 37
Yukawa interaction, 49–50

dielectric function, 92–93, 153
diffusion constant, 110–114, 194
dilepton production, 330–331, 339–345
dimensional reduction, 374–377
dimensional regularization, 60–61
dimensional transmutation, 60
Dirac matrices, 24
dispersion relation, 8, 101–107, 156, 248–251,

344–345, 390–392
divergence

infrared, 45–47, 77–80, 149–151
ultraviolet, 43–45, 55–57, 80–81, 146,

160–163, 366

early universe, 394–408
effective mass, 102, 106, 119, 123, 128, 131,

177–178, 222–224, 228, 232, 266, 367,
383

eigenstate, 3–4, 5, 45, 85, 87, 364
electric field

QCD, 152, 154
QED, 65–66, 90–94, 100

electromagnetic radiation rate, see dilepton
production, photon production

energy–momentum tensor, 107–110, 112, 318
ensemble

average, 2, 34, 38–39, 84–86, 124, 221
canonical, 2, 420–421

grand canonical, 2–3, 85, 325, 417–418
microcanonical, 1, 418–420

Euclidean space, 42–43, 78–79, 125, 142, 157,
160, 340

exchange diagram, 49, 76, 127, 146, 165,
228–231

external field, 4, 84–86, 90–92, 94, 160

false vacuum, 290
Fermi–Dirac distribution, 6, 29, 50, 75–76,

222, 234
Feynman gauge, 70, 74, 155–156
field strength tensor, 64–65, 136–137
flavor, 141–145
fluid dynamics, 107–110, 300–301, 309,

318–320
form factor, 227, 229–232, 357
freezeout temperature, 322, 327–328
Friedel oscillations, 96, 346

gap equation, 167–170
gauge fixing, 69–70, 72, 131–132, 138, 143,

182, 193, 366–367
gauge symmetry

SU(N), 136–138, 202–203, 361–362
U(1), 65, 68, 72, 77, 82, 117–118, 130,

196–202, 361–362
gauge transformation, 69, 72, 132, 137–138,

203–204, 362, 404
Gauss’s law, 66–67, 94, 200
ghosts, 68–70, 103, 138, 140, 146, 367
Glashow–Weinberg–Salam model, 361–365
global symmetry, 19, 24, 117–118
glueball, 206, 211
gluons, 135–138, 146–147, 152, 321–322, 396
Goldstone boson, 120, 123, 125, 131, 273,

275–276, 278
Goldstone’s Theorem, 123–125, 128, 131,

134, 266, 270, 278
Grassmann variables, 26
Green’s functions, 26, 57–59, 86, 88, 101,

116, 277

hard thermal loops, 177–193, 335–338, 340,
402–403

Hartree approximation, 227–229
heavy ion collisions, 317–356
Higgs boson, 363–364, 368, 371–374, 376–377
Higgs model, 130–133
high temperature expansion, 121, 126, 366,

368, 421–423
Hugenholtz–Van Hove Theorem, 237
hydrodynamics, see fluid dynamics
hyperons, 382–388
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ideal gas
bosons, 6–10, 17–19, 146, 325
fermions, 6–10, 29, 146, 163–164, 223–224,

325
imaginary time, 15, 25, 27–28, 42, 45, 89,

160, 179–182, 202, 208, 215, 255, 266,
290

improved actions, 208
infrared freedom, 60
infrared problems, 45–47, 77–80, 161–163,

177–179
instabilities, 117–119, 126, 165, 235, 298,

307, 381, 405
instanton, 156–161, 167, 174, 402
irreducible part, 40–41, 127, 139

J/ψ suppression, 345–350

kinetic theory, 189–193, 324–325, 332, 339,
351–356, 397

Kubo formulae, 107–114

Lamb shift, 95, 228–231
Landau damping, 181, 185, 189
Landau gauge, 70, 104, 144, 148, 168
Landau theory, 23, 122
large-N expansion, 271–277
lattice

Hamiltonian, 198–199, 204–205
link, 196–197
plaquette, 197–198
site, 196–197

lattice gauge theory, 31, 33, 195–216,
374–377

leading log summation, 60
Lehmann representation, 87–90
linear response, 84–86, 100–101, 110,

114–116, 152–156, 189–190
link variables, 196–198, 202–203

Maxwell construction, 235
mean field approximation, 118–123, 125–133,

221–227, 232–234, 267–268, 365–369,
383–385

mean free path, 248, 325–327
metastable phase, 165, 235, 398
Minkowski space, 41–42, 52, 341
mixed phase, 234–235, 322–324, 356,

397–401

neutrino emissivity
pair annihilation, 388–390
plasma decay, 388, 390–392
Urca process, 388–389, 392–394

neutrons, 163, 221, 394
neutron star, 382–388
Noether’s theorem, 19, 24
nuclear force, 220
nucleation

black hole, 313–315
classical, 294–296
dynamical prefactor, 297–298, 309–312
quantum, 290–294
statistical prefactor, 297, 306–309
thermal, 296–313, 396–401

nucleosynthesis, 394–396
nucleus–nucleus collisions, 317–356

O(N) symmetry, 265–266, 270–271
operator product expansion, 255–256
optical potential, 226, 237, 248–249
optical theorem, 249
order parameter, 213
orthogonality, 3

Pauli exclusion principle, 5, 26, 136,
163–164, 382

phase transition
Bose–Einstein condensation, 22–23
deconfinement, 136, 172–174, 321–324,

396–401
Higgs model, 130–133
nuclear liquid–gas, 172, 233–237
symmetry restoration, 121–123, 128,

132–133
electroweak, 368, 373–374, 376–377,

402–408
photon production, 329–339
pion, see also chiral perturbation theory,

Goldstone boson, sigma model
gas, 10, 245–247
in nuclear matter, 237

pion decay constant, see also sigma model
vacuum, 244
finite temperature, 277–284

plasma oscillations, 100–104, 156
plasmon, see ring diagrams
Polyakov loop, 208–210, 212
propagator, see also self-energy

advanced, retarded, 88–89
electron, 105–107
fermion, 48, 51
gluon, 140, 152–156
photon, 71–74, 92, 101–104
quark, 140, 166
scalar boson, 35, 37–39, 86–89, 101, 129,

179

W and Z bosons, 366–367
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quark
condensate, 213, 244, 285
masses, 141, 143–145, 365
quantum numbers, 141, 364–365

quark–antiquark free energy, 154–155,
200–201, 208–211, 345–348

rapidity, 319
real time, 42, 51–53, 84–86
renormalization, 43–45, 55–57, 76, 80,

125–127, 142–145, 148–149, 227–231,
342

renormalization group, 57–59, 81–82, 93, 96,
99, 139, 141–145, 211

R-gauge, 131–132, 366–367
ring diagrams, 46–47, 77–80, 147, 371–373

scattering amplitude, 248–252
Schwinger-Dyson equations, 97–98, 129,

160–163, 167, 169–170
Schwinger terms, 259
screening

in QCD, 147, 152–156, 183, 345–348
in QED, 78, 90–100, 181

self-energy
electron, 105
fermion, 51
from experimental data, 248–254
gluon, 153–155, 169, 182–183
Higgs boson, 371–372
photon, 71–74, 92–93, 95, 102–104,

180–181, 330, 390–392
pion, 269, 281
quark, 144
rho meson, 250–253, 340–343
scalar boson, 39–44, 127–129, 269, 408–410
W and Z bosons, 371–372

sigma model
linear, 265–270
nonlinear, 270–277

spectral density, 87–90, 112–113, 188–189,
255–258, 260–264, 278, 281, 336–337,
348

sphaleron, 402–407
speed of sound, 8, 224, 235, 321
spontaneous symmetry breaking (and

restoration), see also sigma model,
117–133, 361–363, 368, 373–374, 377

staggered fermions, 204–205
statistical model, 324–328

strange quark matter, 163–166
strangeness production, 350–356
string tension, 201, 211–212, 345
subtraction point, 44, 80–82, 142–144,

148–151
summation formulae, 18, 29, 42, 50
superconductivity, see color

superconductivity
supercooling, 397–400
superfluid, 123, 388
surface free energy, 305–306

tadpole diagram, 180
Thomas–Fermi approximation, 100
Tolman–Oppenheimer–Volkoff equation, 380,

386
topological charge, 158
tree approximation, 228, 363–364

U-gauge, 362, 365–366
U(1)A symmetry, see axial symmetry
Urca process, 388–389, 392–393

vacuum polarization, 93–95, 139
Van der Waals gas or liquid, 233
vector current, 254
vector meson dominance, 250, 252, 343
vertex, 35, 49–50, 71, 97–98, 127, 140,

228–231
viscosity

bulk, 109–110, 112–113, 309, 312–313,
396

shear, 109–110, 112–114, 194, 309,
312–313, 396

Vlasov equation, 190–193

Walecka model, 220–226
Ward identity, 98, 141, 185–187, 230,

259–260
Weinberg sum rules

vacuum, 254–257
finite-temperature, 257–264, 322

white dwarf star, 380–382
Wilson fermion, 205–206
Wilson line, 208
Wong’s equations, 191

zero-point energy, 4, 6, 10, 19, 22, 29, 44, 76,
118–119, 125, 133, 227–231

Z(N) symmetry, 209–210, 213
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