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SUMMARY

The search for an association between disease incidence and possible risk factors using
surveillance data needs to account for possible spatial and temporal correlations in underlying
risk. This can be especially difficult if there are missing values for some important covariates.
We present a case study to show how this problem can be overcome in a Bayesian analysis
framework by adding to the usual spatio-temporal model a component for modelling the
missing data.
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INTRODUCTION

The focus of this paper is the management of missing
data when using routinely collected public health sur-
veillance data to investigate the effect of possible risk
factors on disease incidence. We demonstrate a sys-
tematic process for building a model that is able to im-
pute missing covariate values as well as capture the
existence of temporal and spatial variation, using a
Bayesian framework for estimation. We also empha-
size how the posterior results from the final analysis
can be interpreted to make practical epidemiological
conclusions.

Missing data are often unavoidable in epidemiolo-
gical research. It is preferable to impute the missing
values rather than deleting the observation entirely.

If the missing data are numerous and the associated
observations removed, the model is likely to have
less power as it reduces the size of the dataset.
However, the bias that can result from analysing a
dataset containing missing values is a much more
important issue [1].

Rubin [2] developed a classification system for miss-
ing data problems and his work is extensively refer-
enced in the literature. From this work three missing
data mechanisms were developed that relate the prob-
ability of a missing value to the data. While missing
data can be seen as just that, i.e. data that are missing,
there often is some underlying reason behind their
‘missingness’. Establishing the undercurrent to this
missing data may be vital to reduce the risk of bias
in the results garnered from the analysis. Rubin [2]
and Little & Rubin [3] categorize the missing data
mechanisms into three categories: missing completely
at random (MCAR), missing at random (MAR) and
missing not at random (MNAR). MAR assumes
that the missingness may be related to the observed
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data, but is independent of the unobserved (missing)
data values. Under MNAR the probability that a
value is missing may depend on what its true, but un-
observed, value is.

Essentially, Rubin’s missingness mechanisms pro-
vide assumptions by which to guide the method used
to deal with the missing data. Many of the more tra-
ditional techniques used for handling missing data as-
sume that the data come from an MCAR mechanism
and thus yield biased estimators when data are
MNAR or MAR. However, the techniques of mul-
tiple imputation and maximum likelihood are more
robust and the assumptions on the data are less strin-
gent; data that are MAR are handled adequately, but
bias can still arise with MNAR data [1]. The phenom-
enon of missing data is not new and while there are
many approaches that have been employed to deal
with this problem in the past, the literature of the
last 30 years regards the approaches of maximum like-
lihood and Bayesian multiple imputation as ‘state of
the art’ [4].

In our analysis we use multiple imputation within a
Bayesian framework. The Bayesian approach differs
from the traditional frequentist paradigm where the
former views a parameter as having a probability dis-
tribution that is updated based on observed data, and
the latter regards a parameter as a fixed characteristic
of the population [1]. A Bayesian approach allows for
the posterior probabilities of quantities of interest to
be influenced by the current state of knowledge, or ex-
pert information.

In addition to accounting for the missingness in the
data, we need to account for the possible temporal
and spatial correlations that may exist. Disease counts
are often correlated in time in that adjacent time per-
iods are likely to be similar. This could be because of
the risk factors of the disease that cause seasonal pat-
terns, such as contact with animals, recreational water
use and food consumption patterns, for example.
Spatial autocorrelation exists when observations are
more similar for points or areas that are close together
than they are for points or areas further apart. This
exists in part due to the infection process of the disease
as well as the risk factors. Spatial autocorrelation
introduces a lack of independence in the data and
will need adjustment. Lawson [5] specifies that if
good estimates of the regression parameters are
sought after in an ecological study then the residual
correlation structure should be modelled. Temporal
and spatial effects are often important components
of the correlation structure.

In the next section we describe the data and context
that motivated our study. We use a case study of the
effect of possible risk factors on disease incidence,
in particular the impact of rainfall on reported rates
of Campylobacter and Cryptosporidium in New
Zealand, our data has both spatial and temporal
dimensions, and there are missing values in some im-
portant covariates for some particular regions and
times. It is hypothesized that the incidence of water-
borne diseases is likely to increase as a result of the ef-
fect of climate change and its impact on national
drinking water supplies [6, 7]. We next outline the
stages in the modelling process, before giving the
results and their interpretation for our case study.
We conclude with a summary and discussion of issues
raised.

METHODS

Data sources

The data consist of repeated measures on 817
Drinking Water Zones (DWZs) in New Zealand,
recorded annually for the years 2001–2005 inclusive
and from 1 July 2006 to 30 June 2007. The list of vari-
ables used in the modelling and analysis is given in
Table 1.

Disease data were obtained from the Notifiable
Disease Surveillance System of New Zealand’s
Environmental Science and Research Institute
(ESR). The population at risk (PAR) was estimated
for each DWZ from the meshblock information of
the 2006 Census population. Figure 1 shows the
annual incidence of campylobacteriosis and cryptos-
poridiosis for the study period. Daily rainfall data
were obtained from the National Institute of Water
and Atmospheric Research (NIWA), and the other
DWZ-level variables were provided by ESR.

Campylobacteriosis is a major gastrointestinal dis-
ease burden in New Zealand with most cases occur-
ring in the summer. There were 6692 cases notified
in 2011 making campylobacteriosis the nation’s most
notified infectious disease [8]. Cryptosporidiosis is
also a gastrointestinal disease that shows marked sea-
sonality. Most notified cases occur over the spring and
autumn periods, the former associated with disease
transmission from zoonotic reservoirs [9]. There were
610 cryptosporidiosis cases notified in 2011. The con-
sumption of untreated water and contact with rec-
reational water are recognized risk factors for both
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these gastrointestinal infections. Thus, the results of
this analysis have important practical implications.

Here we investigate the effects of rainfall events on
the incidence risk of campylobacteriosis and crypto-
sporidiosis. Because our disease counts are annual,
we use as explanatory variables the number of extreme
rainfall incidents each year, as measured by the number
of exceedances of 100 mm per day, the number of
exceedances of 20 mm per day, and exceedances of
10 mm preceded by five consecutive dry days. These
thresholds were set following discussion with Dr
Andrew Tait (climate scientist, NIWA). We include
the following potential confounders: bacteriological
compliance, protozoal compliance, water source,
urban/rural profile and deprivation score. A

deprivation score of 1 represents the least deprived
DWZ whereas 10 represents the most deprived. We
also expect spatial correlation, with DWZs that are
close together being more similar than those far
apart, and temporal correlation because of smooth
time trends.

Important covariates bacteriological compliance,
protozoal compliance and water source all had missing
values. The reason for the missingness (236 DWZs for
each variable) in bacteriological compliance and water
source was attributed to some DWZs not being on the
register for that particular year or because they had
closed down (Dr C. Nokes, ESR, personal communi-
cation). Protozoal compliance was only tested
post-2004 following amendments to the Drinking

Table 1. List of variables used in the illustrative examples, recorded for each of 817 regions (DWZ) over six time
periods

Variable Type Description

Campylobacteriosis Count Annual count of reported cases in DWZ
Cryptosporidiosis Count Annual count of reported cases in DWZ
PAR Count Population at risk in DWZ
Bacteriological compliance
(x1)

Categorical 1 = Compliant; 2 = inadequately monitored; 3 = not monitored; 4 = excess E. coli
transgressions

Protozoal compliance (x2) Categorical 1 = Compliant; 2 = non-compliant
Water supply source (x3) Categorical 1 =Ground; 2 = roof; 3 = surface; 4 = ground/surface; 5 = ground/roof; 6 =

ground/surface/roof
Urban/rural profile (x4) Categorical 1 =Rural; 2 = urban
Greater10 (x5) Count Number of times during the year that daily rainfall in DWZ exceeded 10 mm
Greater 20 (x6) Count Number of times during the year that daily rainfall in DWZ exceeded 20 mm
DryGreater10 (x7) Count Number of exceedances of 10 mm preceded by five consecutive days with no rain
NZDepScore (x8) Numerical Population-weighted average deprivation index; see Salmond et al. [29]

DWZ, Drinking water zone; PAR, population at risk.

Fig. 1. Annual incidence of campylobacteriosis and cryptosporidiosis.
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Water Standards forNewZealand and as a result all 817
DWZs do not have any data for 2001–2003 inclusive.

Poisson regression model

Our basic model for the number of observed cases in
DWZ i at time t is

Casesit � Poisson(μit),
with a log link function [10]

log(μit) = β0 + β1(x1it) + β2(x2it) + β3(x3it) + β4(x4it)
+ β5x5it + β6x6it + β7x7it + β8x8it + log PARit,

(1)
This equation links the rate of disease to the covariates
of interest (e.g. rainfall, water source and urban/rural
profile) in Table 1. Each of the numerical variables
Greater10 (x5), Greater20 (x6), DryGreater10 (x7) and
NZDepScore (x8) has been standardized by subtracting
the mean and dividing by the standard deviation (S.D.).
This standardization facilitates interpretation as the β
parameter then indicates the effect when the variable
is 1 S.D. above its mean. Our particular interest here
is in the effects of rainfall events: β5, β6 and β7.

The categorical covariates x1− x4 (see Table 1) are
coded so that the reference category is 1. For example,
bacteriological compliance x1 takes values 1–4; we set
β1(1)≡ 0 so that β1(2) represents the increase in log
risk incidence associated with level 2 (‘inadequately
monitored’) compared with level 1 (‘compliant’).

We use a Bayesian framework for estimation, imple-
mented using WinBUGS software [11]. This requires
the specification of prior distributions on all model
parameters. For all β parameters, except for those of
the reference categories set to zero, we used normal
priors with precision 0·001 (S.D. = 31·6) which makes
them largely uninformative in (1) because of the log
transformation [12]. The prior means were set to zero
except for β0, which represents the natural log of the
rate of cases per year/1000 when the numerical covari-
ates are at their mean value and the categorical covari-
ates at their reference value. Here we used a prior mean
of −6.0 for campylobacteriosis and and −8.5 for cryp-
tosporidiosis, reflecting our prior beliefs about these
rates. The WinBUGS code is available upon request
from the corresponding author.

Spatio-temporal effects

We expect disease incidence to be correlated in both
time and space in the sense that, after adjusting for

any fixed covariate effects, observed incidence rates
will be more similar for observations that are close
together temporally and spatially. If such correlation
is not allowed for in the modelling, any inferences
drawn regarding the fixed effects of interest may be
invalid since the standard errors for the estimated cov-
ariate effects will be understated [13]. To include poss-
ible correlations we add to equation (1) random effect
terms vt for unmeasured time effects and si+ui for
structured and unstructured spatial effects. These are
discussed in detail below.

Temporal component

We assume that the random temporal components
follow a random walk, or independent increments,
model to allow for possibly non-stationary trends in
overall incidence. Starting with v1 = 0, we recursively
define

vt � Normal(vt−1, τv) t = 2, . . . , 5,

where τv represents the precision (reciprocal of vari-
ance) of the annual increment over time. Data for
the period from 2001 to 2005 inclusive were drawn
from the calendar years, while data for the last year,
2006/2007, were drawn from 1 July 2006 to 30 June
2007, so for t= 6 we set v6∼Normal(v5, τv/1.5) to ad-
just for the fact that the final increment covers 18
months. For the prior distribution on the precision
we used τv∼Gamma(1,0.01). Note that by defining
v1 = 0 we are implicitly defining β0 to be the average
incidence of disease in 2001.

Spatial component

We expect that incidence risk of disease in areas that
are geographically close will be more similar than
the incidence risk in areas that are further away.
Spatial correlation in the data can be taken into ac-
count by adding both structured si and unstructured
ui random effects to the model in equation (1), thus
giving the final model:

log(μit)=β0+β1(x1it)+β2(x2it)+β3(x3it)+β4(x4it)
+β5x5it+β6x6it+β7x7it+β8x8it
+logPARit+vt+si+ui. (2)

The spatial correlation structure is specified using a
measure of distance or adjacency. In our case, the
DWZs are such that not all polygons share common
borders (simple contiguity) and, in fact, many stand
alone. For this reason we had to define a distance
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that specified whether DWZs were contiguous by dis-
tance. For distance contiguity two DWZs are said to
be contiguous if the Euclidean distance between their
centroids is less than a specified critical distance [13].

To identify how the data were correlated as func-
tion of distance and to select an appropriate distance
we assessed variograms of the unstructured spatial
random effects (from a preliminary model without
spatial structure). Variograms provide a measure of
spatial dependence and identify if any residual spatial
autocorrelation is present [14]. It was unreasonable to
look at a variogram of the entire country since it is un-
likely that there will be spatial correlation between
contrasting parts of the country, for example,
Auckland and Invercargill. Hence we subset the geo-
data to 50 × 50 km2 to capture Auckland, assuming
it to be representative of the main urban populations
in New Zealand (Fig. 2). It was hypothesized that
drinking water zones that fell within 50 km of each
other were likely to be similar.

The variogram in Figure 3 has a radius set to 50
km, and we observe that the sill, or the maximum
semivariance value, occurs at about 20 km. From
the simulation envelope created that randomly allo-
cates the x and y values to the random effects to act
as a confidence band about the empirical variogram,
we observe that the variogram is outside the bands
until ∼15 km. Significant spatial autocorrelation is

indicated by any points lying outside the simulation
envelopes [15]. By this process we deduce that a criti-
cal distance of 20 km (i.e. local dependence) is reason-
able to use.

Often it is not clear if a purely spatially structured
prior should be implemented over an unstructured
prior [16]. A convolution prior has a range from
prior independence (unstructured heterogeneity) to
prior local dependence (structured heterogeneity)
and is most suitable for such a scenario [17]. Besag
et al. [18] state that this convolution prior provides
more flexibility than only utilizing a structured spatial
random effect as the amount of residual disease risk
due to spatially structured variation and that due to
unstructured over dispersion is determined by the
data.

Besag et al. [18] suggest using an intrinsic con-
ditional autoregressive (ICAR) model for the struc-
tured component. The intrinsic Gaussian CAR
distribution placed on the vector s of spatial random
effects is specified as a set of conditional distributions

si|s−i � Normal(�sN(i), nN(i)τs), (3)
where s−i is the vector of spatial effects omitting re-
gion i, �sN(i) is the mean of the spatial effects in the
neighbourhood of i and nN(i) the number of regions
in that neighbourhood. The constraint

∑
i si = 0 is

imposed to make the model identifiable [18]. It can

Fig. 2. Geodata subset showing the Auckland region with drinking water zones in grey. The x and y axes values are easting
and northing coordinates, respectively.
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be implemented in WinBUGS using the CAR.normal
() function [11]. Neighbourhoods were defined in our
case by declaring DWZs to be adjacent if the
Euclidean distance between the two centroids was
<20 km.

The unstructured spatial heterogeneity component
in the model usually assumes a normal distribution
[13], and thus we assign

ui � Normal(0, τu).
Mollié [16] states that if the contribution of the struc-
tured and unstructured spatial variance components
of the priors are not known then it is reasonable to as-
sume a priori that they have equal strength. Conjugate
gamma priors were a sensible choice for τs and τu and
small precisions (large variances) were set to reflect
prior uncertainty:

τs � Gamma(0.50.005),
τu � Gamma(0.50.005).

Imputing the missing values

We had missing values for several important covari-
ates: bacteriological compliance (x1), protozoal com-
pliance (x2) and water supply source (x3). To impute
the missing values we first specify distributions for
each. Because they are all categorical variables, we
use multinomial distributions, e.g. x3∼Multinomial
(1;p3) where p3 is a vector of probabilities pertaining

to each category, constrained to sum to 1. In a
Bayesian analysis a prior must be placed onp3; we
use the non-informative Dirichlet prior p3∼Dirichlet
(16) where 16 is a vector of 1 s of length 6.

When the model is fitted by Markov chain Monte
Carlo (MCMC) sampling [11], missing covariate
values are sampled at each iteration from their current
full conditional distributions. In general, the response
vector is denoted by y (here the observed disease
counts), the observed covariate values by xO, the un-
observed values by xM, the vector of response model
parameters by θ and the covariate model parameters
by ϕ. Then the full conditional distribution for the un-
observed covariates is

p(xM |y, xO, θ)/ f (y|xO, xM , θ)g(xM |ϕ)
and that of the covariate model parameters

p(ϕ|xO, xM , θ)/ g(xO|ϕ)g(xM |ϕ)p(ϕ),
where f(.) is the likelihood for the response model, g(.)
the density function for the covariate model, and p(ϕ)
the prior distribution for ϕ. Put more simply, the
model learns about the parameters of the covariate
distribution (e.g. p3) from the values of the covariates
(combining the known observed values and the
imputed unobserved values). The model imputes the
missing covariate values based on the distribution of
the covariate values and on the responses y for those
missing values. This uses the MAR assumption, and

Fig. 3. Variogram of geodata subset to Auckland with a 50 km radius with a simulation envelope.
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carries out multiple imputations of the missing covari-
ate values allowing for the possibility that their miss-
ingness might be related to the response.

The chain of sampled θ, ϕ and xM values eventually
converges to give the posterior distribution of each.
We are really only interested in θ, so that we can
make inferences about the covariate effects, i.e. the β
values. The important point is that these inferences
will now incorporate the uncertainty in the missing
covariate values.

Sensitivity analysis

In our analysis we have chosen priors that are at most
weakly informative for the model parameters. It is im-
portant, however, to assess the influence of the choice
of priors on the posterior distributions and hence the
conclusions reached. This is typically done by a sensi-
tivity analysis in which the estimation is repeated with
different priors and the changes in the posterior sum-
maries noted.

For this purpose, we tried replacing the Gamma
priors on the precision parameters τu, τs, τv, with uni-
form(0,100) priors on the corresponding standard
deviations. As an alternative to the random walk
model for the temporal components vt, we tried a con-
tinuous autoregressive model vt∼Normal(ρvt−1, τv),
with a uniform(0,1) prior on ρ. For the β parameters,
we followed the suggestion of [19] of using indepen-
dent Student’s t distributions. With 2 degrees of free-
dom and a scale 1·25, this gives a probability of 0·90
that the incidence risk ratio for an increase of 1 S.D.
from the mean for a particular covariate is between
0·026 and 38·5.

The summaries of the posterior distributions from
these alternative models were then compared with
those of our original model. We also tried changing
the threshold for spatial adjacency (see ‘Spatial com-
ponent’ subsection above) from 20 km to 15 km or
25 km to investigate the effect on the results.

RESULTS

Convergence of MCMC chain

For valid statistical inference, it is important that the
MCMC chain should converge to a stationary distri-
bution. We ran three chains with different initial values
for 20 000 iterations, and assessed the convergence by
monitoring the BGR statisics [20]. These statistics in-
vestigate the ratio of within to between chain variance

in multiple chains and should be close to 1 when the
chains have converged (see Supplementary material).
Most parameters converged quickly, but the intercept
term β0 and the precision parameters for the spatial ef-
fects, τs and τu, took up to 3000 iterations. We therefore
set a burn-in period of 3000 iterations, using the re-
maining iterations to estimate the posterior distribu-
tions of the parameters of interest.

Covariate effects for campylobacteriosis

Presented in Table 2 are the posterior means and 95%
credible intervals (CrIs) of the regression coefficients
estimated for the final Campylobacter model. The esti-
mated standard deviations of the random effects are
also reported. The incidence risk ratio (IRR) was cal-
culated by exponentiating the posterior median, and
the upper and lower 95% CrIs by exponentiating the
2·5% and 97·5% end points. The Bayesian CrI is a
range of values within which the true parameter
value is believed to lie with the stated probability. It
is used in a similar fashion to the frequentist 95%
confidence interval. The IRR CrIs that are marked
with an asterisk in Tables 2 and 3 do not contain
1·00, indicating that these covariates are correlated
with the risk of Campylobacter. However, some of
these are borderline indicating that the effect may be
slight and of little practical significance.

In particular, of the rainfall variables, only Greater10
has any suggestion of affecting campylobacteriosis inci-
dence, and this only marginally, the CrI for IRR being
0·90–0·97. The interpretation of the estimate of 0·94,
given the use of the standardized covariate x5, is that
an increase of 1 S.D. above the mean number of days
in the year that rainfall exceeds 10 mm would be asso-
ciated with a reduction in campylobacteriosis incidence
by a factor of 0·94, i.e. a 6% reduction, assuming that
other covariates stay the same.

There was an increased risk of campylobacteriosis
incidence associated with a DWZ being urban com-
pared to the baseline of rural (IRR 1·16, 95% CrI
1·05–1·27). Unit increases in NZDep score above the
baseline of 1 were protective against campylobacter-
iois notifications (IRR 0·69, 95% CrI 0·63–0·75).

Covariate effects for cryptosporidiosis

Table 3 gives the corresponding results for the final
Cryptosporidium model. Again there is little evidence,
if any, of an effect on disease incidence from the rain-
fall variables. Only DryGreater10 has a marginal
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effect, with a CrI for IRR of 0·89–0·99. Of particular
note, however, is the estimate for Roof: compared to
the reference water source of groundwater, DWZs
where roof water is used have an estimated IRR of
7·44 for cryptosporidiosis.

There was a decreased risk of cryptosporidiosis in-
cidence associated with a DWZ being urban com-
pared to the baseline of rural (IRR 0·65, 95% CrI
0·52–0·82). Unit increases in NZDep score above the
baseline of 1 were protective against cryptosporidiosis
(IRR 0·68, 95% CrI 0·57–0·82).

Imputed missing values

It is possible to monitor the imputed values for the
missing covariates and examine their posterior distri-
butions. This can give an insight into the imputation
process. For example, posterior distributions of some
of the missing values of Bacteriological compliance

are presented in Figure 4. The estimated marginal dis-
tribution for this covariate is closest to that of the sec-
ond row of Figure 4. The distributions in the other
rows are quite different, showing that the imputation
relies not just on the marginal distribution of the cov-
ariate but also on the observed disease incidence.

To investigate the extent to which the spatio-
temporal correlation structure of the model affects
the imputation, we compare the posterior distribu-
tions of these missing values in the final spatio-
temporal model (Fig. 4, right panel) with those
obtained from a model without spatio-temporal struc-
ture (Fig. 4, left panel). Since Bacteriological com-
pliance was missing for every year of the study from
these DWZs, the spatial random effect and the
imputed covariate value might represent two compet-
ing explanations for the observed results in these
zones. We observe, however, that adding the spatio-
temporal structure does not noticeably change the

Table 2. Summary of the parameter estimates for the incidence risk of campylobacteriosis in New Zealand for the
period 1 January 2001 to 30 June 2007

Explanatory variable Posterior mean S.D. Monte Carlo error IRR (95% CrI)

Intercept −6·3800 0·1107 0·006
Bacteriological compliance

Compliant Reference
Inadequately monitored −0·0870 0·0196 <0·001 0·92 (0·88–0·95)*
Not monitored −0·2172 0·1155 0·001 0·80 (0·65–1·02)
Excess E. coli transgressions −0·0638 0·0420 <0·001 0·94 (0·86–1·02)

Protozoal compliance
Compliant Reference
Non-compliant −0·2165 0·0147 <0·001 0·81 (0·78–0·83)*

Water source
Ground Reference
Roof −0·7936 0·3295 0·003 0·45 (0·28–0·90)*
Surface −0·1034 0·0474 0·002 0·90 (0·82–0·99)*
Ground/surface −0·1305 0·0495 0·001 0·88 (0·80–0·97)*
Ground/roof −25·3200 18·9700 0·065 0·00 (0·00–0·34)*
Ground/surface/roof −21·8400 20·1100 0·062 0·00 (0·00–90·02)

Urban/rural profile
Rural Reference
Urban 0·1465 0·0482 0·002 1·16 (1·05–1·27)
NZDep score −0·3715 0·0459 0·001 0·69 (0·63–0·75)*

Rainfall
Greater 10 mm −0·0666 0·0211 <0·001 0·94 (0·90–0·97)*
Greater 20 mm −0·0077 0·0221 <0·001 0·99 (0·95–1·04)
Dry greater 10 mm −0·0150 0·0071 <0·001 0·99 (0·97–1·00)

Random effects variance
Structured spatial random effect 0·1017 0·2894 0·112
Unstructured spatial random effect 0·0628 0·2778 0·090
Structured temporal random effect 0·0180 0·0330 0·122

IRR, Incidence risk ratio; CrI, Bayesian credible interval.
* Credible interval for IRR excludes 1.
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imputed covariate distribution. Similar results were
found for the other covariates.

Sensitivity analysis

In our sensitivity analysis, all the changes we con-
sidered made negligible differences to the posterior
distributions of the parameters of interest, and did
not affect the conclusions.

Using scaled Student’s t priors for the β coefficients
made negligible changes to the estimates with the ex-
ception of those for the water sources Ground/roof
and Ground/surface/roof, which changed from −25·3
and −21·8 to −1·73 and −0·27, respectively, with
both IRR CrIs containing zero. These were both
rare categories of Water source, so the estimated pro-
tective effects of these sources were based on relatively
few values. The alternative estimates are arguably
more believable.

Changing the spatial adjacency threshold from 20
km to 15 km or 25 km changed the estimated variance
of the structured spatial component from 0·10 to 0·04
(15 km) and 0·23 (25 km), while having negligible ef-
fect on the other parameters.

DISCUSSION

We have presented, and illustrated by example, a
framework for analysing spatio-temporal disease inci-
dence data when some important covariates have
missing values. To omit the observations with missing
values would lead to bias, and to problems in estimat-
ing the spatio-temporal correlation structure. By
fitting the model in a Bayesian setting and adding
model components for the distributions of the relevant
covariates, we are able to multiply impute the missing
values within the MCMC iterations, enabling us to
make valid inferences about covariate effects that

Table 3. Summary of the parameter estimates for the incidence risk of cryptosporidiosis in New Zealand for the
period 1 January 2001 to 30 June 2007

Explanatory variable Posterior mean S.D. Monte Carlo error IRR (95% CrI)

Intercept −12·0700 1·2110 0·068
Bacteriological compliance

Compliant Reference
Inadequately monitored 0·1509 0·0651 <0·001 1·16 (1·02–1·32)*
Not monitored −0·3796 0·4274 0·003 0·69 (0·28–1·51)*

Excess E. coli transgressions −0·1759 0·1170 <0·001 0·84 (0·67–1·05)
Protozoal compliance

Compliant Reference
Non-compliant 0·5967 0·0649 <0·001 1·82 (1·59–2·06)*

Water source
Ground Reference
Roof 1·9830 0·6505 0·005 7·44 (1·91–22·99)*
Surface −0·1621 0·1087 0·002 0·85 (0·69–1·05)
Ground/surface 0·0236 0·1099 0·002 1·02 (0·83–1·27)
Ground/roof −23·5100 19·5400 0·065 0 (0–5·64)
Ground/surface/roof −19·0000 21·0100 0·066 0 (0–10 905·25)

Urban/rural profile
Rural Reference
Urban −0·4270 0·1172 0·003 0·65 (0·52–0·82)*
NZDep score −0·3841 0·0917 0·001 0·68 (0·57–0·82)*

Rainfall
Greater 10 mm 0·0450 0·0840 0·001 1·05 (0·89–1·23)
Greater 20 mm 0·0167 0·0859 0·001 1·02 (0·86–1·2)
Dry greater 10 mm −0·0601 0·0267 <0·001 0·94 (0·89–0·99)*

Random effects variance
Structured spatial random effect 0·9492 0·1611 0·007
Unstructured spatial random effect 0·1794 0·1082 0·006
Structured temporal random effect 0·3708 0·1259 <0·001

IRR, Incidence risk ratio; CrI, Bayesian credible interval.
* Credible interval for IRR excludes 1.

Spatio-temporal modelling of disease incidence 1785

https://doi.org/10.1017/S0950268814002854 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268814002854


adjust for both the missing values and spatio-temporal
effects.

Our modelling assumes that the missing covariate
valuesmaydependon the correspondingobserveddisease
incidence, but not on the missing values themselves, i.e.
missing at random. If it were felt that this should not be
assumed, a model component for non-ignorable missing-
ness could perhaps be added [21]; however, such models
are not testable. We have also assumed that the covariate
model g(x|ϕ) factorizes into separate components for each
covariate, i.e. thatmissingness inone covariate is indepen-
dent of the values of the other covariates. For examplewe
assume that missingness for Bacteriological compliance
does not depend on the value of Protozoal compliance,
given disease incidence. Again, we could avoid this
assumption by specifying a full multivariate model for g
(x|ϕ). However, with many categorical predictors, it is

difficult because of sparsity to estimate the full multivari-
ate distribution, and this added complexity would most
likely have a detrimental effect on the precision and inter-
pretability of the results.Wehave assumed that all covari-
ates act additively on the log incidence rate, therefore
multiplicatively on the incidence. It is possible that some
effects are directly additive on the incidence. It is difficult
to fit such models as the parameters must be constrained
to avoid negative incidences. Given that we have 11 cov-
ariates (eightfixed and three random) a full exploration of
this issue is beyond the scope of the present work, but
could be explored in the future.

The main objective of our case study was to look
for evidence of the effect of rainfall on the incidence
of campylobacteriosis and cryptosporidiosis. The
results suggest very little effect, if any. We have not
attempted to simplify the model by removing other

Fig. 4. A comparison of four drinking water zones that exhibited unusual behaviour in the posterior categorical
distributions in the imputation of the missing values in Bacteriological compliance. The y axis values are the posterior
probablity distributions by category. Unstructured random effects (left), structured random effects (right).
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non-significant covariates, rather taking the view that
there was a prior expectation that these might be risk
factors, and so reporting the effect of rainfall adjusted
for these. We also note the fact that the data were lim-
ited to the temporal resolution of the disease data
being an annual measure. It could be the case that
data at such a crude time scale are unlikely to capture
the more immediate effects of disease occurring after
rainfall and therefore, if this is true, data at a finer res-
olution (i.e. monthly) might facilitate in an improved
analysis of the relationship between rainfall and dis-
ease incidence.

During the period of time our data span, campylo-
bacteriosis was predominantly a foodborne disease in
New Zealand. In 2006 New Zealand had the highest
notification rate in the world of Campylobacter infec-
tion [22] and overwhelming evidence was found that
the principal source of human Campylobacter infection
in the epidemic was poultry [23]; therefore, not water-
borne. This may explain the lack of effect of rainfall
on campylobacteriosis incidence. There has been a
large reduction in cases following the introduction of
new standards by the New Zealand Food Safety
Authority [24] and this has meant campylobacteriosis
cases due to this food source are now reducing.
Because the epidemiology of campylobacteriosis is
changing, with a relative increase in importance of ru-
minant strains [25] waterborne sources of campylobac-
teriosis are likely to become increasingly important. In
the future we may well see a more positive correlation
between rainfall and campylobacteriosis.

Cryptosporidiosis incidence in New Zealand shows a
dose–response relationship with increasing rurality [9];
there is a significant load carried in livestock [26] and
molecular analysis has implicated livestock as a source
of human cryptosporidiosis in spring [27]. Hence zoo-
notic transmission is probably considerable. However,
anthroponotic spread is also possible and it can be diffi-
cult to isolate different potential sources of infection.
For example in a recent retrospective survey in the
Waikato region most cases who consumed untreated
drinking water also had direct contact with animals
[28]. Moreover, similar to campylobacteriosis, the epi-
demiology of crytposporidiosis is changing. Until
2001, there was a consistent autumn peak in cryptos-
poridiosis incidence in urban areas consistent with
transmission through contaminated swimming pools.
Since 2001 this peak has largely disappeared, believed
due to improved regulations in public pools [9].

For both campylobacteriosis and cryptosporidiosis,
increasing area-level deprivation appeared to be

protective against notifications. This is probably due
to reduced notification rates in deprived areas driven
by the cost of seeing a health professional, rather
than reduced disease incidence per se.

Thus the epidemiology of these zoonotic diseases in
New Zealand is complex and dynamic and this may in
part also explain the lack of effect of rainfall on cryp-
tosporidiosis incidence reported here.

SUPPLEMENTARY MATERIAL

For supplementary material accompanying this paper
visit http://dx.doi.org/10.1017/S0950268814002854.
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