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Abstract 

Novel products are commonly realized by integrating heterogeneous technologies. Product 

architecting focus on defining the scheme by which the product functions are allocated to physical 

components. A DSM-based clustering method that integrates technical complexity and strategic 

concerns has previously been proposed. It has been shown that interaction weights in the DSM 

may affect the clustering result. A complexity-based interaction strength model to be used in DSM 

clustering is proposed here. The case study gives promising results from both interaction 

performance and safety points of view. 

Keywords: design structure matrix (DSM), complex systems, systems engineering (SE) 

1. Introduction 

Functional performance of high-performing physical products is commonly realized by synergistic 

configurations of components based on heterogeneous technologies, such as mechanical, electrical, 

electronics and control software, i.e. mechatronics or Cyber-Physical Systems (CPS). Such products 

are commonly referred to as complex systems. Complexity is also described as not just unavoidable in 

systems with heterogeneous technology, but actually required (Rodriguez-Toro et al., 2004). In 

engineering design, complexity is often viewed as a measure of the uncertainty of fulfilling the 

specified functional requirements (Suh, 1999), i.e. it is viewed as a relative measure of the actual 

knowledge compared to what we want/need to know. Uncertainty is usually reduced as we gain 

knowledge in the development process, but a dilemma is that decisions must be made on incomplete 

or fuzzy knowledge. Törngren and Sellgren (2019) discussed complexity related to development of 

CPS and presented and discussed six complexity facets causing humans to perceive complexity and 

five consequences of complexity. The six facets are heterogeneity/diversity, size and computability, 

uncertainty and change, dynamics and/or structure, incidental/essential, unintended/accidental. 

The complexity challenge is commonly addressed with systematic, and structured processes with a 

systematic capture of performance and behaviour of the evolving product from physical and virtual 

tests. Systems engineering (SE) is a structured product development process (INCOSE, 2007). The SE 

process is conceptually represented as the V-model (see Figure 1 - left). The main purpose of the V-

model is to enable technical complexity to be managed by moving from abstract to concrete in a 

stepwise manner and to decompose the large problem into several smaller problems in the process 

and, thus, enabling the development team(s) to “eat the elephant bite by bite”. 

Product architecture is “the scheme by which the function of a product is allocated to physical 

components”, and more specifically “(1) the arrangement of functional elements; (2) the mapping from 
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functional elements to physical components; (3) the specification of the interfaces among interacting 

physical components” (Ulrich, 1995). Ulrich and Eppinger (2000) focused on the interactions and stated 

that product architecture is “the scheme by which the chunks (i.e. the modules) of a product interact”. 

Product architecture can be categorized as being modular, integral, or hybrid based on the type of 

mapping between functional elements and physical components (Hölttä-Otto, 2005). Product 

architecting is an early, and highly iterative, sub-process within SE (Figure 1) that involves conceptual 

system design, product building block identification and product layout design (Dieter et al., 2013). 

            
Figure 1. The V-model (VDI, 2004), left, and the architecting sub-process, right 

Model-Based Systems Engineering (MBSE) may be defined as “the formalized application of modelling 

to support system requirements, design, analysis, verification and validation activities beginning in the 

conceptual design phase and continuing throughout development and later life cycle phases” (INCOSE, 

2007). It is generally believed that MBSE may increase the pace at which knowledge is gained when 

developing novel products, by enabling a faster complexity reduction than with traditional document-

based SE processes. Furthermore, MBSE also enables the product development team to keep the design 

degrees of freedom for a longer time by elaborating and experimenting more with computer models and 

less with physical prototypes as in traditional SE processes (see Figure 2). 

 
Figure 2. Potential benefits of MBSE, from (Törngren and Sellgren, 2019) 

Graphs and matrices are the two most commonly used representations of component-to-component 

interactions. The two representations are complementary. The most important property of the Design 

Structure Matrix (DSM) (Eppinger et al., 1994), also commonly referred to as the Dependency 

Structure Matrix, is that it is scalable from small conceptual system to very large detailed system 

(Börjesson and Sellgren, 2013). Cluster analysis of a DSM is one of several methods to identify 

groups of components, i.e. clusters, with minimum dependencies between the clusters. Cluster analysis 

is an efficient method to find clusters of components, i.e. subsystems or modules that concurrently can 

be further engineered and detailed, i.e. it is a way to reduce negative effects from technical 

complexity. Eppinger and Browning (2012) proposed four generic types of interactions/relations 

between pairs of function carriers, i.e., components, in a Product Architecture DSM (paDSM). These 

relation types are spatial relations and functional flow of matter, information and energy. Relation 

weights, also known as interaction strengths, can be used to represent their relative importance. 

Business strategies, like planned upgrades, in-sourcing/out-sourcing, purchase/make, etc., e.g. 

(Blackenfelt, 2001), add significant complexity to the architecting stage. In an attempt to simultaneously 
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treat technical (structural) complexity and company-specific business strategies, Williamsson and 

Sellgren (2016) introduced the Integrated Modularization Methodology (IMM), which utilizes the DSM 

clustering IGTA++ algorithm developed by Börjesson and Sellgren (2013). The core of IMM is to 

integrate company-specific module drivers (represented by the MIM) with a paDSM into a strategically 

adapted DSM (saDSM), which is then clustered. Williamsson et al. (2018) showed that IMM can 

propose reasonable module candidates from both technical complexity and company specific strategy 

points of view, i.e. to assist module identification. The next product architecting step focuses on product 

layout design (Dieter et al., 2013), which is a highly iterative sub-process. Making a rough spatial layout 

of the principal product components enables analyses of potential spatial, thermal, or electrical 

interferences between components within the module candidates. Williamsson and Sellgren (2019) 

augmented the IMM matrix, by including interferences, i.e. unintended/harmful interactions model, as 

proposed in the Affordance Design Theory. In order to distinguish desired from undesired relations, 

positive and negative values could be used to represent interactions between DSM components, where a 

negative value would indicate an undesired/harmful interaction. Williamsson and Sellgren (2019) 

showed that paDSM clustering with negative relation weights, representing undesired/harmful relations, 

may propose clusters with internal physical interference, but that the affordance-extended IMM approach 

is capable of proposing clusters with no conflicting interferences, nor conflicting strategies. The IMM 

method is, thus, capable of representing and analysing effects from technical complexity, strategic 

aspects and physical interferences, and to do that in any combination. 

To compare clustering results from different alternative DSM and IMM representations, Williamsson 

et al. (2018) developed a Cluster Match Matrix (CMM) and used the CMM to show that the relative 

weights of the different types of functional relations could have a significant influence on paDSM 

clustering. How to define proper and useful weights of the different types of interactions, 

dependencies and interferences is still an unresolved issue. 

This paper aims at providing a contribution to MBSE by enabling paDSM-based clustering of 

complex heterogeneous systems. More specifically, the specific objective is to extend the function-

means oriented IMM clustering method by proposing logically reasonable weights for the intended 

technical interactions/dependencies between the system constituents. A delimitation is that strategic 

reasons and layout constraints derived from hazardous or unwanted interferences are not treated here. 

The following three research questions are addressed: 

 How could we weight the importance of mechanical, electrical software components in 

heterogeneous systems? 

 How could we weight the importance of spatial relations, energy, mass and signal interactions 

between pairs of system components? 

 How could interactions with performance critical and safety critical components and 

interactions be properly treated? 

The research is based on a case study of a battery-electric driveline of a heavy duty truck. In section 2, 

a complexity-based weighting method is proposed. Section 3 elaborates on a case, where the proposed 

weighting method is applied. The results are presented and discussed in sections 4 and 5. Section si6 

and 7 conclude the work and proposes further research. 

2. Complexity approach to represent interaction weights 

2.1. System complexity 

Complexity is not just unavoidable in systems synthesized from heterogeneous technologies, such as 

CPS, but could also be actually required. Consequently there is a need for complexity management 

techniques (Rodriguez-Toro et al., 2004). A multitude of complexity measures have been proposed in 

literature. Such definitions tend to fall into two categories (Rodriguez-Toro et al., 2004): 

 Structural-based, where complexity is considered a property of the object, i.e. a system 

property, which depends on number of components, number of interactions between 

components, number of types of components and interactions, etc., e.g. (Patzak, 1982). 
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 Information-based, where complexity is perceived, i.e. considered a property of the subject, 

i.e. the human “observer”, e.g. (Casti, 1992). 

These two categories of complexity measures have usually addressed challenges related to different 

SE aspects, such as product design (Ghosh et al., 2018), manufacturing (Suh, 1999; Mattsson et al., 

2011), assembly (Mattsson et al., 2014), logistics (Blecker et al., 2005; de Leeuw et al., 2013). The 

approach used here is to represent and treat complexity as a quantifiable and intrinsic system property 

that can be used in architectural analyses with the purpose to present architectural cause and effect 

information/knowledge to the actor subject(s). 

Pugh (1990) proposed a quantitative structure-based complexity measure: 

3
tip NNN

f

K
C   (1)

 

where Np is the number of parts, Nt the number of part types, Ni the number interconnections, f the 

number of functions, and K is (an arbitrary) constant. 

2.2. Interaction strengths 

The complexity measure in Equation (1) is not just a “measure by numbers”, but also a recognition that 

component variety and the number of relations between the components add complexity and that known 

purposes, i.e. functions, provide meaning and, thus, reduce uncertainty and perceived complexity. When 

researching the connection between product complexity and vertical integration in the automotive 

industry, Novak and Eppinger (2001) found that “when a product involves novel architecture or 

technologies, there is not a stable and well-understood set of interactions between components. The 

process of identifying and understanding these relationships adds to the difficulty of coordinating 

development.” Consequently, they added product novelty as a third aspect, complementary to the number 

of components and the number of component interactions, in their proposed product complexity model. 

In the present study, we focus on the complexity caused by interactions at the interfaces between pairs 

of components, and the strength of the interaction/interference, or dependency, at each interface. As 

shown in Figure 3, we represent the interaction at interface i as relation ri, which is further defined as a 

spatial relation ris, flow of information rii, energy rie, or matter rim, or a combination thereof. The 

strength of an interface relation, or the level of dependency, is represented by a weight factor Wi which 

is the sum of the potentially relevant four functional interface relations, i.e.: 

Wi = Wis +Wii +Wie +Wim (2) 

The weight of each of the four types of functional relations Wij, where j=s, i, e, or m is proposed to be: 

Wij = rij ∙ √WijnWijpWijs
3  (3) 

where rij = the type of functional relation, represented by the value 1, 0, or -1, if it is intentional, not active, 

or negative physical interference, respectively, Wijn = implementation novelty, with values 1 (standard), 3 

(partly new), or 9 (completely new), Wijp = performance importance, with values 1 (standard), 3 

(important), or 9 (critical), and Wijs = safety criticality, with values 1 (standard), 3 (important), or 9 

(critical). The weight scheme is thus, consistent with the weights of each strategic reason for a function 

carrier, i.e., a principal or detail component, to be a product module as used in the Module Indication 

Matrix (MIM), which is a core representation in the Module Function Deployment (MFD) modularization 

methodology, e.g. (Erixon, 1998). Mattsson et al. (2011) proposed a 0,1,3,9 weighting scheme for the 

complexity index (CXI) for quantifying perceived production complexity, and argued, but did not verify, 

that it might be beneficial to also add a weight of 5, to bridge the gap between 3 and 9. 

An example of a signal transfer function that is performance-critical (weight = 9) is the transfer of video 

signals (very large bandwidth) from a camera sensor in an autonomous vehicle to an object recognition 

ECU unit. In a vehicle operated by a human driver, assisted with efficient adaptive cruise control, the 

performance of the signal transfer is not that critical, suggesting a performance weigh value of 3. With 

regular cruise control, a reasonable weight value could be 1. The signal transfer may be more or less 

safety-critical, depending on the reliability of the transfer mechanism and if there is redundancy or not. If 

we leave out image sensor(s), reliability, photosensitivity, resolution and sampling frequency, and ECU 
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performance in terms of reliability and speed, we might find that it is crucial, from an active safety point 

of view, to have an as short “line of command” as possible from the decision control unit to the actuators 

in the manoeuvring system. In such a case, the signal transfer would have a safety-critical weight of 9. 

The performance of the signal transfer from decision unit to actuators, would benefit from minimum 

delay of signals with a small bandwidth, implying a performance weight of 3. 

 
Figure 3. Functional relations r with interaction strengths, or weight factors W 

3. Case 

Figure 4 shows a conceptual candidate for an autonomous heavy-duty tractor for long-haulage 

logistics hub to hub transport. The basic concept is a 6x4 Battery Electric Vehicle (BEV), that is a sex 

wheeler with four wheels driven and the two remaining wheels steered. The maximum gross train 

weight (GTW) is 44 tons and the required range is 800 km driving between logistics hubs on highway. 

A pre-study proposed, based on the required total propulsion force, four frame mounted permanent 

magnet high voltage AC axial flux motors, hub reductions mounted on each driven wheel, leaf spring 

suspensions on all six wheels, a multitude of sensors for object recognition, road assessment and 

condition monitoring, and a protective cover. The required set of batteries were mounted in the frame 

with a battery charging unit (BCU) assisted by necessary inverters and charging control (battery 

performance aspect), sensors and ECU:s with battery state monitoring and control and thermal 

management (safety aspect), as shown in Table 1. 

 
Figure 4. Heavy-duty autonomous truck with “fifth wheel” active trailer connection interface 

The mean novelty value of the 88 principal components is 4.27 and the rms value is 5.41, which indicate 

that a significant engineering effort is required to realize this product, i.e. it is a high risk project. 
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Table 1. The 88 principal components and their speculated level of novelty 

Function carrier # of Novelty Function carrier # of Novelty 

Truck frame 1 1 Battery heater 1 1 

Truck cabin body 1 3 Battery cooling lines 1 1 

Wheel suspension 6 1 Battery heating lines 1 1 

Wheel hub 6 1 Object recognition unit (OR) 1 9 

Friction brake 6 1 Camera sensor units 4 9 

Hub reduction 4 3 Lidar 4 9 

Anti-lock brake control, ABS 1 3 Radar 4 9 

Steering gearbox 1 1 Sonar 4 9 

Steering motor 1 1 Active safety analysis unit 1 9 

Steering motor controller 1 3 Active safety management 1 9 

Traction motor 4 3 Condition monitoring 1 9 

Traction motor control unit 4 3 Condition management 1 9 

Batteries 1 9 Road assessment unit 1 9 

Battery charging unit (AC-DC) 1 9 GPS 1 3 

Battery state analysis unit 1 3 Position analysis 1 9 

Battery voltage monitoring 1 3 Motion planning 1 9 

Battery current monitoring 1 3 Power and steering management 1 3 

Battery temperature monitoring 1 3 Remote state communication 1 3 

Battery safety protection unit 1 3 Remote override and diagnostics 1 9 

Thermal management unit 1 3 Electronic stability program, ESP 1 3 

Electric inverter and control unit 1 9 Angular wheel sensor 6 3 

Cooling/heating pump 1 1 Traction control unit 1 3 

Heat radiator 1 1 Gyro 1 3 

   Total # of principal components 88  

Table 2. Interaction/dependency types, novelty, performance and safety criticalities 

Interacting pair of components Type Nov. Perf. Safe. Comment 

Frame - Cabin body s 1 3 1 Large force 

Frame - Suspension (6) s 1 3 1 Large force  

Suspension (6) - Wheel hub (6) s 1 3 1 Large force 

Wheel hub (6) - Friction brake (6) s, e 1, 1 3, 9 3, 9 Safety critical 

Hub reduction (4) - Wheel hub (4) s, e 1, 1 3, 3 3, 3 Large force, high safety 

Traction motor (4) - Hub red. (4) s, e 1,1 9,9 3,3 Performance critical 

Traction motor (4) - Frame s 1 1 1 Standard 

Motor controller (4) - Motor (4) e 1 9 1 Performance critical 

Batteries - Motor controller (4) e 1 9 1 Performance critical 

Electrical cntrl. - Motor cntrl. (4) i 1 9 9 Performance & safety critical 

Battery monit. (3) - Battery state  i 1 3 3 High power perform. and safety 

Battery state - Battery safety i 1 3 3 High signal performance & safety 

Battery temp. - Temp mngmt. i 1 3 9 Safety critical 

Temp mngmt. - Battery safety i 1 1 9 Safety critical 

Battery safety - Cooling pump i 1 1 9 Low performance, safety critical 

Battery safety - Elecric control i 1 9 9 Performance and safety critical 

Camera package (4), Lidar (4), Radar 

(4), Sonar (4)( on cabin body) - OR 

(s), i (1), 1 (3), 9 (3), 9 Performance and safety critical 

……      

The four functional interactions (spatial s, energy e, matter m, information i) are all given the same 

weight of 1.0. Although, some researchers, e.g. (Stone et al., 2000) that have thoroughly reverse 
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engineered the architectures of commercial products claim that a non-branching flow of matter is a 

dominant flow, and consequently is a relatively stronger technical module driver, we are not 

prioritizing the four types of functional interactions. In total the paDSM represented 54 spatial 

interfaces with non-causal interactions, 29 interfaces with energy (power) transfer, 6 with material 

transfer, and 97 interfaces with information (signal) transfer. Some of the many dependencies, 

modelled as interaction strengths in the paDSM, are briefly presented in Table 2. 

4. Results 

Ten thousand iterations with the IGTA++ DSM-clustering algorithm grouped the 88 principal 

components into 20 clusters (conceptually shown in Figure 5), with each cluster having a more or less 

integral architecture. That is, the dependencies are large between the components within a cluster, but 

cluster to cluster dependencies are small. The clustering convergence rate is inversely proportional to 

the cluster number, i.e. the top-left clusters in Figure 5 are the most stable ones. The wall-clock time 

on a regular laptop was 0.88 s per iteration, adding up to two hours and 28 minutes. 

 
Figure 5. The 88 DSM components grouped into 20 clusters from #1 top left to #20 bottom right 

The 20 clusters in Figure 5 are: 

 Cluster 1: Truck cabin body with two of the four exterior Camera units (one front and one 

rear), all the four Lidar, Radar and Sonar sensors, and the Object recognition unit. 

 Cluster 2: Motor control units for the four driven wheels, the Batteries, Battery charging unit, 

the Battery voltage, Battery current and Battery temperature monitoring sensors, the Battery 

state analysis unit, and the Electric control unit. 

 Cluster 3: Angular sensors for the six wheels, Traction control, ABS, and the ESP. 

 Cluster 4: Steering motor controller, Active safety management, Motion planning, Power and 

steering management, and the Remote override unit. 

 Cluster 5: Active safety analysis, Road assessment analysis unit, and two of the four exterior 

Camera units (one front and one rear). 

 Cluster 6: Main system for battery cooling and pre-heating, i.e. the Pump, Cooling lines, 

Heater, and Heating lines. 

 Cluster 7: Truck frame, Gyro, and two of the six Wheel Suspensions (two of the driven wheels). 

 Cluster 8: Thermal management unit, Battery safety protection unit, and the Heat radiator. 

 Clusters 9, 10, 11 and 12: Suspension, Wheel hub, and Friction brake (for the two steered 

wheels and two of the four driven wheels). 

 Cluster 13: GPS and Position analysis unit. 

 Clusters 14 and 15: Condition management and Remote state communication in cluster 14 and 

Condition monitoring and Condition analysis in cluster 15. 

 Clusters 16, 17, 19 and 20: Wheel Hub reduction and Traction motor for the four driven wheels. 

 Cluster 18: Steering motor and Steering gearbox. 
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4.1. Discussion of the clustering result 

Below follows a conceptual discussion of the 20 clusters proposed for the safety- and performance-

aware paPDM: 

 Sensor analysis units, such as Object recognition Road assessment units, are separated from 

the actual decision and actuation modules. Object recognition, or perception, relies on high 

speed and, in many cases, large bandwidth signal transfer from sensors to a perception 

analysis unit with embedded sensor fusion and pattern recognition software. The output from a 

perception module is generally a relatively small amount of data that should be accessible by a 

decision/management unit, which consequently, at least from performance reason, do not have 

to be placed tightly integrated with the perception unit. 

 The object recognition (OR) unit relies on high speed transfer of large bandwidth data, 

especially from the cameras. From performance and safety point of view, it makes sense that 

all these sensors are grouped with the OR unit in a protective cabin body. 

 Clustering of the six wheel suspensions seems to be unclear, they are either grouped with the 

frame or with a “wheel unit”. It would be more logical if the four suspension for the driven 

wheels would include suspension, or not, and that the individual suspensions for the two 

steered wheels would be included in the wheel module or not. 

4.2. Interaction weight sensibility study 

To study the effect from the performance and safety weights of the represented interactions on the 

proposed clusters, paDSM clustering with varied weights for the performance and safety complexity 

parameters were performed. 

With a binary interaction model, i.e. an interface relation is given a weight of 1 for any type of 

intended interaction or any combination of de four potential functional relations. Here we got 21 

clusters. Cluster 1 included the Cabin body, and all Cameras, Lidars, Radars and Sonars, as well as 

the Object recognition unit and the Road assessment unit. Which is similar by the more performance 

and safety prioritized proposal above. An observation is that generally there were no decomposition of 

sensing, perception, action decision, and actuation. As an example, for cluster 5 the algorithm 

proposed a configuration of Condition monitoring, Condition analysis, Condition management and 

Remote communication. Similar clustering were proposed for the wheel Angular sensors and the units 

for ABS, Traction control, and ESP, which also were clustered in, what seems to be, a rather random 

way. Furthermore, Motor controllers were clustered with Electric control, Motion planning, Power 

and steering management, ESP, and Remote control, but not with the Angular wheel sensors, nor with 

ABS or Traction control. Clusters 6-9 for the four driven wheels made some sense, including 

Suspension, Wheel hub, Friction brake and Angular sensor. 

A clustering simulation with the four types of functional interactions, each adding a weight of 1, i.e. 

the interaction between a pair of interfaced system components has a total value of 1/2/3/4, depending 

on the number of active functional types. Proposed a clusters in between the DSM with more detailed 

interaction weights and the one with binary weights. That is, there were no logical decomposition of 

the sensors, perception, planning, and actuation system constituents. 

5. Discussion 

The more long-term goal of the presented research is to make a contribution to MBSE, by developing 

efficient and robust methods and computer-based tools to assist and potentially also automate major 

parts of the SE product architecting stage. This is a challenging task that requires significant effort and 

thorough verification as well as analysis of how it most efficiently may assist the SE process. 

The main hypothesis behind the present research is that computer-based product cluster analysis 

benefit from a quantitative complexity measure, as well as means to represent and communicate 

product architecture related complexity. A complexity-based measure to quantify the strength of 

intended interactions is proposed and exemplified. An interesting observation is that the proposed 

clustering method propose a hierarchical control structure, with signal analysis, i.e. perception, 

clustered with the sensors, and with more loosely connected decision and planning layer that does not 
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have to be tightly integrated with the sensor and perception module, and a decision module that 

preferably is clustered with the actuators, a structure that is also proposed in e.g. (Oliviera, 2019). 

Furthermore, an integrated battery and battery management unit (BMU), i.e. sensors, state analysis, 

charging, and electric power output control, is proposed within cluster 2. This is in line with novel 

technological solutions to maximize battery performance and to minimize risk for fires caused by 

battery and/or inverter overheating. Clustering proposed a battery cooling and heating cluster separate 

from the battery, which is questionable. 

The clustering result depends on the quality of the paDSM, i.e., that the different function carriers 

(components) have been decomposed deep enough, that the decomposition is balanced, i.e. similar 

depth all over the system, and that the interactions and their weights are reasonably represented. The 

sensitivities of the proposed performance and safety criticality parameter values may be analysed by 

changing the weights of the interactions that are judged as being most uncertain. 

The presented case highlights that clustering based on technical complexity only will cause some 

ambiguous clusters, e.g. the six suspensions in the presented case are not clustered in a fully consistent 

manner. This deviation from expected result can potentially be addressed by adding the strategic 

module drivers as presented in (Willamsson et al., 2018), e.g. will de effect from assemblability 

requirements cluster the suspensions with the frame or with the wheel modules? The effects from 

interferences, unintended interactions, may influence the clustering result. For example, will the 

electro-magnetic fields generated by the motors, affect the target clusters for the control units. A 

method to include the effects from interferences to paDSM clustering is proposed and elaborated on in 

(Williamsson and Sellgren, 2019). 

6. Conclusions 

Refining a component-DSM into a product architecture DSM with the intended interactions 

represented as functional relations, i.e. spatial relation, and/or energy transfer, matter transfer, or 

information transfer, enables more logical clustering of a system. 

It is still unclear if clustering benefit from the four types of functional relations having different virgin 

weights, e.g. if mass transfer could be considered more complex and thus motivating a larger relative 

weight value, or if this could be more effectively handled with a higher mass transfer performance 

criticality value. 

A method to include and treat interaction performance criticality and safety criticality in the clustering 

simulation, has been proposed, and it has shown to provide some benefits to the proposed system 

cluster candidates. 

The presented example shows that the influence and importance of the mechanical, electrical, and 

software components, will propose a reasonable multi-level architecture, when taking signal 

performance and safety concerns into account. 

7. Future research 

The clustering effects from strategic module drivers, as presented in (Williamsson et al., 2018) will be 

studied. Layout architecting will also be targeted, i.e., a study of the effects from interferences on the 

modular architecture, and the constraints imposed on the layout. How interferences affect the proposed 

cluster structure will be studied with the approach proposed in (Williamsson and Sellgren, 2019). 
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