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Norms of Complex Harmonic
Projection Operators

Valentina Casarino

Abstract. In this paper we estimate the (Lp − L2)-norm of the complex harmonic projectors π``′ ,

1 ≤ p ≤ 2, uniformly with respect to the indexes `, ` ′. We provide sharp estimates both for the

projectors π``′ , when `, `′ belong to a proper angular sector in N × N, and for the projectors π`0 and

π0`. The proof is based on an extension of a complex interpolation argument by C. Sogge. In the

appendix, we prove in a direct way the uniform boundedness of a particular zonal kernel in the L1

norm on the unit sphere of R
2n.

1 Introduction

According to a classical result every square-integrable function on the unit sphere

Σ
n−1 of R

n, n ≥ 2, admits a unique decomposition as

f =

+∞
∑

k=0

Y k,

where Y k ∈ Hk for every k ≥ 0 and Hk denotes the space of spherical harmonics of

degree k ([8]). The subspaces Hk satisfy remarkable properties, such as orthogonality

and invariance under the rotation group.

By identifying the unit sphere S2n−1 in C
n with the real unit sphere Σ

2n−1 of R
2n,

we may obtain an analogous decomposition for the functions from L2(S2n−1) by

means of real spherical harmonics. In the complex framework, however, it is possi-

ble to obtain a finer direct sum decomposition for L2(S2n−1) by imposing the weaker

condition that the subspaces are preserved by the unitary group. It turns out that if

f ∈ L2(S2n−1), then

f =

+∞
∑

`,` ′=0

Y `` ′ ,

where Y `` ′ ∈ H`` ′ for every `, ` ′ ≥ 0 and H`` ′ consists of the restrictions to

S2n−1 of polynomials p(z, z̄) = p(z1, . . . , zn, z̄1, . . . , z̄n) homogeneous of degree `

in z1, . . . , zn, homogeneous of degree ` ′ in (z̄1, . . . , z̄n) and harmonic ([5]).

Given f ∈ L2(Σn−1), the harmonic projection operator πk is defined by

πk : L2(Σn−1) 3 f 7→ Y k ∈ H
k.
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Complex Harmonic Projection Operators 1135

A sharp estimate for the (Lp − L2)-norm of πk, 1 ≤ p ≤ 2, was given by C. Sogge in

1986 ([7]) (for an earlier, but less precise result of this kind, see [1, p. 249]).

Sogge proved, in particular, that ‖πk‖(p,2) = O(kγ̃( 1
p

)), where γ̃ is the affine func-

tion given by

γ̃
( 1

p

)

:=

{

(n − 1) 1
p
− 1

2
n if 1 ≤ p ≤ pn

1
2
(n − 2)( 1

p
− 1

2
) if pn ≤ p ≤ 2,

with pn =
2n

n+2
. Afterwards, sharp estimates for the norm of harmonic projection

operators on compact Lie groups were found by E. Giacalone and F. Ricci ([4], [3]).

The aim of this paper is to prove analogous sharp estimates for the (Lp−L2)-norm

of the complex harmonic projector π`` ′ , 1 ≤ p ≤ 2, defined by

π`` ′ : L2(S2n−1) 3 f 7→ Y `` ′ ∈ H
`` ′ .

We are particularly interested in estimates that depend on the length of ` + ` ′, uni-

formly with respect to the indexes `, ` ′ ∈ N. If (`, ` ′) ∈ N × N, such uniform esti-

mates do not hold, with the exception of the case n = 2. Anyway, if (`, ` ′) belongs to

a proper angular sector in N × N (that is if ε0` ≤ ` ′ ≤ M` for some 0 < ε0 ≤ M), it

is possible to estimate ‖π`` ′‖(p,2), uniformly with respect to `, ` ′. Under this assump-

tion, we prove in Theorem 3.5 that ‖π`` ′‖(p,2) = O(`γ( 1
p

)), where

γ
( 1

p

)

:=

{

(2n − 2) 1
p

+ 1
2
− n if 1 ≤ p ≤ p̄

(n − 3
2
)( 1

p
− 1

2
) if p̄ ≤ p ≤ 2,

with p̄ = 2 2n−1
2n+1

. Observe that the values of γ( 1
p

) are equal to the corresponding val-

ues found by Sogge for Σ
2n−2, but this result cannot be expected a priori. Moreover,

our proof in this case is analogous to that of Sogge and they are both inspired by the

proof of the Stein-Tomas restriction theorem.

An essential tool in the proof of Theorem 3.5 is given by the uniform bounded-

ness in L1(Σ2n−1) of a particular zonal kernel. This property may be deduced from

some results on the functional calculus for the Laplace operator on compact mani-

folds ([10, Chapter XII]). Nonetheless we present in the appendix a more direct and

elementary proof.

Secondly, we estimate the (Lp − L2)-norm of π`` ′ when either ` or ` ′ are equal

to zero. In this case, we first interpolate by means of the Riesz-Thorin Theorem

with respect to trivial endpoint estimates, then we prove that this estimate cannot be

improved and is no better than ‖π`0‖(p,2) = ‖π0`‖(p,2) = O(`(n−1)( 1
p
− 1

2
)).

By using the classical formula relating real and complex projectors

σk =

∑

`+` ′=k

π`` ′ ,

where σk denotes the real harmonic projector in L2(Σ2n−1) and π`` ′ denotes the com-

plex harmonic projector in L2(S2n−1), we could recover an estimate for the (Lp −L2)-

norm of π`` ′ from the results by Sogge in R
2n. However, the estimates presented

in this paper are better than the estimates we could deduce from the real case (cf.

Remarks 3.7 and 4.3).
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2 Notation and Preliminaries

For n ≥ 2, let C
n denote the n-dimensional complex space endowed with the scalar

product 〈z,w〉 := z1w̄1 + · · · + znw̄n, z,w ∈ C
n and let S2n−1 denote the unit sphere

in C
n, that is

S2n−1 := {z = (z1, . . . , zn) ∈ C
n : 〈z, z〉 = 1}.

The symbol 1 will denote the north pole of S2n−1, that is 1 := (0, . . . , 0, 1).

Following the notation in [5] we denote by R`` ′ the linear space of all homo-

geneous polynomials p(z, z̄) = p(z1, . . . , zn, z̄1, . . . , z̄n) of homogeneity degree ` in

z1, . . . , zn and of homogeneity degree ` ′ in (z̄1, . . . , z̄n), i.e.

p(az, bz̄) = a`b`
′

p(z, z̄), a, b ∈ R.

A polynomial p in z, z̄ is said to be harmonic if

∆p :=
1

4

( ∂2

∂z1∂z̄1

+ · · · +
∂2

∂zn∂z̄n

)

p = 0.

We will denote the space of the restrictions to S2n−1 of harmonic polynomials from

R`` ′ by the symbol H`` ′ .

Let L2(S2n−1) the Hilbert space of functions on S2n−1 endowed with the inner

product ( f , g) :=
∫

S2n−1 f (ξ)g(ξ) dσ(ξ), where dσ is the measure invariant under the

action of U (n).

We collect some standard facts on the spaces H`` ′ which will be useful in the

following.

(1) If (`, ` ′) 6= (m,m ′), then the spaces H`` ′ and Hmm ′

are orthogonal in L2(S2n−1).

(2) The spaces H`` ′ are U (n)-invariant for every `, ` ′.

(3) The dimension of H`` ′ is given by

dim H
`` ′

= (n − 1) · ` + ` ′ + n − 1

`` ′

(

` + n − 2

`− 1

) (

` ′ + n − 2

` ′ − 1

)

for all `, ` ′ ≥ 1.

(4) H`0 and H0` coincide respectively with the spaces R`0 and R0`, so that

dim H
`0

= dim H
0`

=

(

` + n − 1

`

)

.

(5) The representation of U (n) on the space H`` ′ is irreducible.

It is a classical result ([5], volume II, Chapter 11) that if f ∈ L2(S2n−1) there exists

a unique decomposition

(2.1) f =

+∞
∑

`,` ′=0

Y `` ′ ,
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where Y `` ′ ∈ H`` ′ for every `, ` ′ ≥ 0 and the series at the right converges to f in the

L2(S2n−1)-norm.

The complex harmonic projector is defined by

π`` ′ : L2(S2n−1) 3 f 7→ Y `` ′ ∈ H
`` ′ .

A zonal function of degree (`, ` ′) on S2n−1 is a function in H`` ′ , which is constant on

the orbits of the stabilizer of 1 (which is isomorphic to U (n − 1)). If f is zonal, we

may associate to f a map f̂ defined on the unit disk

f (ξ) = f̂ (〈ξ, 1〉), ξ ∈ S2n−1,

(by using the notation in [5, Section 11.1.5] we have 〈ξ, 1〉 = ξn = eiϕ cos θ, where

ϕ ∈ [0, 2π] and θ ∈ [0, π
2

]).

Then the convolution between a zonal function f and an arbitrary function g on

S2n−1 may be defined as

( f ∗ g)(ξ) :=

∫

S2n−1

f̂ (〈ξ, η〉)g(η) dσ(η).

In the following we shall write f (θ, ϕ) instead of f̂ (eiϕ cos θ).

It is well-known ([5, Section 11.2]) that π`` ′ f = Z`` ′ ∗ f , where Z`` ′ is the zonal

function from H`` ′ , given by

Z`` ′(θ, ϕ) :=
n − 1

ω2n−1

(

` + n − 2

`− 1

) (

` ′ + n − 2

` ′ − 1

)

` + ` ′ + n − 1

`` ′
· q!(n − 2)!

(q + n − 2)!

× ei(` ′−`)ϕ(cos θ)|`−`
′|P(n−2,|` ′−`|)

q (cos 2θ),

ϕ ∈ [0, 2π], θ ∈ [0, π
2

], if `, ` ′ ≥ 1; here q := min(`, ` ′), ω2n−1 denotes the surface

area of S2n−1 and P
(n−2,|` ′−`|)
q is the Jacobi polynomial. If ` = 0 or ` ′ = 0, the zonal

functions are given by

Z`0(θ, ϕ) :=
1

ω2n−1

(

` + n − 1

`

)

· e−i`ϕ cos` θ and

Z0`(θ, ϕ) :=
1

ω2n−1

(

` + n − 1

`

)

· ei`ϕ cos` θ.

Observe that according to our notation (and differently from that in [KV]) we have

(2.2) Z`` ′(1) =
dim H`` ′

ω2n−1

.

We will use the following estimate, due to Darboux and Szegö ([9, pp. 169, 198]).

Lemma 2.1 Let α, β > −1. Fix 0 < c < π. Then

P(α,β)
` (cos θ)

=







O(`α) if 0 ≤ θ ≤ c
`

or
π − c

`
≤ θ ≤ π,

`−
1
2 k(θ)[cos(N`θ + γ) + (` sin θ)−1O(1)] if c

`
≤ θ ≤ π − c

`
,

where k(θ) := π− 1
2 (sin θ

2
)−α−

1
2 (cos θ

2
)−β−

1
2 , N` := ` + α+β+1

2
, γ := −(α + 1

2
) π

2
.
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Finally, by the symbols Sk and σk we shall denote, respectively, the space of spheri-

cal harmonics of degree k in R
2n ([8, Chapter IV]) and the (real) harmonic projector

from L2(Σ2n−1) onto Sk. The relationship between Sk and the space H`` ′ of complex

spherical harmonics of degree ` and ` ′ in C
n is given by

S
k
=

∑

`+` ′=k

⊕H
`` ′ ,

yielding the following formula

(2.3) σk =

∑

`+` ′=k

π`` ′ .

3 The Harmonic Projectors π`` ′ , With `, ` ′ ≥ 1

In this section we shall prove our main result, Theorem 3.5, concerning the
(

Lp(S2n−1), L2(S2n−1)
)

-operator norm of the complex harmonic projector π`` ′ , if

1 ≤ p ≤ 2 and ` and ` ′ belong to a proper angular sector, that is

(3.1) ε0` ≤ ` ′ ≤ M` for some 0 < ε0 ≤ M.

To prove the theorem, we shall need some lemmata. The first one, which may be of

independent interest, regards the uniform boundedness in L1(Σ2n−1) of a particular

zonal kernel and may be deduced from some results in [10, Chapter XII] (see, in par-

ticular, Exercise 4.1, p. 322). Nonetheless, we can prove it in a direct and elementary

way, by using only some representation formulae for the zonal harmonics in spaces

of even dimension. In order not to burden the exposition, we defer the proof to an

appendix.

In the statement, the symbol Z j denotes the zonal harmonic of degree j in

L2(Σd−1), for d ∈ N [8, p. 143].

Lemma 3.1 Fix k, d ∈ N, with d ≥ 4, d even. Let B a C∞ function, compactly

supported in (0, 2]. Then

∥

∥

∥

∑

j

B
( j

k

)

Z j

∥

∥

∥

L1(Σd−1)
≤ C,

where the constant C does not depend on k.

Lemma 3.2 Assume that condition (3.1) is satisfied for some 0 < ε0 ≤ M. Let `, ` ′ ≥
1, α ∈ (0, 1), β > 1. Set

J∗ := {( j, j ′) ∈ N
∗ × N

∗ : α(` + ` ′) < j + j ′ < β(` + ` ′), j ′ − j = ` ′ − `}.

If α > max{M−1
M+1

, 1−ε0

1+ε0
}, then there exist A0, B0, A1, B1 > 0 such that

A0` ≤ j ≤ B0` and A1` ≤ j ′ ≤ B1` for all j, j ′ ∈ N
∗.
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Proof Take ( j, j ′) ∈ J∗. Then j ′ = j+` ′−`, so thatα(`+` ′) < 2 j+` ′−` < β(`+` ′).

By using ε0` ≤ ` ′ ≤ M`, we obtain

1

2
[α(1 + M) + 1 − M]` < j <

1

2
[β(1 + M) + 1 − M]`,

yielding the first part of the thesis with A0 =
1
2
[α(1 + M) + 1 − M] and B0 =

1
2
[β(1 + M) + 1 − M].

Analogously, the equality j = j ′ − ` ′ + ` implies that

1

2
[ε0(α + 1) + α− 1]` < j ′ <

1

2
[(β − 1) + M(β + 1)]`.

By choosing A1 =
1
2
[ε0(α+ 1) +α−1] and B1 =

1
2
[(β−1) + M(β + 1)], we conclude

the proof.

Lemma 3.3 Fix y 6= 0. Let a0, b0, s be real constants, with s 6= 0, and δ > 0. Then

∣

∣

∣

∫ π
2
−δ

δ

cos(a0θ + b0) · (sin 2θ)−1−isy dθ
∣

∣

∣
≤ C

(

|y| +
1

|y|
)

for some positive constant C, independent of δ, a0 and b0.

Proof In the following the symbol C will denote a constant, which may vary from

one formula to the other. Set ψ := a0θ + b0 and

J1 :=

∫ π
2
−δ

δ

cosψ · (sin 2θ)−1−isy dθ

and define I+
δ := [δ, π

2
− δ] and I−δ := [− π

2
+ δ,−δ]. Thus

J1 =

∫

I+
δ

cosψ · [(sin 2θ)−1−isy − (2θ)−1−isy] dθ +

∫

I+
δ

cosψ · (2θ)−1−isy dθ

=: J
′

1 + J
′′

1 .

We easily check that | J ′

1 | ≤ C(1 + |y|) for some positive constant C . If χ denotes the

characteristic function of I+
δ ∪ I−δ , then

J
′′

1 =
1

2

(

∫

I+
δ

+

∫

I−
δ

)

eiψ · |2θ|−1−isy dθ =
1

2

∫

R

eiψ · |2θ|−1−isy · χ(θ) dθ

=
1

2

∫

R

eiψ · |2θ|−1−isy ·
(

χ(θ) − χ̃(θ)
)

dθ +
1

2

∫

R

eiψ · |2θ|−1−isy · χ̃(θ) dθ

=: R1 + R2,
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χ̃ being a C∞
0 function, which coincides with χ on I+

δ ∪ I−δ and vanishes outside

[ δ
4
, π

2
] ∪ [− π

2
,− δ

4
]. It is easy to check that |R1| ≤ C , for some C > 0; moreover we

have

R2 =
1

4
· 2−isy · F(|θ|−1−isy · χ̃)(ψ) =

1

4
· 2−isy ·

(

F(|θ|−1−isy) ∗ Fχ̃
)

(ψ),

where F denotes the Fourier transform. By using some well-known formulae for the

Fourier transform of the distribution θ 7→ |θ|ζ−1, ζ ∈ iR, ([2, p. 168]), we obtain

R2 =
1

4
·
√
π · 2−2isy · Γ(−i s

2
y)

Γ( 1
2

+ i s
2

y)
(| · |isy ∗ Fχ̃)(ψ).

Since
∣

∣

∣

∣

Γ(−i s
2

y)

Γ( 1
2

+ i s
2

y)

∣

∣

∣

∣

≤
{

C
|y| if |y| < 1, y 6= 0

C if |y| ≥ 1,

and
∣

∣ (| · |isy ∗ Fχ̃)(ψ)
∣

∣ ≤ C , where the positive constants C do not depend on a0, b0

and y, we finally find that

| J1| ≤ C

(

|y| +
1

|y|

)

.

Lemma 3.4 Assume that hypothesis (3.1) is satisfied. Let n ≥ 2.

(1) If q > 2 n−1
n− 3

2

, then

(3.2)
‖Z`` ′‖q

‖Z`` ′‖2

≥ C`n− 3
2
− 2

q
(n−1)

.

(2) If q ≥ 2 and Q`` ′ ∈ H`` ′ is defined by Q`` ′(z) := (z`1 · z̄`
′

2 )|S2n−1 , then

(3.3)
‖Q`` ′‖q

‖Q`` ′‖2

∼ C`(n− 3
2

)( 1
2
− 1

q
)
.

Proof (1) We may suppose ` ′ ≥ ` (the case ` ′ ≤ ` is analogous). Then the zonal

harmonic function is given by

Z`` ′(θ, ϕ) :=
1

ω2n−1

(

` ′ + n − 2

` ′ − 1

)

` + ` ′ + n − 1

` ′
· ei(` ′−`)ϕ

× (cos θ)`
′−` · P

(n−2,` ′−`)
` (cos 2θ), ϕ ∈ [0, 2π], θ ∈

[

0,
π

2

]

and for some 0 < c < π

‖Z`` ′‖q
q =

∫

S2n−1

|Z`` ′(ξ)|q dσ(ξ)

= C`(n−1)q

∫ π
2

0

|(cos θ)`
′−` · P

(n−2,` ′−`)
` (cos 2θ)|q(sin θ)2n−3 cos θ dθ

≥ C`(n−1)q`(n−2)q

∫ c
`

0

(cos θ)(` ′−`)q+1 · (sin θ)2n−3 dθ = C`(2n−3)q−2n+2,
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where we used the Darboux-Szegö estimate for P
(n−2,` ′−`)
` (cos 2θ). From the prop-

erties of zonal harmonics it follows that

‖Z`` ′‖2 =

√

dim H`` ′

ω2n−1

∼ C`n− 3
2 , so that

‖Z`` ′‖q

‖Z`` ′‖2
≥ C

`2n−3− 2
q

(n−1)

`n− 3
2

= C`n− 3
2
− 2

q
(n−1)

.

(2) We have:

‖Q`` ′‖q
q =

∫

S2n−1

|Q`` ′(ξ)|q dσ(ξ)

= C

∫ π
2

0

(sin θn−1)(`+` ′)q+2n−3 cos θn−1 dθn−1

×
∫ π

2

0

(sin θn−2)(`+` ′)q+2n−5 cos θn−2 dθn−2

× · · · ×
∫ π

2

0

(sin θ2)(`+` ′)q+3 cos θ2 dθ2

×
∫ π

2

0

(sin θ1)`q+1(cos θ1)`
′q+1 dθ1

= C
1

(` + ` ′)q + 2n − 2
· 1

(` + ` ′)q + 2n − 4
· · · 1

(` + ` ′)q + 4

×
∫ π

2

0

sin`q+1 θ1 cos`
′q+1 θ1 dθ1

= C
1

[(` + ` ′)q]n−2
· Γ( `q

2
+ 1)Γ( `

′q
2

+ 1)

Γ( (`+` ′)q
2

+ 2)
.

By using (3.1) and the Stirling formula, the thesis easily follows.

Theorem 3.5 Let n ≥ 2, `, ` ′ ≥ 1 and let hypothesis (3.1) be satisfied. Thus

(3.4) ‖π`` ′ f ‖2 ≤ C(n, p)`γ( 1
p

)‖ f ‖p,

where

γ
( 1

p

)

:=

{

(2n − 2) 1
p

+ 1
2
− n if 1 ≤ p ≤ 2 2n−1

2n+1

(n − 3
2
)( 1

p
− 1

2
) if 2 2n−1

2n+1
≤ p ≤ 2

and the constant C(p, n) depends only on p and n. Moreover, all of these estimates are

sharp.
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Proof Observe that

‖π`` ′ f ‖2 ≤ ‖ f ‖2,

since π`` ′ is an orthogonal projector, and

‖π`` ′ f ‖2 ≤ ‖Z`` ′‖2 · ‖ f ‖1 = C`n− 3
2 ‖ f ‖1,

as a consequence of the Young’s inequality and the fact that ‖Z`` ′‖2 = O(`n− 3
2 ).

Thus by the Riesz-Thorin convexity theorem it suffices to prove the theorem for

p = 2 2n−1
2n+1

, that is

‖π`` ′ f ‖2 ≤ C`
2n−3
4n−2 ‖ f ‖2 2n−1

2n+1
.

Now, exactly as in [7, Theorem 4.1] we have that

‖π`` ′ f ‖2
2 ≤ ‖π`` ′ f ‖p ′ · ‖ f ‖p,

so that it is sufficient to prove the following inequality

(3.5) ‖π`` ′ f ‖2 2n−1
2n−3

≤ C`
2n−3
2n−1 ‖ f ‖2 2n−1

2n+1
.

We do this by using Stein’s theorem on analytic interpolation [8, pp. 205–209].

Fix a number β ∈ (1, 2]. Choose a positive number α ∈ (0, 1) such that α >

max{M−1
M+1

, 1−ε0

1+ε0
}, where M and ε0 are the constants in (3.1).

Introduce a function B ∈ C∞
0 (R) such that 0 ≤ B ≤ 1 and

B(t) =

{

1 if t ∈ ( 1+α
2
, 1+β

2
)

0 outside (α, β).

Now define the zonal multiplier operator M`` ′ by

f =

+∞
∑

j, j ′=0

π j j ′ f 7→ M`` ′ f :=

+∞
∑

j, j ′=0

B
( j + j ′

` + ` ′

)

π j j ′ f .

Observe that B(
j+ j ′

`+` ′
) 6= 0 if and only if α(`+` ′) < j + j ′ < β(`+` ′), so that for fixed

`, ` ′ the sum at the right is finite. Let m1, . . . ,ms be the consecutive integer numbers

such that

α(` + ` ′) < m1 < m2 < · · · < ms < β(` + ` ′).

Thus as a consequence of formula (2.3) we obtain

∥

∥

∥

+∞
∑

j, j ′=0

B
( j + j ′

` + ` ′

)

Z j j ′

∥

∥

∥

L1(S2n−1)

=

∥

∥

∥

∑

j+ j ′=m1

B
( j + j ′

` + ` ′

)

Z j j ′ +
∑

j+ j ′=m2

B
( j + j ′

` + ` ′

)

Z j j ′

+ · · · +
∑

j+ j ′=ms

B
( j + j ′

` + ` ′

)

Z j j ′

∥

∥

∥

L1(S2n−1)

=

∥

∥

∥
B
( m1

` + ` ′

)

Zm1
+ B

( m2

` + ` ′

)

Zm2
+ · · · + B

( ms

` + ` ′

)

Zms

∥

∥

∥

L1(Σ2n−1)
,
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where Zmi
, i = 1, . . . , s, denotes the zonal harmonic of degree mi in L2(Σ2n−1). By

using Lemma 3.1, we conclude that

(3.6)
∥

∥

∥

+∞
∑

j, j ′=0

B
( j + j ′

` + ` ′

)

Z j j ′

∥

∥

∥

L1(S2n−1)
≤ C,

where C does not depend on ` and ` ′.

Let Fz
`` ′ be the zonal function defined by

Fz
`` ′(θ, ϕ) :=

2n − 1

2
(1 − z)Z`` ′(θ, ϕ)(sin 2θ)n− 3

2
− 2n−1

2
z,

θ ∈
[

0,
π

2

]

, ϕ ∈ [0, 2π], 0 ≤ <ez ≤ 1.

We define the analytic family of operators {Tz
`` ′} as

Tz
`` ′ f := Fz

`` ′ ∗ M`` ′ f , f ∈ L2(S2n−1), 0 ≤ <ez ≤ 1.

Observe that if t =
2n−3
2n−1

then Tt
`` ′ f = π`` ′ f .

We shall estimate the (L1 − L∞)-norm of T
0+i y
`` ′ and the (L2 − L2)-norm of T

1+i y
`` ′ .

By Young’s inequality we have if ` ′ ≥ ` (the other case is analogous)

‖T
0+i y
`` ′ f ‖∞ ≤

∥

∥

∥
F

0+i y
`` ′ ∗

+∞
∑

j, j ′=0

B
( j + j ′

` + ` ′

)

Z j j ′

∥

∥

∥

∞
· ‖ f ‖1

≤ ‖F
0+i y
`` ′ ‖∞ ·

∥

∥

∥

+∞
∑

j, j ′=0

B
( j + j ′

` + ` ′

)

Z j j ′

∥

∥

∥

1
· ‖ f ‖1

≤ C`n−1(1 + |y|) · sup
θ∈[0, π

2
]

|g`` ′(θ)| ·
∥

∥

∥

+∞
∑

j, j ′=0

B
( j + j ′

` + ` ′

)

Z j j ′

∥

∥

∥

1
· ‖ f ‖1,

where g`` ′(θ) := (cos θ)`
′−` · P

(n−2,` ′−`)
` (cos 2θ) · (sin 2θ)n− 3

2 .

By using Lemma 2.1 we obtain

sup
θ∈[ c

`
, π

2
− c

`
]

|g`` ′(θ)| ≤
∣

∣

∣

∣

(cos θ)`
′−`

√
π`(sin θ)n− 3

2 (cos θ)`
′−`+ 1

2

×
[

cos(2N`θ + γ) +
O(1)

` sin(2θ)

]

(sin 2θ)n− 3
2

∣

∣

∣

∣

= O(1)(cos θ)n−2`−
1
2 = O(1)`−

1
2 , since n ≥ 2, and

sup
θ∈[0, c

`
]∪[ π

2
− c

`
, π

2
]

|g`` ′(θ)| ≤ sup
θ∈[0, c

`
]∪[ π

2
− c

`
, π

2
]

|(cos θ)`
′−` · `n−2(sin 2θ)n− 3

2 |

= O(1)`n−2 · `−n+ 3
2 = O(1)`−

1
2 .
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By collecting these results and by using (3.6) we deduce

(3.7) ‖T
0+i y
`` ′ f ‖∞ ≤ C(1 + |y|)`n− 3

2 ‖ f ‖1.

We shall now estimate the (L2 − L2)-norm of T
1+i y
`` ′ . As a consequence of Plancherel’s

theorem for spherical harmonics, it suffices to estimate sup( j, j ′)∈ J |c j, j ′,y |, where

c j, j ′,y := B
( j + j ′

` + ` ′

) (F
1+i y
`` ′ ∗ Z j j ′)(1)

Z j j ′(1)
and

J := {( j, j ′) ∈ N
∗ × N

∗ : α(` + ` ′) < j + j ′ < β(` + ` ′)}.

By using the definition of zonal functions and formula (2.2) we have

‖T
1+i y
`` ′ ‖(2,2) ≤ sup

( j, j ′)∈ J

|c j, j ′,y | ≤ sup
( j, j ′)∈ J

∣

∣

∣

∣

B
( j + j ′

` + ` ′

)

∫

S2n−1

F
1+i y
`` ′ (ξ)

Z j j ′(ξ)

Z j j ′(1)
dσ(ξ)

∣

∣

∣

∣

≤ sup
( j, j ′)∈ J

C`n−1q j
2−n

×
∣

∣

∣
B
( j + j ′

` + ` ′

)

y

∫ 2π

0

eiϕ(` ′−`− j ′+ j) dϕ ·
∫ π

2

0

h j, j ′(θ) dθ
∣

∣

∣

≤ sup
( j, j ′)∈ J∗

C`n−1q j
2−n ·

∣

∣

∣
y

∫ π
2

0

h j, j ′(θ) dθ
∣

∣

∣
,

where J∗ is defined as in Lemma 3.2 and

h j, j ′(θ) := (cos θ)|`−`
′|+| j− j ′|+1 · P(n−2,|`−` ′|)

q`
(cos 2θ) · P(n−2,| j− j ′|)

q j
(cos 2θ)

× (sin θ)2n−3 · (sin 2θ)−1− 2n−1
2

i y ,

with q j := min{ j, j ′} and q` := min{`, ` ′}. By using Lemma 3.2 we see that

(3.8) `n−1q j
2−n

= C`.

If y = 0 the right-hand side in the last term of the inequality above is zero; thus from

now on we shall assume y 6= 0.

In order to estimate the integral
∫ π

2

0
h j, j ′(θ) dθ we pose

∫ π
2

0

h j, j ′(θ) dθ =

(

∫ c
`

0

+

∫ π
2
− c

`

c
`

+

∫ π
2

π
2
− c

`

)

h j, j ′(θ) dθ =: I1 + I2 + I3.

Now we have

(3.9)

|I1| =

∣

∣

∣

∫ c
`

0

O(1)q`
n−2q j

n−2(sin θ)2n−3(sin 2θ)−1− 2n−1
2

i y dθ
∣

∣

∣

≤ O(1)`2n−4

∫ c
`

0

(sin θ)2n−4 dθ = O(1)`−1,

https://doi.org/10.4153/CJM-2003-045-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-045-6


Complex Harmonic Projection Operators 1145

where we used Lemma 2.1 and Lemma 3.2. The estimate for I3 is analogous. Finally,

we have

I2 =

∫ π
2
− c

`

c
`

1

π
√

q`q j

[

cos(2N`θ + γ) +
O(1)

q` sin 2θ

][

cos(2N jθ + γ) +
O(1)

q j sin 2θ

]

× (sin 2θ)−1− 2n−1
2

i y dθ

where N`, N j and γ have been defined in Lemma 2.1.

We first estimate

I
′

2 :=

∫ π
2
− c

`

c
`

cos(2N`θ + γ) · cos(2N jθ + γ) · (sin 2θ)−1− 2n−1
2

i y dθ.

Since I
′

2 =
1
2

∫ π
2
− c

`
c
`

[cos(2N`θ+2N jθ+2γ)+cos(2N`θ−2N jθ)] ·(sin 2θ)−1− 2n−1
2

i y dθ,

we may use Lemma 3.3 to prove that

|I ′

2 | ≤ C

(

|y| +
1

|y|

)

,

for some positive constant C independent of `, j and y. Then |y| |I ′

2 | = O(1) ×
(1 + |y|2).

Since 1
q j sin(2θ)

and 1
q` sin(2θ)

are bounded from above uniformly with respect to j

and ` when θ ∈ ( c
`
, π

2
− c

`
), we may use Lemma 3.3 and conclude that

|y| · |I2| = O(1)`−1 · (1 + |y|2),

which combined with (3.9) and (3.8) yields

(3.10) ‖T
1+i y
`` ′ ‖(2,2) ≤ C · (1 + |y|2).

By interpolating (3.7) and (3.10) we obtain (3.5).

Finally, we shall prove that the estimate of the (Lp − L2)-norm of π`` ′ is sharp, for

1 ≤ p ≤ 2. By duality, this is equivalent to prove the sharpness for the estimate of

the (L2 − Lq)-norm of π`` ′ , 2 ≤ q ≤ +∞, that is

(3.11) ‖π`` ′ f ‖(2,q) =

{

O(`(n− 3
2

)( 1
2
− 1

q
)) if 2 ≤ q ≤ 2 2n−1

2n−3

O(`(n− 3
2

)− 2
q

(n−1)) if 2 2n−1
2n−3

≤ q ≤ +∞.

By Lemma 3.4(1) we have that

‖Z`` ′‖q

‖Z`` ′‖2

≥ C`n− 3
2
− 2

q
(n−1)

for q > 2 2n−2
2n−3

, yielding a fortiori the second part of (3.11). Analogously, Lemma 3.4

(2) gives the first part of (3.11).
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The following sharp result for the norms of complex spherical harmonics easily

follows.

Proposition 3.6 Let n ≥ 2. Assume condition (3.1) is satisfied. Then there exists a

positive constant C = C(n) such that for any polynomial P`` ′ = P`` ′(z, z̄) harmonic,

homogeneous of degree ` in z and of degree ` ′ in z̄

‖P`` ′‖Lq(S2n−1) ≤
{

C(n)`(n− 3
2

)( 1
2
− 1

q
)‖P`` ′‖L2(S2n−1) if 2 ≤ q ≤ 2 2n−1

2n−3

C(n)`n− 3
2
− 2

q
(n−1)‖P`` ′‖L2(S2n−1) if 2 2n−1

2n−3
≤ q ≤ +∞,

.

Proof By duality.

Remark 3.7 We compare now the results presented above with those obtained by

Sogge in R
2n.

According to [7], the critical point in R
2n is given by p2n =

2n
n+1

, with critical

exponent n−1
2n

. By interpolation Sogge obtained the following sharp estimate for the

norm of the harmonic projector σk in R
2n

‖σk‖(p,2) = O(kr( 1
p

)), where

r
( 1

p

)

:=

{

(2n − 1)[ 1
p
− n

2n−1
] if 1 ≤ p ≤ p2n

(n − 1)( 1
p
− 1

2
) if p2n ≤ p ≤ 2.

Then formula (2.3) yields

(3.12) ‖π`` ′‖(p,2) ≤ ‖σ`+` ′‖(p,2) ≤ C · (`r( 1
p

))

under the assumption (3.1), and it is easy to check that the estimate (3.4) is better

that (3.12).

Remark 3.8 According to our result, there is a correspondence between the complex

harmonic projectors in C
n and the real ones in R

2n−1; indeed the critical point p =

2 2n−1
2n+1

given by Theorem 3.5 coincides with the critical point p2n−1 found by Sogge

in R
2n−1.

4 The Harmonic Projectors π`0 and π0`

In this section we consider the special case of the harmonic projectors π`0 and π0`.

H`0 and H0` denote respectively the space of polynomials p(z) = p(z1, . . . , zn)

homogeneous of degree ` in z1, . . . , zn and the space of the polynomials p(z̄) =

p(z̄1, . . . , z̄n) homogeneous of degree ` in (z̄1, . . . , z̄n).

The symbols π0` and π`0 will denote the harmonic projections on the spaces H0`

and H`0. It may be proved that π`0 f = Z`0 ∗ f and π0` = Z0` ∗ f , where the zonal

harmonics have been defined in Section 2. Since Z`0 is the complex conjugate of Z0`,

the norms of π`0 and π0` coincide.
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Observe moreover that ‖Z`0‖2 =

√

dim H`0

ω2n−1
= O(`

n−1
2 ).

Theorem 4.1 Let n ≥ 2. Then

(4.1) ‖π`0 f ‖2 ≤ C`(n−1)( 1
p
− 1

2
)‖ f ‖p for all 1 ≤ p ≤ 2,

where C depends only on p and n and the estimate is sharp.

Proof Exactly as in Theorem 3.4 we have ‖π`0 f ‖2 ≤ ‖ f ‖2, and by Young’s inequality

‖π`0 f ‖2 ≤ ‖Z`0‖2 · ‖ f ‖1 = C`
n−1

2 ‖ f ‖1.

Thus (4.1) follows by the Riesz-Thorin convexity theorem.

We prove now by duality arguments that this estimate is sharp. Consider the func-

tion Q`0(z) := (z`1)|S2n−1 . Q`0 belongs to H`0 and

‖Q`0‖q
q =

∫

S2n−1

|Q`0(ξ)|q dσ(ξ)

= C

∫ π
2

0

(sin θn−1)`q+2n−3 cos θn−1 dθn−1

×
∫ π

2

0

(sin θn−2)`q+2n−5 cos θn−2 dθn−2

× · · · ×
∫ π

2

0

(sin θ2)`q+3 cos θ2 dθ2 ·
∫ π

2

0

(sin θ1)`q+1 cos θ1 dθ1

= C · (`q)−(n−1).

Thus
‖Q`0‖q

‖Q`0‖2
∼ C`( 1

2
− 1

q
)(n−1)

for all q ≥ 2, showing that (4.1) is sharp.

By duality, the following result is immediate.

Proposition 4.2 Let n ≥ 2, ` ≥ 1. Then there exists a positive constant C = C(n) such

that if P` is a polynomial, either in z or in z̄, homogeneous of degree `, then

‖P`‖Lq(S2n−1) ≤ C(n)`(n−1)( 1
2
− 1

q
)‖P`‖L2(S2n−1) for all q ≥ 2.

Remark 4.3 As observed at the end of Section 3, formula (2.3) yields

‖π`0‖(p,2) ≤ ‖σ`‖(p,2),

so that we could apply the results by Sogge in R
2n and obtain

(4.2) ‖π`0‖(p,2) ≤ C`r( 1
p

) for all 1 ≤ p ≤ 2,
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where r has been defined in Remark 3.7. In this case, the exponent r( 1
p

) found by

Sogge coincides with the exponent of ` given by Theorem 4.1 for p2n ≤ p ≤ 2.

However, for 1 ≤ p ≤ p2n it is easy to check that estimate (4.1) is better than (4.2).

Finally, let us consider the special case n = 2. In this case, we may find an estimate

for ‖π`` ′‖(p,2) depending on the length of ` + ` ′, uniformly with respect to `, ` ′ ≥ 0.

Since ‖Z`` ′‖2 =

√

`+` ′+1
ω3

, if we are content with the estimate obtained by inter-

polating with respect to the trivial endpoint estimates

‖π`` ′‖(1,2) ≤ C(n)(` + ` ′)
1
2 and ‖π`` ′‖(2,2) ≤ 1,

we obtain

‖π`` ′‖(p,2) = O
(

(` + ` ′)
1
p
− 1

2
)

for all 1 ≤ p ≤ 2,

which coincides with (4.1). Thus the following can be stated.

Proposition 4.4 If n = 2 and `, ` ′ ≥ 0, then

‖π`` ′ f ‖(p,2) ≤ C(p)(` + ` ′)
1
p
− 1

2 for all 1 ≤ p ≤ 2,

and the estimate is sharp if either ` = 0 or ` ′ = 0.

Appendix

Proof of Lemma 3.1 The proof is inspired by that of [4, Lemma 2] in the framework

of compact Lie groups.

We may assume, without loss of generality, that supp B ⊆ [α, 2], for some

0 < α < 2.

We recall (see [1, p. 249]) that

Z j(cos θ) =
j + λ

λ
· P(λ)

j (cos θ),

where λ =
d−2

2
and P(λ)

j denotes the Gegenbauer polynomial, expressed, since the

dimension d is even, by

P(λ)
j (cos θ) = 2γ j

λ−1
∑

ν=0

δν
cos[( j − ν + λ)θ − (ν + λ) π

2
]

(2 sin θ)ν+λ
,

with j ∈ N, λ ∈ N
∗, γ j :=

(

j + λ− 1

j

)

and

δν :=

{

γν · (1−λ)(2−λ)···(ν−λ)
( j+λ−1)( j+λ−2)···( j+λ−ν)

if 1 ≤ ν ≤ λ− 1

1 if ν = 0
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(see [9, p. 208]). Thus

∥

∥

∥

∑

αk< j<2k

B
( j

k

)

Z j

∥

∥

∥

L1(Σd−1)

=

∫ π
2

0

∣

∣

∣

∑

j

B
( j

k

) j + λ

λ
P(λ)

j (cos θ)
∣

∣

∣
sind−2 θ dθ

=

∫ π
2

0

∣

∣

∣

∑

j

B
( j

k

) j + λ

λ
2γ j

λ−1
∑

ν=0

δν

× cos[( j − ν + λ)θ − (ν + λ) π
2

]

2ν+λ
sinλ−ν θ

∣

∣

∣
dθ

=

∫ π
2

0

∣

∣

∣

∣

∑

j

B
( j

k

)

λ−1
∑

ν=0

c j,ν ·
cos[( j − ν + λ)θ − (ν + λ) π

2
]

2ν+λ
sinλ−ν θ

∣

∣

∣

∣

dθ,

where

c j,ν := 2
j + λ

λ
· γ j · δν .

Observe that c j,ν < 0 if and only if ν is odd.

The proof requires now a distinction between the cases λ− ν even and λ− ν odd.

(a) If λ− ν = 2m for some m ∈ N
∗, then (λ + ν) π

2
= (λ− m)π and

cos
[

( j − ν + λ)θ − (ν + λ)
π

2

]

=

{

cos
(

( j + 2m)θ
)

if λ− m even

− cos
(

( j + 2m)θ
)

if λ− m odd.

Now, by induction we may easily prove the following formula

22m cos
(

( j + 2m)θ
)

(sin θ)2m

= (−1)m

[

cos
(

( j + 4m)θ
)

−
(

2m

1

)

cos
(

( j + 4m − 2)θ
)

+

(

2m

2

)

cos
(

( j + 4m − 4)θ
)

+ · · · + cos( jθ)

]

.

Thus

c j,ν ·
cos[( j − ν + λ)θ − (ν + λ) π

2
]

2ν+λ
· sinλ−ν θ

=
1

4λ
· c j,ν · εm · 22m cos[( j + 2m)θ] · sin2m θ

=
1

4λ
· c j,ν · εm · (−1)m

[

cos
(

( j + 4m)θ
)

−
(

2m

1

)

cos
(

( j + 4m − 2)θ
)

+

(

2m

2

)

cos
(

( j + 4m − 4)θ
)

+ · · · + cos( jθ)

]

,

https://doi.org/10.4153/CJM-2003-045-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-045-6


1150 Valentina Casarino

where εm = ±1, according that λ− m is even or odd.

It will now be proved that the coefficients c j,ν · (−1)m · εm are always positive.

Indeed, if λ is odd, then either λ−m is even and m is odd, or λ−m is odd and m

is even, so that (−1)m · εm = −1. Moreover, since λ− ν = 2m for some m ∈ N and

λ is odd, ν is odd as well, and therefore the coefficients c j,ν are negative, as observed

above.

On the other hand, if λ is even, then either λ−m and m are even or λ−m and m

are odd, so that (−1)m · εm = 1. In this case the coefficients c j,ν are positive, since ν

is even.

In both cases we conclude that c j,ν · (−1)m · εm > 0.

Since |c j,ν | = O( jλ−ν), from now on we shall denote 1
4λ
·c j,ν ·(−1)m ·εm by Cν · j2m,

for some positive constant Cν > 0.

(b) If λ− ν = 2m + 1 for some m ∈ N, then λ + ν is odd as well, so that

cos
[

( j − ν + λ)θ − (ν + λ)
π

2

]

=

{

− sin
(

( j + 2m + 1)θ
)

if λ− m even

sin
(

( j + 2m + 1)θ
)

if λ− m odd.

Observe now that

sin
(

( j + 2m + 1)θ
)

· sin2m+1 θ =
1

2

[

cos
(

( j + 2m)θ
)

− cos
(

( j + 2m + 2)θ
)]

· sin2m θ,

so that we may proceed exactly as in (a).

Thus we have

∥

∥

∥

∑

αk< j<2k

B
( j

k

)

Z j

∥

∥

∥

L1(Σd−1)

≤
∫ π

2

0

∣

∣

∣

∣

∑

ν∈[0,λ−1]
λ−ν=2m

∑

αk< j<2k

Cν · B
( j

k

)

j2m

[

cos
(

( j + 4m)θ
)

−
(

2m

1

)

cos
(

( j + 4m − 2)θ
)

+ · · · + cos( jθ)

]
∣

∣

∣

∣

dθ

+

∫ π
2

0

∣

∣

∣

∑

ν∈[0,λ−1]
λ−ν=2m+1

∑

j

Cν · B
( j

k

)

j2m+1

× cos
[

( j − ν + λ)θ − (ν + λ)
π

2

]

· sinλ−ν θ
∣

∣

∣
dθ

=: Ie + Io.(A1)

In the light of what has been observed above for the case λ − ν odd, it suffices to

estimate the first term Ie. Moreover, there is no restriction by assuming that k > 2λ
2−α

(so that k > 4m
2−α for every m).
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Define

J0 := (αk + 4m, 2k),

J`1 := (αk + 4m − 2, αk + 4m],

Jr
1 := [2k, 2k + 2),

...

J`2m := (αk, αk + 2],

Jr
2m := [2k + 4m − 2, 2k + 4m).

For k and m fixed in N, define

ηk,m(s) := B
( s

k

)

· s2m s ∈ R,

ak,m(s) := ηk,m(s − 4m) −
(

2m

1

)

ηk,m(s − 4m + 2) + · · · + ηk,m(s), s ∈ R+ and

bk,m(s) := ak,m(|s|), s ∈ R.

For notational simplicity, we replace the symbols ηk,m, ak,m and bk,m by η, a and b.

Then

∑

αk< j<2k

B
( j

k

)

j2m

[

cos
(

( j + 4m)θ
)

−
(

2m

1

)

cos
(

( j + 4m − 2)θ
)

+ · · · + cos( jθ)

]

=

∑

j∈ J0

a( j) cos( jθ) +
∑

j∈ J`1

[

−
(

2m

1

)

B
( j − 4m + 2

k

)

· ( j − 4m + 2)2m

+

(

2m

2

)

B
( j − 4m + 4

k

)

× ( j − 4m + 4)2m + · · · + B
( j

k

)

· j2m

]

cos( jθ)

+
∑

j∈ Jr
1

[

B
( j − 4m

k

)

· ( j − 4m)2m −
(

2m

1

)

B
( j − 4m + 2

k

)

× ( j − 4m + 2)2m + · · · −
(

2m

2m − 1

)

B
( j − 2

k

)

· ( j − 2)2m

]

cos( jθ)

+ · · · +
∑

j∈ J`2m

B
( j

k

)

j2m cos( jθ) +
∑

j∈ Jr
2m

B
( j − 4m

k

)

· ( j − 4m)2m cos( jθ)

=

∑

j∈ J0

a( j) cos( jθ) +
∑

j∈ J`1

a( j) cos( jθ) +
∑

j∈ Jr
1

a( j) cos( jθ)
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+ · · · +
∑

j∈ J`2m

a( j) cos( jθ) +
∑

j∈ Jr
2m

a( j) cos( jθ)

=

∑

αk< j<2k+4m

a( j) cos( jθ) =

∑

j∈N

a( j) cos( jθ) =
1

2

∑

j∈Z

b( j)ei jθ,

where we repeatedly used the fact that the supports of B and a are contained, respec-

tively, in (α, 2) and in (αk, 2k + 4m).

Now

Ie :=

∫ π
2

0

∣

∣

∣

∑

ν∈[0,λ−1]
λ−ν=2m

Cν

∑

j∈Z

b( j)ei jθ
∣

∣

∣
dθ

≤ C
∑

ν∈[0,λ−1]
λ−ν=2m

∥

∥

∥

∑

j∈Z

b( j)ei jθ
∥

∥

∥

L1(T)
.

Observe that the function b belongs to the space C∞
c (R). Let hk,m (in the following, h)

be the function in C∞(R) whose Fourier transform is

Fh(s) := b(s).

By the Poisson summation formula ([8, p. 250]) we have

∥

∥

∥

∑

j

b( j)ei jθ
∥

∥

∥

L1(T)
≤ ‖h‖L1(R).(A2)

Since the support of Fh is contained in an interval of radius rk comparable with k,

from the Plancherel’s theorem we have

‖h‖L1(R) ≤ C
(

‖Fh‖∞ + k · ‖(Fh) ′‖∞
)

,(A3)

where C does not depend on k or m (for a more general version of this result, due

to Hörmander, see [4, Lemma 1]), so that in order to estimate Ie we have only to

estimate ‖b‖∞ and ‖b ′‖∞.

By the mean value theorem ([6, p. 52, pb. 98]) we have

|b(s)| ≤ Cm · |η(2m)(τ )|,

for all s ∈ R, for some τ ∈ (−rk, rk) and some positive constant Cm, and therefore by

a direct computation ‖b‖∞ ≤ Cm.
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Assume for simplicity s > 0. Then

b ′(s) =
1

k

[

B ′
( s − 4m

k

)

· (s − 4m)2m −
(

2m

1

)

B ′
( s − 4m + 2

k

)

· (s − 4m + 2)2m

+

(

2m

2

)

B ′
( s − 4m + 4

k

)

· (s − 4m + 4)2m + · · · + B ′
( s

k

)

· s2m

]

+ 2m

[

B
( s − 4m

k

)

· (s − 4m)2m−1 −
(

2m

1

)

B
( s − 4m + 2

k

)

× (s − 4m + 2)2m−1 + · · · + B
( s

k

)

· s2m−1

]

=: S1 + S2.

Observe that |S1| ≤ Cm

k
, since the expression in the square brackets is similar to b,

with the function B replaced by B ′, and therefore may be treated as b.

In order to estimate S2, we may define the function η̃k,m(s) := B( s
k
)s2m−1; by using

again [6, p. 52, pb. 98] and by arguing as above, we easily check that |S2| ≤ Cm

k
.

It follows from (A3) that

‖h‖L1(R) ≤ Cm,

where Cm does not depend on k. Then by (A2) we have that

Ie ≤ C
∑

ν∈[0,λ−1]
λ−ν=2m

∥

∥

∥

∑

j∈Z

b( j)ei jθ
∥

∥

∥

L1(T)
≤ C ′,

for some constant C ′ independent of k.

Since, as observed before, an analogous estimate may be given for the term Io, (A1)

yields the thesis.
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[6] G. Pólya and G. Szegö, Problems and Theorems in Analysis, Vol. II. Springer Verlag, Fourth Ed.,

1971.
[7] C. Sogge, Oscillatory integrals and spherical harmonics. Duke Math. J. 53(1986), 43–65.
[8] E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces. Princeton University

Press, Princeton, N.J., 1971.

https://doi.org/10.4153/CJM-2003-045-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-045-6


1154 Valentina Casarino
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