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DEFINING INTEGERS

ALEXANDRA SHLAPENTOKH

Abstract. This paper surveys the recent developments in the area that grew out of attempts
to solve an analog of Hilbert’s Tenth Problem for the field of rational numbers and the rings
of integers of number fields. It is based on a plenary talk the author gave at the annual North
American meeting of ASL at the University of Notre Dame in May of 2009.

You can’t always get what you want
You can’t always get what you want
You can’t always get what you want

But if you try sometimes you might find
You get what you need

Rolling Stones

§1. Prologue.
1.1. A question and the answer. The history of the problems discussed in
this exposition goes back to a question that was posed by Hilbert in 1900:
is there an algorithm which, given arbitrary polynomial equation in several
variables over Z, determines whether such an equation has solutions in Z?
(At the time Hilbert posed the question, a rigorous notion of the algorithm
did not yet exist. So the version above is a modern interpretation of the
question.) This question, being the tenth question on a list, became known
as Hilbert’s Tenth Problem (referred to as “HTP” in the future), and was
answered negatively in the work of M. Davis, H. Putnam, J. Robinson and
Yu. Matijasevich. (See [5], [6] and [13].) In fact, as we explain below,
significantly more was shown: it was proved that recursively enumerable
subsets of integers and Diophantine subsets of integers were the same. We
define these sets below.

Definition 1.1 (Recursive and recursively enumerable subsets of Z). A
set A ⊆ Zm is called recursive, computable or decidable if there is an al-
gorithm (or a computer program) to determine the membership in the set.
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DEFINING INTEGERS 231

A set A ⊆ Zm is called recursively or computably enumerable if there is an
algorithm (or a computer program) to list the set.

The following theorem is a well-known result from Recursion Theory (see
for example [26, §1.9]).
Theorem 1.2. There exist recursively enumerable sets which are not recur-
sive.

We now define Diophantine sets in a somewhat more general setting.

Definition 1.3 (Diophantine sets: a number-theoretic definition). Let R
be a commutative ring with identity. (All the rings considered below satisfy
these assumptions.) A subset A ⊂ Rm is called Diophantine over R if there
exists a polynomial p(T1, . . . Tm,X1, . . . , Xk) with coefficients inR such that
for any element (t1, . . . , tm) ∈ Rm we have that

∃x1, . . . , xk ∈ Z : p(t1, . . . , tm, x1, . . . , xk) = 0��
(t1, . . . , tm) ∈ A.

In this case we call p(T1, . . . , Tm,X1, . . . , Xk) a Diophantine definition of A
over R.

Remark 1.4. Diophantine sets can also be described as the sets existen-
tially definable in R in the language of rings or as projections of algebraic
sets.

Given the MDRP result we immediately obtain the following important
corollary.

Corollary 1.5. There are undecidable Diophantine subsets of Z.

It is easy to see that the existence of undecidable Diophantine sets im-
plies that no algorithm as requested by Hilbert exists. Indeed, suppose
A ⊂ Z is an undecidable Diophantine set with a Diophantine definition
P(T,X1, . . . , Xk). Assume also that we have an algorithm to determine the
existence of integer solutions for polynomials. Now, let a ∈ Z and observe
that a ∈ A if and only if P(a,X1, . . . , XK ) = 0 has solutions in Zk. So if we
can answer Hilbert’s question effectively, we can determine the membership
in A effectively.
It is also not hard to see that Diophantine sets are recursively enumer-
able. Given a polynomial p(T, X̄ ) we can effectively list all t ∈ Z such that
p(t, X̄ ) = 0 has a solution x̄ ∈ Zk in the following fashion. Using a recursive
listing of Zk+1, we can plug each (k+1)-tuple into p(T, X̄ ) to see if the value
is 0. Each time we get a zero we add the first element of the (k + 1)-tuple to
the t-list.

https://doi.org/10.2178/bsl/1305810912 Published online by Cambridge University Press

https://doi.org/10.2178/bsl/1305810912


232 ALEXANDRA SHLAPENTOKH

1.2. Some easy facts or getting better acquainted. ADiophantine set does
not have to be complicated: one of the simplest Diophantine sets is the set
of even integers

{t ∈ Z | ∃w ∈ Z : t = 2w}.
To construct more complicated examples we need to establish some proper-
ties of Diophantine sets.
Lemma 1.6. Intersections and unions of Diophantine sets over Z are Dio-
phantine.
Proof. Suppose P1(T, X̄ ), P2(T, Ȳ ) are Diophantine definitions of sub-
sets A1 and A2 of Z respectively over Z. In this case

P1(T, X̄ )P2(T, Ȳ )

is a Diophantine definition of A1 ∪ A2, and
P21(T, X̄ ) + P

2
2(T, Ȳ )

is a Diophantine definition of A1 ∩ A2. �
The fact that over Z an intersection of Diophantine sets is Diophantine is
related to another important aspect ofDiophantine equations overZ: a finite
system of equations is always equivalent to a single equation in the sense that
both the system and the equation have the same solutions over Z and in the
sense that given a finite system of equations, the equivalent equation can be
constructed effectively. We prove this assertion in the lemma below.
Lemma 1.7 (Replacing finitely many by one over Z). Any finite system of
equations over Z can be effectively replaced by a single polynomial equation
over Z with the identical Z-solution set.
Proof. Consider a system of equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩

g1(x1, . . . , xk) = 0
g2(x1, . . . , xk) = 0

. . .

gm(x1, . . . , xk) = 0

This system has solutions in Z if and only if the following equation has
solutions in Z:

g1(x1, . . . , xk)
2 + g2(x1, . . . , xk)

2 + · · · + gm(x1, . . . , xk)2 = 0. �

In fact we can replace a finite system of polynomial equations by an
equivalent single polynomial equation over any integral domain R whose
fraction field is not algebraically closed.
Lemma 1.8. (Replacing finitely many by one over an arbitrary integral
domain). Let R be any ring such that its fraction field K is not algebraically
closed. In this case, any finite system of equations over R can be replaced by a
single polynomial equation over R with the identical R-solution set.
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Proof. It is enough to consider the case of two equations:

f(x1, . . . , xn) = 0 and g(x1, . . . , xn) = 0.

If h(x) =
∑k
i=0 aix

i is a polynomial over R without any roots in K , then
the polynomial

k∑
i=0

aif
i (x1, . . . , xn)gk−i(x1, . . . , xn) = 0

has solutions in K if and only if f(x1, . . . , xn) = 0 and g(x1, . . . , xn) = 0
have a common solution in K . �

Remark 1.9. If the ring in question is recursive, i.e., there exists an injective
map from the ring into Z such that the image of the ring is recursive and
the ring operations are translated by recursive functions (functions whose
graphs are recursive sets), then there exists a recursive function which can
take the coefficients of the system equations as its inputs and output the
coefficients of the corresponding single equation with the same solution set
over the ring. For all the rings we consider in this exposition the construction
of such a function, which would depend on a construction of an irreducible
polynomial over the fraction field, is fairly straightforward. However, in
general, the situation can be a lot more complicated.

We can use this property of finite systems to give more latitude to our
Diophantine definitions

Corollary 1.10. We can let the Diophantine definitions over Z consist of
several polynomials without changing the nature of the relation.

One surprisingly useful tool for writing Diophantine definitions has to do
with an elementary property of GCD’s (greatest common divisors).

Proposition 1.11. If a, b ∈ Z �=0 with (a, b) = 1 then there exist x, y ∈ Z

such that ax + by = 1.

The GCD’s can be used to show that the set of non-zero integers is Dio-
phantine and thus allow us to require that values of variables are not equal,
as well as to perform “division” as will be shown later. On a more theoretical
level we can say that the positive existential theory of Z is the same as the
existential theory of Z.

Proposition 1.12. The set of non-zero integers has the following Diophan-
tine definition over Z:

{t ∈ Z | ∃x, u, v ∈ Z : (2u − 1)(3v − 1) = tx}.

Proof. If t = 0, then either 2u − 1 = 0 or 3v − 1 = 0 has a solution in Z,
which is impossible. Suppose now t 	= 0. Write t = t2t3, where t2 is odd
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234 ALEXANDRA SHLAPENTOKH

and t3 	≡ 0 mod 3. Since (t2, 2) = 1 and (t3, 3) = 1, by a property of GCD
there exist u, xu, v, xv ∈ Z such that

2u + t2xu = 1 and 3v + t3xv = 1.

Thus (2u − 1)(3v − 1) = t2xut3xv = t(xuxv). �
Another important Diophantine definition allows us to convert inequali-
ties into equations.
Lemma 1.13 (Diophantine definition of the set of non-negative integers).
From Lagrange’s Theorem we get the following representation of non-negative
integers:

{t ∈ Z | ∃x1, x2, x3, x4 : t = x21 + x22 + x23 + x24}.
1.3. Becoming more ambitious. The questioned posed by Hilbert about
the ring of integers can of course be asked about any recursive ring R:
is there an algorithm, which if given an arbitrary polynomial equation in
several variables with coefficients in R, can determine whether this equation
has solutions in R? Arguably, the most prominent open questions in the
area are the decidability of an analog of Hilbert’s Tenth Problem for R = Q

and R equal to the ring of integers of an arbitrary number field. The recent
developments concerning these two problems are the main subjects of this
exposition.
Before we proceed further with our discussion of HTP over Q we would
like to point out that it is not hard to see that decidability of HTP over Z
would imply decidability of HTP for Q. Indeed, suppose we knew how to
determine whether solutions existed overZ. IfQ(x1, . . . , xk) is a polynomial
with integer coefficients, then

∃x1, . . . , xk ∈ Q : Q(x1, . . . , xk) = 0��
∃y1, . . . , yk, z1, . . . , zk ∈ Z : Q(

y1
z1
, . . . ,

yk
zk
) = 0 ∧ z1 . . . zk 	= 0,

where we remind the reader we can rewrite z1 . . . zk 	= 0 as a polynomial
equation and convert the resulting finite system of equations into a single
one. So if we can determine whether the resulting equation had solutions
overZ, we can determinewhether the original equation had solutions overQ.
Unfortunately, the reverse implication does not work: we don’t know of any
easy way to derive the undecidability of HTP over Q from the analogous
result over integers. As a matter of fact, as we will see below we don’t know
of any way of deriving the undecidability of HTP over Q (we are not even
sure the problem is undecidable over Q).
One of the earliest methods suggested for showing that HTP was undecid-
able over Q used Diophantine definitions. This idea can be summarized in
the following lemma:
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Lemma 1.14. If Z has a Diophantine definition p(T, X̄ ) over Q, then HTP
is not decidable over Q.

Proof. Let h(T1, . . . , Tl ) be a polynomial with rational integer coefficients
and consider the following system of equations.⎧⎪⎪⎪⎨

⎪⎪⎪⎩

h(T1, . . . , Tl) = 0
p(T1, X̄1) = 0

. . .

p(Tl , X̄l ) = 0

(1.1)

It is easy to see that h(T1, . . . , Tl ) = 0 has solutions inZ if and only if system
(1.1) has solutions in Q. Thus if HTP is decidable over Q, it is decidable
over Z. �
Unfortunately, the Diophantine definition plan quickly ran into prob-
lems.

§2. Complications.
2.1. Some unpleasant thoughts. In 1992 Barry Mazur formulated a series
of conjectures which were to play an important role in the development of
the subject (see [14], [15], [16]). Before we state one of these conjectures, we
need a definition.

Definition 2.1 (Affine algebraic sets and varieties). If {p1(x1, . . . , xm),
. . . , pk(x1, . . . , xm)} is a finite set of polynomial equations over some field
K , then the set of common zeros of these polynomials in Km is called an
algebraic set. An algebraic set which is irreducible, i.e., is not a union of
non-empty algebraic sets, is called a variety.

Mazur’s conjectures on the topology of rational points is stated below:

Conjecture 2.2 (Topology of rational points). Let V be any variety
over Q. Then the topological closure of V (Q) in V (R) possesses at most a
finite number of connected components.

This conjecture had an unpleasant consequence.

Conjecture 2.3. There is no Diophantine definition of Z over Q.

Mazur’s conjecture also refers to projective varieties, but it is the affine
variety case which has the most consequences for HTP over Q. We should
also note that one can replace “variety” by “algebraic set” without changing
the scope of the conjecture. (See Remark 11.1.2 of [32].) As a matter of
fact, if Conjecture 2.2 is true, no infinite and discrete (in the archimedean
topology) set has a Diophantine definition over Q. The affine version of
Mazur’s conjecture can be thought of in the following manner. Suppose you
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236 ALEXANDRA SHLAPENTOKH

are given a system of polynomial equations:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P1(x1, . . . , xk) = 0
P2(x1, . . . , xk) = 0

. . .

Pm(x1, . . . , xk) = 0

(2.2)

Think of solutions to this system as points inRk but consider only the points
whose coordinates are rational numbers. In other words we are interested in
the set

RP = {(x1, . . . , xk) ∈ Qk : (x1, . . . , xk) is a solution to system (2.2)}.
Now take the topological closure of RP in Rk (i.e., the points plus the
“boundary”). Mazur’s conjecture asserts that the resulting set will have
finitely many “connected pieces” also known as connected components.
It is the finite number of these components that precludes Diophantine
definability of infinite discrete subsets.
2.2. Introducing new models. Since the plan to construct a Diophantine
definition of Z over Q ran into substantial difficulties, alternative ways were
considered for showing that HTP had no solution over Q. One of the
alternative methods required construction of a Diophantine model of Z.

Definition 2.4 (Diophantine model of Z). Let R be a recursive ring
whose fraction field is not algebraically closed and let φ : Z −→ Rk be
a recursive injection mapping Diophantine sets of Z to Diophantine sets
of Rk. Then φ is called a Diophantine model of Z over R.

Remark 2.5 (An alternative terminology from model theory). Model the-
orist have an alternative terminology for amap described above. They would
translate the statement that R has a Diophantine model of Z as Z being ex-
istentially definably interpretable in R. (See Chapter 1, Section 3 of [12].)

It is not hard to see that sending Diophantine sets to Diophantine sets
makes themap automatically recursive. The recursiveness of themap follows
from the fact that the φ-image of the graph of addition is Diophantine and
therefore is recursively enumerable (by the same argument as over Z). Thus,
we have an effective listing of the set

D+ = {(φ(m), φ(n), φ(m + n)), m, n ∈ Z}.
Assume we have computed φ(r − 1) for some positive integer r. Now start
listing D+ until we come across a triple whose first two entries are φ(r − 1)
and φ(1). The third element of the triple must be φ(r). We can simplify the
requirements for the map further.
Proposition 2.6. If R is a recursive ring and φ : Z −→ Rk is injective for
some k ∈ Z>0, then φ is a Diophantine model if and only if the images of the
graphs of Z-addition and Z-multiplication are Diophantine over R.
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Figure 1.

This proposition can be proved by a straightforward induction argument
which we do not reproduce here.
It quite easy to see that the following proposition holds.

Proposition 2.7. If R is a recursive ring with a Diophantine model of Z,
then HTP has no solution over R.
Proof. If R has a Diophantine model of Z, then R has undecidable Dio-
phantine sets, and the existence of undecidable Diophantine sets over R
leads us to the undecidability of HTP overR in the same way as it happened
over Z. To show that R has undecidable Diophantine sets, let A ⊂ Z be
an undecidable Diophantine set and suppose we want to determine whether
an integer n ∈ A. Instead of answering this question directly we can ask
whether φ(n) ∈ φ(A). By assumption φ(n) is algorithmically computable.
So if φ(A) is a computable subset of R, we have a contradiction. �
It now follows that constructing a Diophantine model of Z over Q will
solve our problem.
2.3. A steep curve. An old plan for building a Diophantine model of Z
over Q involved using elliptic curves. Consider an equation of the form:

y2 = x3 + ax + b, (2.3)

where a, b ∈ Q and Δ = −16(4a3 + 27b2) 	= 0. This equation defines an
elliptic curve (a non-singular plane curve of genus 1). Figure 1 is the graph
of such an elliptic curve y2 = x3 − 2x + 1 generated using Maple.
All the points (x, y) ∈ Q2 satisfying (2.3) (if any) together with O—the
“point at infinity” form an abelian group, i.e., there is away to define addition
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on the points of an elliptic curve with O serving as the identity. The group
law on an elliptic curve can be represented geometrically (see for example
[36, Chapter III, §3]). However, what is important to us is the algebraic rep-
resentation of the group law. Let P = (xP, yP), Q = (xQ, yQ), R = (xR, yR)
be the points on an elliptic curveE with rational coordinates. IfP+EQ = R
and P,Q,R 	= O, then xR = f(xP, yP, xQ, yQ), yR = g(xP, yP, xQ, yQ),
where f(z1, z2, z3, z4), g(z1, z2, z3, z4) are fixed (somewhat unpleasant look-
ing) rational functions. Further, −P = (xP,−yP). Mordell–Weill Theorem
(see [36, Chapter III]) tells us that the abelian group formed by points of an
elliptic curve over Q is finitely generated, meaning it has a finite rank and
a finite torsion subgroup. It is also not very difficult to find elliptic curves
whose rank is one. So letE be such an elliptic curve defined overQ such that
E(Q) ∼= Z as abelian groups. (In other words E(Q) has no torsion points.
In practice torsion points are not an impediment, but they do complicate the
discussion.) Let P1 be a generator and consider a map sending an integer
n 	= 0 to [n]P = (xn, yn). (We should also take care of 0, but we will ignore
this issue for the moment.) The group law assures us that under this map the
image of the graph of addition is Diophantine. Unfortunately, it is not clear
what happens to the image of the graph of multiplication. Nevertheless one
might think that we have a starting point at least for our Diophantine model
of Z. Unfortunately, it turns out that situation with Diophantine models is
not any better than with Diophantine definitions.
2.4. More bad news. A new piece of bad news came in the guise of a
theorem of Cornelissen and Zahidi (see [3]).
Theorem 2.8. If Mazur’s conjecture on topology of rational points holds,
then there is no Diophantine model of Z over Q.
This theorem left HTP over Q completely unapproachable. It is often
the case that faced with intractable difficulties, mathematicians escape by
changing the problem. Depending on one’s point of view of the subject one
could consider changing the problem in different ways: a number theorist
might consider changing the object or possibly summon a big conjecture for
assistance; a logician might reconsider the ban on all universal quantifiers.
Perhaps one or two should be allowed back. As it turned out all these paths
were explored. Below we describe these new problems starting with the ones
which considered alternate objects.

§3. Big and small.
3.1. The rings between Z and Q. The new objects which were introduced
into the subject were the rings “in between” Z and Q.

Definition 3.1 (A ring in between). Let S be a set of primes of Q. Let
OQ,S be the following subring of Q.{m

n
: m, n ∈ Z, n 	= 0, n is divisible by primes of S only

}
.
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If S = ∅, then OQ,S = Z. If S contains all the primes of Q, then OQ,S = Q.
If S is finite, we call the ring small. If S is infinite, we call the ring large or
big, and if the natural density of S is equal to 1, we call the ring very large or
very big.

Some of these rings have other (canonical) names: the small rings are also
called rings of S-integers, and when S contains all but finitely many primes,
the rings are called semi-local subrings of Q. The definition of very large
rings uses the notion of natural density of a prime set stated below.

Definition 3.2 (Natural density). IfA is a set of primes, then the natural
density of A is equal to the limit below (if it exists):

lim
X→∞

#{p ∈ A, p ≤ X}
#{p ≤ X} .

The big and small rings are not hard to construct.

Example 3.3 (A small ring not equal to Z).

{ m
3a5b

: m ∈ Z, a, b ∈ Z>0}.

Example 3.4 (A big ring not equal to Q).

{ m∏
pnii
: pi ≡ 1 mod 4, ni ∈ Z>0}.

Given a big or a small ring R we can now ask the following questions
which were raised above with respect to Q:

• Is HTP solvable over R?
• Do integers have a Diophantine definition over R?
• Is there a Diophantine model of integers over R?

While the answers to these questions are interesting on their own right, the
hope (possibly unjustified) is that understanding the big rings will eventually
lead us to Q.
3.2. Diophantine properties of big and small rings. Before trying to answer
the questions above, one should observe that the big and small rings share
many Diophantine properties with the integers:

Proposition 3.5. (1) The set of non-zero elements of a big or a small
ring is Diophantine over the ring.

(2) “One=finitely many” over big and small rings.
(3) The set of non-negative elements of a big or a small ringR is Diophantine
over R: a small modification of the Lagrange argument is required to
accommodate possible denominators

{t ∈ R | ∃x1, x2, x3, x4, x5 : x25t = x21 + x22 + x23 + x24 ∧ x5 	= 0}.
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It turned out that we already knew everything we needed to know about
small rings from the work of Julia Robinson (see [25]). In particular from
her work on the first-order definability of integers over Q one can deduce
the following theorem and corollary.
Theorem 3.6 (Julia Robinson). Z has a Diophantine definition over any
small subring of Q.
Corollary 3.7. HTP is unsolvable over all small subrings of Q.
Over large rings the questions turned out to be far more difficult.

§4. A different model.
4.1. Existentialmodel ofZ over a very large subring. In 2003Poonen in [19]
proved the first result on Diophantine undecidability (unsolvability of HTP)
over a big subring of Q.
Theorem 4.1. There exist recursive sets of primes T1 and T2, both of natural
density zero and with an empty intersection, such that for any set S of primes
containing T1 and avoiding T2, the following hold:

• Z has a Diophantine model over OQ,S .
• Hilbert’s Tenth Problem is undecidable over OQ,S .
Poonen used elliptic curves to prove his result but the model he con-
structed was very different from the one envisioned by the old elliptic curve
plan we described earlier. Poonen modeled integers by approximation. The
construction of the model does start with an elliptic curve of rank one

E : y2 = x3 + ax + b (4.4)

selected so that for a set of primes S, except possibly for finitely many points,
the only multiples of a generator P that have their affine coordinates in the
ring OQ,S are in the sequence [±�i ]P = (x�i ,±y�i ) with |y�j − j| < 10−j .
We remind the reader that we know how to define positive numbers using a
variation on Lagrange’s theme (Proposition 3.5) and how to get rid of a finite
set of undesirable values such as points of finite order (just say “	=” as in
Proposition 3.5 again). We claim that φ : j −→ y�j is a Diophantine model
of Z>0. In other words we claim that φ is an injection and the following sets
are Diophantine:

D+ = {(y�i , y�j , y�k) ∈ D
3 : k = i + j, k, i, j ∈ Z>0}

and

D2 = {(y�i , y�k) ∈ D
2 : k = i2, i ∈ Z>0}.

(Note that if D+ and D2 are Diophantine, then D× = {(y�i , y�j , y�k) ∈ D3:
k = ij, k, i, j ∈ Z>0} is also Diophantine since xy = 1

2((x+y)
2−x2−y2).)

It is easy to show that

k = i + j ⇔ |y�i + y�j − y�k | < 1/3.
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and with the help of Lagrange this makes D+ Diophantine. Similarly we
have that

k = i2 ⇔ |y2�i − y�k | < 2/5,
implying that D2 is Diophantine.
To restrict the number of solutions to the elliptic curve equation, Poonen’s
construction relied to a large extent on the fact that the denominators of
the coordinates of points on an elliptic curve which are multiples of a single
point form a divisibility sequence: an integer sequence {an} is called a
divisibility sequence if n |m implies an | am (see Chapter 4 and Chapter 10
of [11] for a discussion of such sequences and see the discussion of the formal
group of an elliptic curve in Chapter 4 of [36] for an explanation of why the
denominators form a divisibility sequence). We now take a closer look at
these denominators.
4.2. The denominators of points on an elliptic curve. Let E be an elliptic
curve as in (4.4), fix a point of infinite order P1 = (x1, y1) on the curve and
let Pn = (xn, yn) = [n]P1 be the n-th multiple of P1 for a non-zero integer n.
In the notation above, using properties of elliptic curves one can show with
various degrees of difficulty that the following statements are true:

• The same primes divide the (reduced) denominators of xn and yn,
and therefore we can speak about primes dividing the “denominator”
of Pn. (This follows from looking at the elliptic curve equation we
use.)

• For all n sufficiently large in absolute value, it is the case that Pn
has a primitive divisor, i.e., a prime dividing the “denominator” of Pn
but not the “denominator” of any Pm with |m| < |n|. Denote the
largest primitive divisor of Pn by pn. We call pn an an indicator
prime. (This can be deduced from the rate of growth of denominators
relative to the rate of growth of the exponents of the primes dividing
the denominators.)

• (denom(xn), denom(xm)) = denom(x(m,n)) for sufficiently large |m|
and |n| and therefore denom(xm) divides denom(xn) if and only if
m divides n (again for sufficiently large |m| and |n|). (This property
uses the existence of primitive divisors as well as the fact that the
denominators form a divisibility sequence.)

• Poonen showed that the set {p� : � is a prime numer} has natural den-
sity equal to 0. (This density result was proved using some results
of Serre and was probably the most technically challenging part of
Poonen’s paper.)

Now it is not hard to see that if p� is not allowed in the denominators of the
elements of our big ring, then the coordinates of the point [�]P1 = (x�, y�)
will not be solutions to the elliptic curve curve equation in our ring. Further,
we will also exclude all the multiples of this point but will not affect the points
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whose indices are prime to �. This is the principal mechanism for controlling
which solutions to the elliptic curve equation appear in our ring.
In a 2009 paper (see [10]) Eisenträger and Everest extended Poonen’s
method to prove a theorem concerning sets of complementary primes. If
P is the set of all primes of Q, then two subsets T ,S ⊂ P are exactly
complementary if S ∪ T = P and S ∩ T = ∅. We state this theorem below.
Theorem 4.2. There are exactly complementary recursive sets S, T ⊂ P
such that Hilbert’s Tenth Problem is undecidable for both ringsOQ,S andOQ,T .

§5. Old dreams die hard. So what about the old plan for modelingZ using
indices of elliptic curve points? As it turns out the old plan can be resur-
rected but not exactly as intended. We remind the reader that the stumbling
block for that plan was showing that the set {(xn, yn), (xm, ym), (xnm, ynm)}
was Diophantine overQ, where (xn, yn) are the affine coordinates of an n-th
multiple of a generator of an elliptic curve of rank one over Q. (See Sec-
tion 2.3.) We manage to make this set Diophantine but only over some very
big rings. To do this we modify Poonen’s idea by not inverting any indicator
primes p� . In this case no point of the elliptic curve has coordinates in our
ring and we have to represent a point by a quadruple of numerators and
denominators. While this is more awkward, we can derive some benefits.
5.1. Defining multiplication of indices. Themain result pertaining to index
multiplication is stated below.

Theorem 5.1. Let E be an elliptic curve defined and of rank one over Q.
Let P be a generator of E(Q) modulo the torsion subgroup, and fix an affine
(Weierstrass) equation for E of the form y2 = x3 + ax + b, with a, b ∈ Z. If
(xn, yn) are the coordinates of [n]P with n 	= 0 derived from this (Weierstrass)
equation, then there exists a set of primes W of natural density one, and a
positive integer m0 such that the following set Π ⊂ O12Q,W is Diophantine
over OQ,W .

(U1, U2, U3, X1, X2, X3, V1, V2, V3, Y1, Y2, Y3) ∈ Π⇔
∃ unique k1, k2, k3 ∈ Z �=0 such that(
Ui
Vi
,
Xi
Yi

)
= (xm0ki , ym0ki ), for i = 1, 2, 3, and k3 = k1k2.

(See [35].)
We outline the proof under some simplifying assumptions. LetE as before
be an elliptic curve of rank one defined over Q and let E(Q) be the set of all
the points of the curve with rational coordinates together withO—the point
at infinity. For a generator P ofE(Q), for n ∈ Z �=0, we let [n]P = (xn, yn) =
(UnVn ,

Xn
Yn
) ∈ Q2, where Vn > 0, Yn > 0, (Un,Vn) = 1, (Xn,Yn) = 1,

Un,Vn, Xn, Yn ∈ Z. (We are still using a (Weierstrass) equation of our
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elliptic curve of the form y2 = x3 + ax + b.) We assume that every non-
trivial multiple of the generator P has an odd primitive divisor, i.e., for every
n ∈ Z �=0,±1 there exists a prime p 	= 2 such that p |Vn but p 	 |Vm for any m
with |m| < |n|. We also assume that coordinates of P are integers. A point
Pn will now be represented by a quadruple (An, Bn, Cn,Dn) of elements in
our ring and this representation will not be unique because while it is possible
to require that a numerator and the denominator are relatively prime in our
big ring, big rings in general have infinitely many units and this will stand in
a way of a unique representation of a point. In our big ring we do not invert
the set

V = {The largest odd primitive prime factor p�i of V�i},
where � runs through all the prime numbers and i ∈ Z>0. Not inverting
these primes will ensure that denom(xm) divides denom(xn) if and only ifm
divides n. We invert all the other primes. In the resulting big ring we now
have that

(Vm,Vn) = 1, (m,Vn), (n, Vm) = 1, VmVn |Vk ∧ Vk |VmVn =⇒ |k| = |mn|.
More work is required to get rid of the absolute values and to remove the
relative primeness condition, but that task can be accomplished with stan-
dard methods. Given that each point of the elliptic curve has infinitely many
quadruples representing it we cannot construct aDiophantinemodel ofZ (or
show that Z is existentially definably interpretable inOQ,W) as above. What
we can do is construct a class Diophantine model of Z defined below. (The
corresponding model-theoretic notion is existential interpretability. Again
see Chapter 1, Section 3 of [12].)

Definition 5.2 (Class diophantine model). Let R be a countable recur-
sive ring, let D ⊂ Rk , k ∈ Z>0 be a Diophantine subset, and let ≈
be a (Diophantine) equivalence relation on D, i.e., assume that the set
{(x̄, ȳ) : x̄, ȳ ∈ D, x̄ ≈ ȳ} is aDiophantine subset ofR2k . LetD =

⋃
i∈ZDi ,

where Di is an equivalence class of ≈, and let φ : Z −→ {Di, i ∈ Z} be de-
fined by φ(i) = Di . Finally assume that the sets

Plus = {(x̄, ȳ, z̄) : x̄ ∈ Di, ȳ ∈ Dj, z̄ ∈ Di+j}

and

Times = {(x̄, ȳ, z̄) : x̄ ∈ Di, ȳ ∈ Dj, z̄ ∈ Dij}
are Diophantine over R. In this case we say that R has a class Diophantine
model of Z.

It is not hard to show that the rings with class Diophantine models of Z
have undecidable Diophantine sets, just as the rings with Diophantine mod-
els of Z. As as result of our ability to give a Diophantine definition of
multiplication of indices we can construct a class Diophantine model of Z
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over a class of big subrings of Q not covered by the results of Poonen or
Eisenträger and Everest.
Corollary 5.3. In the notation above, for n 	= 0 let

φ(n) = [(Um0n, Xm0n, Vm0n, Ym0n)],

the equivalence class of (Um0n, Xm0n, Vm0n, Ym0n) under the equivalence rela-
tion described below, where

Um0n, Xm0n, Vm0n, Ym0n ∈ OQ,S ,

Vm0nYm0n 	= 0,

and

(xm0n, ym0n) =
(
Um0n
Vm0n

,
Xm0n
Ym0n

)
.

Let φ(0) = {(0, 0, 0, 0)}. Then φ is a class Diophantine model of Z. (Here

if VV̂ ŶY 	= 0 we set (U,X,V,Y ) ≈ (Û , X̂ , V̂ , Ŷ ) if and only if Û
V̂
=
U

V

and
X̂

Ŷ
=
X

Y
.)

We have now pretty much covered the state of existential affairs and it is
time to return to the issue of lifting the ban on a few universal quantifiers.
One could interpret this as a sign of surrender in the face of the overwhelming
enemy (i.e., HTP for Q), but we prefer a more optimistic interpretation: a
gradual gathering of forces.

§6. Matters of the first order or back to the future. The result defining
integers overQ using the ”full force” of the first-order language is pretty old
and belongs to Julia Robinson.
Theorem 6.1 (Julia Robinson). Z is first-order definable overQ. (See [25].)
Julia Robinson used quadratic forms and Hasse–Minkwoski Theorem to
prove her theorem and in the process produced an existential definition
over Q of the set

Intq = {x ∈ Q : x =
a

b
, a, b ∈ Z, b 	≡ 0 mod q}

for any given prime q. It is this existential definition and the fact that
we can “simulate” the denominators because we can define the set of non-
zero elements of any small ring, that allowed us to conclude that Z was
existentially definable over small rings.
In a 2007 paper Cornelissen and Zahidi analyzed Julia Robinson’s formula
and showed that it can be converted to a formula of the form (∀∃∀∃)(F = 0)
where the ∀-quantifiers run over a total of 8 variables, and where F is
a polynomial. They also were the first ones to consider optimizing Julia
Robinson’s result using elliptic divisibility sequences:
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Theorem 6.2 (Cornelissen and Zahidi). Assuming a (heuristically plausi-
ble) conjecture concerning denominators of points on elliptic curves over Q,
there exists a first-order model of Z over Q using just one universal quantifier.
(See [4].)
And so a conjecture makes its appearance to help push a result along,
though not yet a famous conjecture.
In a 2007 paper (see [2]), using elliptic curves along the lines of Poonen’s
method and results of Julia Robinson, Cornelissen and the author showed
that one could define Z over a large subring of Q using two universal quan-
tifiers. Continuing further down this road, in 2008 Poonen in [22] produced
an unconditional improvement of the first-order definition of integers overQ
and over some big rings.
Theorem 6.3. • Z is definable overQ using just two universal quantifiers
in a ∀∃-formula.

• For any ε > 0, there exists a set of rational primesWQ of natural density
greater than 1− ε such that Z is definable using just one quantifier in a
∀∃-formula over OQ,WQ

.
Poonen used quadratic forms, quaternions and the Hasse Norm Principle.
His definition of Z overQ is simple enough to be reproduced here: the set Z
equals the set of t ∈ Q for which the following formula is true over Q:

(∀a, b)(∃a1, a2, a3, a4, b1, b2, b3, b4, x1, x2, x3, x4, y1, y2, y3, y4, n) :
(a + a21 + a

2
2 + a

2
3 + a

2
4 )(b + b

2
1 + b

2
2 + b

2
3 + b

2
4)

· [(x21 − ax22 − bx23 + abx24 − 1)2 + (y21 − ay22 − by23 + aby24 − 1)2

+ n2 + (n − 1)2 . . . (n − 2309)2 + (2x1 + 2y1 + n − t)2] = 0
Using existential definition of multiplication on indices one can also show
the following.
Theorem 6.4. There exists a set W of primes of Q of natural density one
such that Z is first-order definable overOQ,W using just one universal quantifier
in a ∀∃-formula. (See [35].)
Further the following result was announced by J. Koenigsmann in Febru-
ary 2009.
Theorem 6.5. Z is first-order definable overQ using just one ∀-quantifier in
a ∀∃ - formula.
To summarize the discussion so far we can conceive of the following big
definability project partly discussed already in Section 3.1.

Question 6.6. For which big subrings of Q is the following true?
• Z is existentially definable.
• Z has an existential model.
• Z is definable using one universal quantifier.

https://doi.org/10.2178/bsl/1305810912 Published online by Cambridge University Press

https://doi.org/10.2178/bsl/1305810912


246 ALEXANDRA SHLAPENTOKH

Remark 6.7. If we start counting the number of quantifiers we use, defin-
ability results over the field will no longer automatically imply the analogous
definability results for the subrings. Thus Koenigsman’s result for Q does
not automatically answer the question about the big subrings in general.

We now briefly consider the progress made on the other arguably most
interesting problem in the area: the Diophantine (un)decidability of the
rings of integers of number fields.

§7. Meanwhile in a galaxy not far away. We start with a review of some
terms.

• A number field is a finite extension of Q.
• A totally real number field is a number field all of whose embeddings
into its algebraic closure are real.

• A ring of integers OK of a number field K is the set of all elements of
the number field satisfying monic irreducible polynomials over Z or
alternatively the integral closure of Z in the number field.

• A prime of a number field K is a prime ideal of OK . If x 	= 0 and
x ∈ OK , then for any prime p of K there exists a non-negative integer
m such that x ∈ pm but x /∈ pm+1. We call m the order of x at p
and write m = ordpx. If y ∈ K and y 	= 0, we write y = x1

x2
, where

x1, x2 ∈ OK with x1x2 	= 0, and define ordpy = ordpx1 − ordpx2.
This definition is not dependent on the choice of x1 and x2 which are
of course not unique. We define ordp0 =∞ for any prime p of K .

• Any prime ideal p of OK is maximal and the residue classes of OK
modulo p form a field. This field is always finite and its size (a power
of a rational prime number) is call the norm of p denoted by Np.

• If W is a set of primes of K , its natural density is defined to be the
following limit if it exists:

lim
X→∞

#{p ∈ W,Np ≤ X}
#{Np ≤ X} .

• Let K be a number field and letW be a set of primes of K . Let OK,W
be the following subring of K .

{x ∈ K : ordpx ≥ 0 ∀p /∈ W}.
IfW = ∅, thenOK,W = OK—the ring of integers ofK . IfW contains
all the primes of K , then OK,W = K . IfW is finite, we call the ring
small (or the ring of W-integers). If W is infinite, we call the ring
large, and if the natural density of W is one, we call the ring “very
large”. These rings are the counterparts of the “in between” subrings
of Q.

The state of knowledge concerning the rings of integers is summarized in the
theorem below.
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Theorem 7.1. Z is Diophantine and HTP is unsolvable over the rings of
integers of the following fields:

• “Most” extensions of degree 4 of Q, totally real number fields and their
extensions of degree 2. (See [7], [8].) Note that these fields include all
abelian extensions.

• Number fields with exactly one pair of non-real embeddings (See [18]
and [27].)

• Any number field K such that there exists an elliptic curve E of positive
rank defined over Q with [E(K) : E(Q)] <∞. (See [20], [33], [23].)

• Any number fieldK such that there exists an elliptic curve of rank 1 over
K and an abelian variety over Q keeping its rank over K . (See [1].)

We also have several results concerning big rings in number fields. Note
that in the big rings below we actually give a Diophantine definition of Z.

Theorem 7.2. Let K be a number field satisfying one of the following con-
ditions:

• K is a totally real field.
• K is an extension of degree 2 of a totally real field.
• There exists an elliptic curveE defined overQ such that [E(K) : E(Q)] <
∞.

Let ε > 0 be given. Then there exists a set S of non-archimedean primes of K
such that

• The natural density of S is greater 1− 1
[K : Q]

− ε.
• Z is Diophantine over OK,S .
• HTP is unsolvable over OK,S .

(See [28], [29], [31], [33], [34].)
Over very large subrings, as was the case over Q, we have Diophantine
models of Z only. The first theorem is a number field version of Poonen’s
method for Q. However the situation is more complicated over a number
field and instead of constructing a model of Z by “approximation”, what is
constructed here is a model of a subset of the rational integers over which
one can construct a model of Z. In short, one constructs a “model of a
model”.

Theorem 7.3. Let K be a number field with a rank one elliptic curve. Then
there exist recursive sets ofK-primes T1 and T2, both of natural density zero and
with an empty intersection, such that for any set S of primes of K containing
T1 and avoiding T2, Z has an existential model and Hilbert’s Tenth Problem is
unsolvable over OK,S . (See [24].)
There is also a version of index multiplication over number fields. Here
the strategy remains the same as over Q.

Theorem 7.4. LetK be a number field. LetE be an elliptic curve defined and
of rank one overK . LetP be a generator ofE(K)modulo the torsion subgroup,
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and fix an affine Weierstrass equation for E of the form y2 = x3 + ax + b,
with a, b ∈ OK . Let (xn, yn) be the coordinates of [n]P with n 	= 0 derived
from this Weierstrass equation. Then there exists a recursive set of K-primes
WK of natural density one, and a positive integer m0 such that the following
set Π ⊂ O12K,WK is Diophantine over OK,WK :

(U1, U2, U3, X1, X2, X3, V1, V2, V3, Y1, Y2, Y3) ∈ Π⇔
∃ unique k1, k2, k3 ∈ Z �=0 such that(
Ui
Vi
,
Xi
Yi

)
= (xm0ki , ym0ki ), for i = 1, 2, 3, and k3 = k1k2,

Z has a class Diophantine model, and HTP is unsolvable over this ring.
See [35].
Theorems 7.1–7.4 have an elliptic curve assumption in their statements.
These assumptions come in two flavors: an existence of a rank one elliptic
curve over a field in question and an assumption concerning an elliptic
curve of positive rank, not changing its rank in a finite extension. The
rank one assumption is pretty straightforward but the “positive stable rank”
assumption can be modified. It is not hard to show that it is enough to have
a “positive stable rank” phenomenon for every cyclic extension of prime
degree to obtain a Diophantine definition of Z over the ring of integers of
any number field. The reduction takes place in several steps.
(1) Let K be a number field and let OK be the ring of integers of K .
Further, letM be the Galois closure of K over Q and let OM be the
ring of integers ofM . Under these assumptions ifZhas aDiophantine
definition over OM , then Z has a Diophantine definition over OK .
(Thus we can consider Galois extensions of Q only.)

(2) Let M/Q be a Galois extension of number fields with OM the rings
of integers of M respectively. Let E1, . . . , En be all the cyclic subex-
tensions of M with OE1 , . . . , OEn the rings of integers of E1, . . . , En
respectively. Observe that

⋂n
i=1Ei = Q and

⋂n
i=1OEi = Z and there-

fore if each OEi has a Diophantine definition over OM , then Z has
a Diophantine definition over OM . (Thus, it is enough to show that
in every cyclic extension the ring of integers below has a Diophantine
definition over the ring of integers above.)

(3) If E ⊆ H ⊆ M is a finite extension of number fields, OH has a
Diophantine definition overOM , andOE has aDiophantine definition
over OH , then OE has a Diophantine definition over OM . (Thus, it is
enough to consider cyclic extensions of prime degree only.)

In the case of big rings the same kind of reductions also work, but an extra
effort is required tomake sure the sets of primes allowed in the denominators
have the right density. For a general discussion of reductions of this sort
see [30] and Chapter 2 of [32].
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Unfortunately as of now we do not have unconditional results asserting
the existence of required elliptic curves, but with a “little help” from this
time a famous conjecture we do have the following recent result by Mazur
and Rubin.

Theorem 7.5. Suppose L/K is a cyclic extension of prime degree of number
fields. If the Shafarevich–Tate Conjecture is true forK , then there is an elliptic
curve E over K with rank(E(L)) = rank(E(K)) = 1. (See [17].)
As discussed above, this theorem has quite a few consequences.

Corollary 7.6. If the Shafarevich–Tate Conjecture is true for all number
fields, then the following statements are true.

• Z has a Diophantine definition over the ring of integers of any number
field K .

• For any number field K and any ε > 0, there exists a set S of non-
archimedean primes of K such that the natural density of S is greater
1− 1
[K : Q]

− ε and Z is Diophantine over OK,S .
• For any number fieldK , there exists a set of primes S of natural density
1 such that Z has a Diophantine model over OK,S .

§8. Final remarks. This article touched only on a small part of the subject
which grew out of Hilbert’s Tenth Problem. In particular, we did not discuss
a great number of results on the analogs of HTP over different kinds of
functions fields and infinite algebraic extensions, and also rings where the
problem becomes decidable. We refer the interested reader to the following
surveys and collections for more information: [9], [21] and [32].
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