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LEBESGUE CONSTANTS FOR CARDINAL 
if-SPLINE INTERPOLATION 

J. TZIMBALARIO 

1. Introduction. Recently the theory of cardinal polynomial spline inter
polation was extended to cardinals-splines [3]. Let 

(1) -Pw(x) = a0 + a\% + . . . + an-i%
n~l + xn 

be a polynomial with only real zeros. Denote the set of zeros by T = Tn = 
j / 0 , h, . • • , ^ - i } . H S£n(jy) = pn(P) is the associated differential operator, 
the null-space oîJ£n(D) 

(2) rn^(T) = {y|ifn(P)y = 0} 

is a natural generalization of the usual polynomials. 
The space of cardinal ^£-splines is defined as the class of functions 

(3) yn{T) ss {s(x)\s e C*-*(R),5|(,.H-I) e Tn-i(T), v e z}. 

Sometimes it is convenient to place the knots of the splines half way between 
the integers. Accordingly we define 

(4) yn*(T) = {S(x)\S(x + I) € yn(T)}. 

The special case of cardinal polynomial splines was studied systematically 
by I. J. Schoenberg in his monograph [6]. The first systematic study of inter
polation problems connected to cardinal S-splines wras done by C. Micchelli 
[3]. Another approach to the problem was given by I. J. Schoenberg in one of 
his recent papers [7]. Some extremal properties were given by A. Sharma and 
the author in [8]. 

The interpolation problem mentioned above consists in checking existence 
and uniqueness of a spline in some subspaces oiJ£n(T) (or J£n*(T)) which 
satisfies 

(5) S(y + a) = y„ * £ Z, 

where y = \yv) is any set of given data and 0 ^ a < 1. 
For the sake of commodity we shall assume that for n even the knots are 

the integers and if n is odd the knots are at the integers shifted by \. 
It is known [3] that for every a in [0, 1) with only one exception, and any 

data of powergrowth y = {yv}, there exists a unique function 5 £ J£n(T) 
(or J£n*(T)) of the same power growth which satisfies (5). In this paper we 
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shall restrict ourselves to the space of bounded data with the norm \\y\\œ = 
sup„çz \jv\ a n d we shall assume a = 0. 

The existence and uniqueness of bounded interpolating cardinal ££-spline 
follows from [3]. 

The corresponding operator Pn : T(Z) ->yn(T) H Lœ(R) (or yn*(T) C\ 
Lœ(R)) is called the cardinal J£ -spline interpolation operator of order n and its 
norm is the n — l th Lebesgue constant. 

(6) | | ^ - i H l = | | P» IL= sup H P ^ I U 
l l2 / l loo- -= l 

We propose to study the behaviour of J£n(T) as n —» oo . For the special case 
T = 0, Richards [5] has shown that Ĵ V* is asymptotic to (2/7r) log n. 

We shall use mainly the notations introduced by Micchelli [3]. 

2. Auxiliary results. It is known [3] that the solution S(x) to the interpola
tion problem can be given explicitely as a cardinal series 

+ 0O 

(26) S(x) = X) yvLn-i(x — v), 

where 

J (ii) Z,„_I(J/) = ôov, v 6 Z, 

l(iii) \L„Mx)\ ^Ae-BM, : 

n even 
(T) n odd, (7) 

x e R. 

The function L.„-i(x) is called the fundamental function for the interpolation 
problem. In order to evaluate the Lebesgue constants later we need a proper 
representation of the fundamental functions. 

LEMMA 1. 

(8) L^ix) = ± ^ ^l^-é*udu, 
2lT J _ œ (pn (U) 

where 
oo 

(9) <j>nT{u) = E ^ ( ^ + 2 ^ ) , 
; = - O D 

and 

n—l / , \ / —1„ —iu\ iu/% 

(10) ^ (w) = i i - ;— A / . - T : — T V -

Proof. The proof follows easily on using the properties of J3-splines obtained 
in [3] and following similar lines as those of the special case T = 0 [5]. 

Considering the problem of studying the behaviour of the Lebesgue constants 
when n —> GO , we restrict our discussion to the case T = —T, i.e. when the 
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associated differential operator is formally self-adjoint. However we do allow 
the zeros of pn(x) to change with n. 

Now we shall find an estimate from below for the Lebesgue constant | \<&n-i
T\ \. 

LEMMA 2. If T = —T, we have 

(11) W^nSW ^ - r^^secu/2du, 
7T J o (j>n W 

where 

(12) 7 „ » = Ë ( - l ) V » r ( w + 2irj). 
j=—00 

Proof. Since 

(13) \\^nT\\= SUp UPtflL^ E 5U*-l(*-»). 
I I y I I o o = l v=—oo 

where 

(14) 
/ ( - 1 ) ' + 1 , = 1 ,2 , . . . 

( - 1 ) " , = 0 , - 1 , - 2 , . . . , 

the result now follows on using the integral representation (8), and performing 
some quite standard transformations. 

The next lemma will prove that in the representation (11) we can replace 
in some sense the functions yn

T(u) and </>w
r(̂ ) by the dominant terms re

spectively. 

LEMMA 3. Let 0<u<T,n^3 and assume that supw sup^^n |/| ^ d < oo. 
Then 

(15) 
7nT(u) 

W («) - $n (U - 2?r) 

<t>nT_{u) 
t/(u) + *nT(u- 2ir) 

<K 

<K 

for some positive K. 

Proof. We shall use the following notations : 

de) p*(u) = n («+è) 
( — 1 Vn 

<17) *•'«">-Ç s fe t j ) 

nil 

n/2 
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and 

Observe t ha t pn*(u) is a polynomial with positive coefficients and satisfying 

Pn*(u) = ( - l ) W ^ n * ( - « ) . 
T h e proof will be similar to the proof [5] in the special case T = 0, bu t we 

will present it here for sake of completeness (only for n even) . 
Clearly 

max 
0<W<7T 

7nT(u) 
tyn M - \pn (U - 2TT) 

(19) 

and 

(20) 

= max 
o<«<! 

7n r (w) 

1 
- 1 

£»*(w) P»*(l - « ) 

max 
0<W<7T 

<t>nT(u) 
tn M + fa (U — 2?r) 

= max 
O<M<! 

hT(u) 
1 + — 1 

£»*(«) £»*(1 -U) 

We shall use the fact t h a t 0 < u < \. By (12) we get 

7nT(u) 
1 

- 1 

pn*(u) pn*(l -u) 

where 

3=1 

1 

0 ^ 0!y(w, W) _ Pn*(j+U) Pn*(j+1 -U) 
1 1 

A.*0"+ «)£»*(; + i - « ) 1 -
Pn*M 

By the mean value theorem and by Markov ' s inequality we get for some 
« < £ < 1 — u, 

p*(j + 1 - u) - £*(j + w) = (1 - 2«)p*(j + £) 

^ w2 max £*( j + £)(1 - 2w) = « 2p*(i + 1 - « ) ( 1 - 2u). 
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It can be shown easily that 

1 < (1 - u)2 + t0 

1 - P*M 1 - 2u 
0 < u < \, 

P*(l~u) 
where to is the root of pn(x) with the smallest absolute value. Then 

aj(u, n) S 
P*(u) 

p*(j + u) 
n2[(l - uf + to2}. 

Since |2M| ^ d < oo uniformly in », we get 

aj(u,n) è 
p1 \U + t) 
»=°(j + u+t) 

n\l + to2) 

( 2 , ,2 \ n / 2 
U + d \ 2/-, , ,2 

(j + u) +d2J v ^ 
Then 

oo n / 2 , T2 \ n/2 

+ M)2 + £l 

*""<' + '>-g (?£&•)"* "(ft?)'" 
for some constant X depending only on d. In a similar way we prove also the 
second inequality in (15), and also the case n odd. 

COROLLARY 1. Suppose that sup„ sup^^n |/| S d < oo. Then the Lebesgue 
constant ||=$fre_ir|| satisfies the following inequality : 

(21) \\&n
T\\* ^ ^ f ¥£T-^^4^\ sec w/2 d« 

7T J 0 Pn(2TT - U) + fin(u) 

for some 0 ^ %n ^ 7r and 

/ i + ,72W2 

(22) | ^ ( y - l | ^^(|-±--|j . 

Here 

PnM = I l 0 + ^M)' 

From Corollary 1 we get 

COROLLARY 2. 7//Ae sequence 

(23) 11i?. ' 11*=i r | § ^ ^ - _ | M sec u/2 du 
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increases no faster than 

+ 
then 

(24) | | i ? „ r | | ^ H i f / H * + 0 ( 1 ) o ^ » - * oo. 

3. T h e m a i n re su l t . Now we can s ta te the main theorem. 

T H E O R E M . Assume that T = —T and supw s u p ^ r n \t\ ^ d < oo. Then the 
sequence of the Lebesgue constants for the cardinal ££-spline interpolation is not 
bounded. 

Proof. As in [5], wre write 

u 2 
sec ~ = + h(u), 0 < u < IT 

2 7T — U 

where h{u) is continued in [0, 2ir]. Then 

I \(£ T11* = 2_ CT pn(2ir - u) - pn(u) du 
II n M 7T J o pn(2lT - U) + £„(W) 7T ~ 2̂  

7T J o ?n(27T — W) + pn(u) 

T h e second integral is certainly uniformly bounded with respect to n. 
Let us denote the first integral by In. Using the mean value theorem for the 

numera tor of the integrand in In and the Markov ' s inequali ty wre get 

• j = 2 f* (2TT - 2u)p'n (£) du 
7T J o Pn(2-K — U) + pn(u) 7T — U 

(for some u < £ < 2TT — u) 

sup |?»(£)| 

/

sup \PnKK)\ 
^A<^. du ^ K * 

o pn(2T — u) + pn(u) 
pn(2w — U) + pn(u) 

for some K2 independent of n. 
Then [ jjS^^^| |* does not increase faster than 0(n2), which is certainly 

°mn 
This means t ha t \\J£n

T\\ is not bounded if \\J^n
T\\* is not bounded, and we 

intend to prove now tha t \\^n
T\\* is not bounded. Changing the variable to 
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(2T/U) — 1, the integral In is transformed into 

= i pMiT^/"MTT^J dx 
n TT J, - / 2me \ , ~ / 2TT \ X2 - 1 

Mrr /̂1+ Mm;/ 

7T •/ 1+6 

1-7/ 
pn 

\1 + x/ 
2TTX \ 

1 + x7 <ix; 

1 + 

for e > 0 arbitrari ly small. Now, if x 3: 1 + e, 

~ / 2TT \ x2 - 1 

= exp 

4ir 

(1+x)2 

4^V 
(1 + x)2 

n 

= n 
M=0 

( * 2 - l ) - 2 rf3(l+x)2 

= exp 
( x 2 - 1) 

2 , ^ 2 ( 1 + X 2 ) 

Then 

lim 
tt-»co 

0, 

uniformly i n l + e ^ x < o o . 
T h u s 

lim Jn è - ~2—: = - In I ^ m e. 

But € was arbitrari ly small. T h u s 

lim ln = 00. 

Remark 1. I t is interesting to mention tha t i f / ( # ) is entire of exponential 
type less than TT, the cardinal ^ - s p l i n e interpolation converges to the function 
[3]. Our result shows tha t this is not so in general. 
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Remark 2. Using the procedure of [2] it is possible to prove that under the 
same assumptions as Theorem 5, the sequence of Lebesgue constants for data 
in /i is also not bounded, but if the data is in lv (1 < p < co ) and we use the 
Lv norm for the Jzf-spline, we get a bounded sequence. 
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