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0. Introduction

The problem of deciding which graded polynomial algebras over the field Fp of p
elements can occur as the Fp-cohomology of a space has played a central role in the
development of algebraic topology beginning as early as 1950. In the case where the
polynomial generators do not occur in dimensions divisible by p, Adams and Wilkerson
[1] have given a complete solution by showing that the spaces constructed by Clark
and Ewing [3] suffice to realize all such algebras as Fp-cohomology rings. The main
result of Adams and Wilkerson for odd primes can be stated as follows.

Main Theorem (Adams, Wilkerson). Let p be an odd prime and

x, = 2d,, l = i = n,

be an unstable algebra over the Steenrod algebra, where p\dld2•••dn. Then there exists a
subgroup G < GL(n, Fp) of order d1d2...dn generated by pseudoreflections such that

i= l , 2 , . . . . n ,

as algebras over the Steenrod algebra.

Note: Since tl,...,tn have degree 2, there is a unique action of the Steenrod algebra
on &p[t1,...,tn'] making the latter into an unstable algebra over the Steenrod algebra—
i.e. such that the Cartan formula holds and

jx'ifdegx = 2/c
JO ifdegx<2fc.

This second condition is the so-called instability condition.
For p = 2 there is an analogous result.
The object of the present paper is to show that by rearranging the ideas of Adams

and Wilkerson one can achieve a much shorter proof of the main theorem than that
given in [1]. In particular we shall not need the construction of algebraic closures in the
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12 LARRY SMITH AND R. M. SWITZER

category of unstable integral domains over the Steenrod algebra. A central ingredient
here will be the Dickson algebra

of full invariants in ¥p[tu ...,*„] (cf. [7]).
We wish to thank the members of the Topology Oberseminar in Gottingen for their

active participation in connection with this topic in the summer semester of 1981 and
Clarence Wilkerson for bringing [9] to our attention.

1. Recollections and preliminaries

We begin by recalling the salient aspects of the theory of algebraic extensions for
algebras over the Steenrod algebra as developed in [1], [8] and [9]. Throughout this
paper p denotes a fixed prime, which for convenience of notation and to avoid doubling
the exposition we assume to be odd. ^ * denotes the Hopf algebra of Steenrod reduced
powers (no Bockstein). By an algebra over 9* we mean a graded Fp-algebra which is an
algebra over the Hopf algebra @* in the usual sense. We say that an algebra A* over
^ * is unstable if (1) holds. We shall be working exclusively with graded integral domains
over ^ * and we introduce the notation Unld/^* for the category of unstable graded
integral domains over 9*.

Note: As p =£ 2, a graded integral domain must be concentrated in even degrees.
An injective morphism (p:A*<—*B* in Unld/^1* is called an algebraic extension if every

element in B* is a root of a polynomial equation with coefficients in A*. Since we are
working with graded objects, some care must be taken about the grading here.
Specifically if beB2d we say b is algebraic over A* if there is a homogeneous polynomial
p(X)eA*[X~\, where X is an indeterminate of degree Id, such that p(b)=0. The element
b is called separable, integral, etc. if p{X) can be chosen separable, integral (i.e. leading
coefficient 1), etc.

In [1] Adams and Wilkerson develop a thorough theory of algebraic closures in
Un Id/^1*. For our purposes, however, the following result of Wilkerson [9; Theorem C]
building on a previous result of Serre [5] is sufficient.

Algebraic Closure Theorem (Serre, Wilkerson). / / i>* = Fp[t1, . . . , tJ is a polynomial
algebra on generators tt of degree 2 and P* < B* is an integral extension in Un Id/0"*,
thenP* = B*.

In [8] Wilkerson shows how to extend the action of &* from an A* eUnld/^1* to its
field of fractions F(A*): if

k=0

denotes the "giant Steenrod reduced power" and a/beF(A*) then
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POLYNOMIAL ALGEBRAS OVER THE STEENROD ALGEBRA 13

This makes sense as a formal power series in £, since the leading coefficient of P£b) is
. Wilkerson further proves the

Separable Extension Lemma (Wilkerson). Let K* be a graded field over &>* and L* > K*
a separable field extension. Then there is a unique extension to L* of the ^-algebra
structure of K*.

In the entire theory derivations play a major role (for example the primitive elements
P A | e^* ) . In particular one needs the following lemma [1; 3.1].

d-Lemma. Suppose A*<~*B* is an inclusion of graded algebras over Fp and
du...,dn:A*-*B* are derivations. If au...,anBA* satisfy

then au...,an are algebraically independent over ¥p.

The lemmas 5.3-5.5 of [1] can be summarized in the following

A-Theorem (Adams, Wilkerson). Suppose H*eUnId/^>* has at most a finite number
of algebraically independent elements. Then there exists an integer n ̂  0 with the following
property: any n distinct derivations PAil,...,PAi" are linearly independent on H* but any
n+l derivations PAio,...,PA'" are linearly dependent. Thus there are elements h0,...,hnsH*
all non-zero such that

vanishes identically on H*.

Here PAo is the formally defined derivation with P"°x = dx tfxeH2d.

2. Proof of the Main Theorem

Let n be the integer of the A-theorem and ho,...,hnsH* coefficients such that the
derivation d = h0P

Ao+•••+hnP
An vanishes identically on H*. We consider the

polynomial

(X an indeterminate of degree 2). We can also regard A(X) as a polynomial over the
field of fractions F(H*) of H* and take its splitting field E*>F(H*). Since the formal
derivative A'(X) = ho^0 does not vanish, A(X) is separable and E*>F(H*) a separable
extension. By the separable extension lemma there is a unique 0"*-algebra structure on
£* extending that on H*.

We let V = {veE2 \A(v) = 0}. Because A(X) is additive, V is a vector space. In fact V is
n-dimensional and consists of precisely the p" distinct roots of A(X). Thus

veV

We collect some facts about V.

https://doi.org/10.1017/S0013091500022069 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022069


14 LARRY SMITH AND R. M. SWITZER

Proposition.

(a) If {tl,...,tn} is a basis for V, then tl,...,ta are algebraically independent.

(b) The elements of V are all unstable, so

(c) The action of £P* on P* commutes with the action of GIJji, Fp), so the Dickson
algebra

of invariant polynomials is a 0>*-subalgebra.

(d) Every xeP* is integral over H*.

Proof.
(a) We can apply the 3-lemma. Suppose we had

Then there would be coefficients at,...,aneE* not all zero with

on each tt and hence on V. Hence all v e V are roots of the polynomial

and therefore

veV

Comparing coefficients of X gives 0=(ajhh)-h0, so an = 0 and hence f(X) = O. But
then a o = ••• = a n = 0 .

(b) follows from the Lemmas 5.6-5.8 in [1].

(c) is obvious.

(d) The integrality of xeP* is proved by another argument from [1]: one considers
the H*-module Q* of all derivations 8: H*-+H* of the form

£ akP*,a0,...,aseH*.
* = o

Let y!,..., yq be a finite set of generators of H* as algebra and define
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by <f>(d) = {8y1,...,8ys}. Then (j> is injective, and since H* is noetherian, Q* must be a
finitely generated ff*-module. Thus there is an m such that PAm is an H*-linear
combination of PAo,..., PA°-'—say

on H* for suitable d0,..., dm _ x e H*. By the uniqueness of extensions of derivations over
separable extensions (2) must hold on E* as well and thus on V. Hence each veV
satisfies

It follows that any x e P * = Fp[ t1 , . . . , t n ] is integral over H*.
Now let A* be the algebra obtained by adjoining tlt...,tn to H*. Then

and we have inclusions

H*<A*>P*>D*(n).

Suppose we knew that D*(ri)<A* were an integral extension. Then P*<A* would also
be an integral extension in Un Id/^*, so by the algebraic closure theorem it follows that
A* = P* and hence H* < P*. Consider the Galois group

G = <g(E*/F(H*));

clearly G < GL(n, Fp), because the elements of G define linear transformations of V and
an automorphism of E* fixing F(H*) is uniquely determined by its effect on V.

We claim that

Evidently H* < P*G. On the other hand because E* > F(H*) is a Galois extension, every
xeP*G lies in F(H*). Furthermore x is integral over H* by (d) above. Now H* is a
polynomial algebra and hence integrally closed (see e.g. [4; p. 240]). Thus xeH*.

Hence our problem reduces to showing that A*>D*(n) is an integral extension.
We recall (cf. [7]) that

n (*-»)
veV

is of the form ynX+yn^lX
p+ ••• +yxX

p"~l + XP" for certain polynomials

and in fact D*(n) =
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Lemma 1. Let (yi,...,yn) denote the ideal of A* generated by yi,...,yn and suppose
A*/(y1,...,yn) is finite dimensional as a vector space over Fp. Then A*>D*{n) is an
integral extension.

Proof. Choose a1,...,ameA* such that the cosets a, +(y1,...,yn), lf^i^m, form a
basis for A*/(yu...,yn) over Fp. Let aeA* be arbitrary; then a can be written in the
form

(3)

for suitable Xu...,XmeVp, yu...,yneA*.
Inductive hypothesis: suppose that every aeA* can be written in the form

(BN)

where oi = oi(yu...,yn)eD*(n) is a polynomial of degree less than N in yi,...,yn,
yI = yiil---yin for /=( i 1 ; . . . ,*„) , |J| = i x + •••+»„ and t ' e X * for all /.

Then by (3) each x1 can be written in the form

, n'keA*, l ^ f c^n , and hence

; = i |/|=JV + I

where

is of degree less than N +1 in yu..., yn and p.1 e A*.
Thus every aeA* has a representation in the form (BN) for AT arbitrarily large.

However the grading of y1 is at least 2Np"~1(p—l) and hence %' has negative grading
for N sufficiently large. But an unstable ^"-algebra vanishes in negative gradings.

We have thus shown that a1,...,am generate A* as D*(n)-module. But D*(n) is
noetherian, so if aeA* and M*<A* denotes the D*(n)-submodule generated by
1, a,..., ak, then for some s we must have

U M* = M*
r s o

and hence as + 1e Mf—i.e. a is integral over £)*(«).
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Lemma 2. A*/{yl,...,yn) is finite dimensional over Fp.

Proof. KzeA2d with d^Omodp, then by [1; 2.3] there is an ae&>* with

P*"(az) = {P^z)p" = dp"zp" = dz"\

Let b=d-1ae0>*; then z"° = P^{bz).

N o w the derivation ynP*° + ••• + y1P*"~l + PA" is l/hn(h0P
e">+ ••• + hnPA") = l/hn• d and

hence vanishes on £*. Thus we have

zp" = P*"{bz)=-ynP*>(bz)- --y1P*-*(bz)e(y1,...,yK).

But A* is generated as algebra by the algebra generators xu...,xn of H* and the
tu...,tn—all of which lie in gradings ^Omodp. If z 1 ; . . . , z , denote these algebra
generators for A*, then we see that ^4*/(j'i,.-,j'n) is spanned over Fp by the monomials

with i t < p

This completes the proof of the main theorem.

Note. A posteriori one sees that the n of the A-theorem is the same as the number of
polynomial generators of H*.

3. Some consequences of the proof

From the proof given we can deduce the following criterion for an unstable integral
domain A* to be a ring of invariants.

Theorem. Let A*e\Jnld/&>* be integrally closed. The following conditions are
necessary and sufficient that

for some group G < GL[n, Fp).

1. There is an element yveA2(p"~v" l) such that

Fp)

°~'Pp"~22. Ifyi=Pp°~'...Pp"~2y1 for i = 2,...,n, then

0 otherwise

3. A*/(yx,. ..,yn) is finite dimensional over Fp.
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Proof. If A*a¥p[tu..., t j e for some G<GUn,Fp), then clearly

and this y1eD*(n)<A* satisfies 1-3 (cf. [7]).

Conversely if 1-3 hold, then the map

<p:D*(n)->A*

given by sending the Dickson algebra generators onto the elements y!,..., yn of A* is a
morphism in Un Id/^1*. By 2.

Det(PAtyJ) =

0 ... -yn 0

-yn-... 0 0

and hence yi,...,yn an algebraically independent. Thus q> is injective.
If we now assume the existence of algebraic closures in Unld/^8* ([1]), then the

algebraic closure theorem says D*(n) < P* is the algebraic closure of D*(n) in Un Id/^*,
so we have

D*(n)<A*<P*

since by Lemma 1 the extension

D*(n)<A*

is integral. Passing to the fields of fractions we have

F(D*{n))<F(A*)<F(P*)

and by [7] F(D*(n)) < F(P*) is a Galois extension with Galois group GL(n,Fp). If we let
G = ^(F(P*)/F(/l*))<GL(n,Fp), then we have

A* = P*G

as before. (Note: P* is integral over D*(n) and hence over A*; and A* is integrally
closed by assumption.)

Proposition. Suppose that H*eUnId/£P* is of the form H*~Fp[x1,...,xn] with
degX,-^0modpfor l^i^n. Then

2p"-1(p-l)<degxi<2(p"-l), I ^ M .
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Proof. We have just seen that such an H* must contain D*(n) as subalgebra. An
inclusion of the form

D*[n)< fp[xu..., X; _!, xt +!,..., xn]

is of course impossible, so

If ' \p -1) = deg yx g deg x, ^ deg yn = 2(p" -1)

for 1 ̂  i ̂  n. Since none of the generators is in a grading congruent to zero mod p, the
lower inequality must be strict. To see that the upper inequality is strict we suppose
degx,=2(p11 —2) and apply the theorem of Clark [2; Thm. 2] to conclude there is a j
such that with

we have d} = \— pmod(p" — 1) and hence p" — 1 \dj + p— 1. Since also dj^p" — 1 we have
dj+p-l=pn-l,i.e.

dj=pn-p=p(p''-1-l)

contradicting the assumption dj ̂  0 mod p.
Of course, this result could have been obtained by appealing to the classification of

finite complex hyperplane groups [6] and [3; p. 428]. From our viewpoint the result is a
natural consequence of the general theory.
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