On the evaluation of $\int \frac{d x}{(x-c)^{\pi+1} \sqrt{ }\left(a x^{2}+P b x+c\right)}$

By R. Wilson.
It is not perhaps generally realised that the special bilinear substitution $x=\frac{l t+m}{t+1}$, used to reduce the integral

$$
\int \frac{d x}{\left(e x^{2}+2 f x+g\right) \sqrt{\left(a x^{2}+2 b x+c\right)}}
$$

to canonical form ${ }^{1}$, can also be used to simplify the calculation of the integral $\int \frac{d x}{(x-\bar{e})^{n+1} \sqrt{\left(a x^{2}+2 b x+c\right)}}$. At the same time this treatment forms a suitable introduction to the more difficult case of the former integral.

In the latter case l and m are chosen to satisfy the relations

$$
l-e=0, \quad a l m+b(l+m)+c=0
$$

so that

$$
l-m=\frac{a e^{2}+2 b e+c}{a c+b}=e-m
$$

and, after substitution, the integral becomes

$$
\frac{-(n-l)^{-n}}{\left.\sqrt{\left(a e^{2}+2\right.} b e+c\right)} \int \frac{(t+1)^{n} d t}{\sqrt{\left\{t^{2}+\left(c a-b^{2}\right) /(a e+b)^{2}\right\}}}
$$

The properties of the quadratic form show that (after incorporation of the numerical factor $\sqrt{ }\left(a e^{2}+2 b e+c\right)$ when it is imaginary) the denominator must take one of the three forms $K \sqrt{ }\left(t^{2}+k^{2}\right)$, $K \sqrt{ }\left(t^{2}-k^{2}\right)$ or $K \sqrt{ }\left(k^{2}-t^{2}\right)$, where K and k are both real. Consider, for example, the typical case $I_{n} \equiv \int \frac{(t+1)^{n} d t}{\sqrt{\left(t^{2}+k^{2}\right)}}$. The reduction formula is easily seen to be
$n I_{n}-(2 n-3) I_{n-1}+(n-1)\left(k^{2}+1\right) I_{n-2}=(t+1)^{n-1} \sqrt{ }\left(t^{2}+k^{2}\right),(n \geqq 2)$ in which the last member of the chain is

$$
I_{1}-I_{0}=\sqrt{ }\left(t^{2}+k^{2}\right)
$$

where

$$
I_{0}=\int \frac{d t}{\sqrt{ }\left(t^{2}+\bar{k}^{2}\right)}
$$

[^0]xiv
This method is an improvement on that arising from the orthodox substitution $x-e=\frac{1}{z}$, in which the final reduction to canonical form with $n=0$ is frequently tedious ${ }^{1}$. The following example with $n=3$ shows that the reduction process is not necessary for low values of n.
\[

$$
\begin{aligned}
& \int \frac{(t+1)^{3} d t}{\sqrt{ }\left(t^{2}+k^{2}\right)}=\int t \sqrt{ }\left(t^{2}+k^{2}\right) d t+3 \int \sqrt{ }\left(t^{2}+k^{2}\right) d t+\left(3-k^{2}\right) \\
& \int \frac{t d t}{\sqrt{ }\left(t^{2}+k^{2}\right)}+\left(1-3 k^{2}\right) \int \frac{d t}{\sqrt{ }\left(t^{2}+k^{2}\right)}
\end{aligned}
$$
\]

which may be integrated at sight.

University College,
Swansea.

A dual quadratic transformation associated with the Hessian conics of a pencil

By T. Scott.

1. The invariants and covariants of a system of two conics have been much studied ${ }^{2}$ but little has been said about those of three conics. Three conics $f_{1} \equiv a_{x}^{2}, f_{2} \equiv b_{x}^{2}, f_{3} \equiv c_{x}^{2}$ have a symmetrical invariant Ω_{123}, or in symbolical notation ($\left.a b c\right)^{2}$. According to Ciamberlini ${ }^{3}$ the vanishing of this invariant signifies that the Φ conic of any two of f_{1}, f_{2}, f_{3} is inpolar with respect to the third; and in a previous paper ${ }^{4}$ I have
${ }^{1}$ The integral $\int \frac{d x}{(x+1) \sqrt{ }\left(2 x-x^{2}\right)}=-\int \frac{d z}{\sqrt{ }\left(-1+4 z-3 z^{2}\right)}$ or $-\frac{1}{\sqrt{3}} \int \frac{d t}{\sqrt{ }\left(\frac{1}{4}-t^{2}\right)}$ is a case in point.
${ }^{2}$ See Salmon Conic Sections, Ch. xviii, or Sommerville, Analytical Conics, Ch. xx. Taking point coordinates x, y, z with corresponding line-coordinates l, m, n, a conic $a_{x}^{2} \equiv a_{11} x^{2}+a_{22} y^{2}+a_{33} z^{2}+2 a_{23} y z+2 a_{31} z x+2 a_{12} x y=0$ has a tangential equation $A_{11} l^{2}+A_{22} m^{2}+A_{33} n^{2}+2 A_{23} m n+2 A_{31} n l+2 A_{12} l m=0$. Then the vanishing of the invariant $\Theta=b_{11} A_{11}+b_{22} A_{22}+b_{33} A_{33}+2 b_{23} A_{23}+2 b_{31} A_{31}+2 b_{12} A_{12}$ of the conics $f_{1} \equiv a_{x}^{2}, f_{2} \equiv b_{x}^{2}$ implies that there are triangles circumscribed to f_{1} which are self-polar for f_{2}, and f_{1} is said to be inpolar to f_{2}. The contravariant conic Φ_{12} is the envelope of a line whose intersections with f_{1} harmonically separate its intersections with f_{2}.
${ }^{3}$ Giorn. di Mat., Napoli, 24 (1886), 141.
4 Proc. Ed. Math. Soc., 2 iv (1935) 258.

[^0]: ${ }^{1}$ See for example G. H. Hardy, Pure Mathematics (Cambridge), 1908, pp. 246-7, Ex. 37.

