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On the invariance

of certain estimators

J.E. Gentle and V.A. Sposito

In this note, L estimators for the parameters in the linear

model y = X& are considered. In particular, it is shown that

these estimators are invariant under scale transformations on the

dependent variable; that is, if 8{y, X) is an L estimator

for 3 , then a&{y, X) = $(ay, X) for any nonzero scalar a .

It is shown that this result does not extend to more general

transformations on y , and the invariance property does not hold

for general nonlinear models.

1 . Invariance

Computing L estimators by linear functions on discrete data has

received much attention in the literature in the past few years; recent

articles have appeared for determining L estimators when p = 1, 2 , and

<*> (see Appa and Smith [I], Barrodale and Roberts [2], and Wagner [9]).

The L -criteria for various values of p have been discussed by Barrodale

and Roberts [3], Barrodale, Roberts, and Hunt [4], Ekblom and Henriksson

[5], Forsythe [6], and Rice and White [8], Several properties of L. and

L^ estimators are given in [I]; in [3] some properties of L estimators

are established. This note will address itself to another property of any

L estimator (for any p + 0 ). In particular, it is shown that such

estimators are invariant under scale transformations on the dependent
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variable. The concept of invariance is discussed by Fraser [7, p. 67] and

is defined for scale transformations as:

DEFINITION. 3(t/, X) is an invariant estimator for 3 if

aUy, X) = Uay, X) .

The following lemma shows that under the L -criteria for any p

the L estimator, &(y, X) , is invariant in the case of the linear

model.

LEMMA. If min | |z / -*3 | | P = Ilj/-^§IIP , then for any scalar a t 0 ,

(i) min \\ay-X6\f = ||a||P||!/-^||P , and
6

(ii) 6 = a3 •

Proof. I f min \\y-X&\\p = \\y-X§\\p , then
3

min \\ay-X6\\P = ||a||p min L - ~ xs
6 6 II a

\

\\y-X(S\\P ,
6

where

= \\af\\y-X$\\P ,

and the result follows.

2. Summary and examples

When p = 1, 2 , and °° > the best L estimators of the location

parameter in the model y = 3n correspond to the median, mean, and

midrange, respectively ( [ / ] , [5 ] , [ 7 ] , and [S]) . Hence, appealing to the

lemma, for any scalar a (# 0) ,

ayM, ay' , and aym
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are optimal under L., L~ , and L^ , respectively

Consider the model y = g . This model is n

the unknown parameter, 3 . Under the L?-criterion

Consider the model y = g . This model is nonlinear with respect to

and for any scalar a (#0) ,

S* = (ay)1/3 .

Hence, the estimator is not invariant, but is invariant under the

transformation 6 = 3 . In this case,

6 = y and a& = ay .

When the nonlinear model is separable with respect to the unknown

parameters, then the corresponding L estimator is invariant in view of

the above transformation. The invariance property of the L estimators

does not hold for general nonlinear models. For example, consider the

model

y =

then for any optimal L estimator

and any a (^ 0) ,

In [4], models nonlinear in one parameter are discussed; for these

models, the estimators are not invariant. Examples of these models are:

y = (BQ+B

y =

and
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y ' e 2 (Bg+B^) .
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