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On the invariance
of certain estimators

J.E. Gentle and V.A. Sposito

In this note, Lp estimators for the parameters in the linear

model y = XB are considered. In particular, it is shown that
these estimators are invariant under scale transformations on the

dependent variable; that is, if é(y, X) is an Lp estimator

for B , then aé(y, X) = @(ay, X) for any nonzero scalar a .
It is shown that this result does not extend to more general
transformations on Yy , and the invariance property does not hold

for general nonlinear models.

1. Invariance
Computing Lp estimators by linear functions on discrete data has
received much attention in the literature in the past few years; recent

articles have appeared for determining Lp estimators when p =1, 2 , and

o (see Appa and Smith [1], Barrodale and Roberts [2], and Wagner [9]).

The Lp-criteria for various values of p have been discussed by Barrodale

and Roberts [3], Barrodale, Roberts, and Hunt [4], Ekblom and Henriksson
[5], Forsythe [6], and Rice and White [§]. Several properties of L, and

L, estimators are given in [1]; in [3] some properties of Lp estimators

are established. This note will address itself to another property of any

L estimator (for any p # 0 ). In particular, it is shown that such

estimators are invariant under scale transformations on the dependent
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variable. The concept of invariance is discussed by Fraser [7, p. 67] and

is defined for scale transformations as:
DEFINITION. ﬁ(y, X) 1is an invariant estimator for B if
aB(y, x) = Blay, Xx) .
The following lemma shows that under the Lp-criteria. for any p (# 0)
the Lp estimator, é(y, X) , is invariant in the case of the linear

model.

LEMMA. If min |ly-xB|IP = [ly-XBIP , then for any scalar a # O ,
B

(i) min lay-x8IF = llalPlly-xBIF , and

~

(i1) 8 =ab .

Proof. If min |y-x8|P = [y-xB|P , then
B

R . 1 P
nin lay-16lF = Jalf min |y - 3 5o

llall? mén ly-x8IP

where

§

o
[}
Q|+

lalP lly-xBIP .

and the result follows.

2. Summary and examples
When p =1, 2 , and =, the best Lp estimators of the location

parameter in the model y = 8 correspond to the median, mean, and

0
midrange, respectively ([13, [5], [7], and [§]). Hence, appealing to the
lemma, for any scalar a (# 0) ,

@y » 08 @
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are optimal under Ll, L2 , and L, respectively.

Consider the model y = 83 . This model is nonlinear with respect to

the unknown parameter, B . Under the L2—criterion

8= 3,
and for any scalar g {(# 0) ,

B+ = (a3 .

Hence, the estimator is not invariant, but is invariant under the
transformation § = 83 . In this case,

§=Y and as=ay .

When the nonlinear model is separable with respect to the unknown
parameters, then the corresponding Lp estimator is invariant in view of

the above transformation. The invariance property of the Lp estimators

does not hold for general nonlinear models. For example, consider the

model

-8z
y=8162a

then for any optimal Lp estimator
8= (8, 8)

and any a (# 0) ,

In (4], models nonlinear in one parameter are discussed; for these

models, the estimators are not invariant. Examples of these models are:

y = (By*By2)/ (148,7)

«:
t

B>
= BO + Bl/(l+x) >
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