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ABSTRACT

We discuss an integral equation method that
permits the calculation of the line source functions
and of the emergent profiles in finite and semi-
infinite atmospheres with macroscopic motion normal
to the surface. Solutions are presented for a semi-
infinite atmosphere with a temperature rise in the
outward direction and with a flow that decays with
increasing depth. The computed profiles have the
form of P Cygni 1lines.

Key words: 1line formation, moving atmospheres,
line-profile computation.

I. INTRODUCTION

¥

Several authors have obtained numerical so-
lutions of the equations of statistical equilibrium
and radiative transfer. Magnan (1968) has employed
the Monte Carlo method to determine the source
function in a model of a planetary nebula; Hummer and
Rybic¢ki (1968) have solved a similar problem by
means of differential equations with the Riccati
transformation; and Kulander (1968) has used
differential equations with the Eddington approxima-
tion in the solution of the equation of transfer for
atmospheres with simple velocity fields. We describe
here an integral equation method and apply it in the
calculation of the source function in a model of an
extended atmosphere.
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The various methods have certain limitations.
In the Monte Carlo method the history of many photons
is computed. Since the accuracy of the solution in-
creases only slowly with the number of photons con-
sidered, the desired accuracy must be balanced
against the thickness of the medium. In practice,
this method is useful only for media with moderate
optical thickness. However, the geometry of the
medium and the physical processes taken into account
may be quite complicated. Thus, incomplete redistri-
bution of the photons over the line can be treated
relatively easily. In the Riccati method the inte-
gration steps must be comparable with the shortest
photon mean free path. Therefore, this method is
also restricted to media with relatively small
optical thickness. Kulander's technique permits the
calculation of the source function in atmospheres
with large optical thickness. But the use of the
Eddington approximation in flow problems in which
the Doppler shift in the normal direction may be
large whereas the horizontal shift is zero can lead
to large errors. The method is therefore suitable
only for exploratory calculations.

The integral equation method is formulated for
the case of a plane-parallel medium that may be
finite or semi-finite and that has arbitrary flow
along the normal to the surface. Anistropic micro-
turbulence can be taken into account if it can be
expressed in terms of normal and horizontal com-
ponents. Complete frequency and angle redistribu-
tion of the photons is assumed so that the line
component of the source function is frequency-
independent and isotropic.

The conditions that we have imposed in the
formulation of the integral equation method will
frequently be realized approximately in stellar
atmospheres. Thus, for lines we may usually assume
that the atmosphere is plane-parallel over regions
whose horizontal extent is large compared with
the thermalization length. The gas flow will
usually be directed along the normal to the surface.
Other flow patterns could, in principle, be treated
by the same method. But differential motion within
horizontal layers could not be dealt with easily.

In general, however, the Doppler shift due to
horizontal differential velocities that might occur,
for example, in a uniform expansion should be small
over a thermalization length. One may then compute
the source function for a vanishing horizontal
velocity gradient but must take its effect into
account in the calculation of the emergent flux.
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The requirement of complete redistribution will
usually be nearly satisfied, as Magnan has shown for
a planetary nebula. In this context we note that
the case of a semi-infinite stellar atmosphere is
less severe than that of a planetary nebula, where
the intensity outside the line becomes quite small,
whereas in a semi-infinite medium the background
radiation sets a limit on the intensity. We may
therefore assume that the line source function is
virtually frequency-independent and isotropic.

Because of these limitations of the methods,
one would solve transfer problems for finite media
with a complicated geometry using the Monte Carlo
method, with a differential equation technique such
as that of Hummer and Rybicki or that of Feautrier
(1964) , which is described in detail by Cuny (1967),
or with the integral equation method of Jones and
Skumanich (1968). For finite or semi-infinite media
with a plane-parallel geometry, one would use either
our integral equation or Feautrier's differential
equation method. If the transfer is characterized
by incomplete redistribution, one would choose the
differential equation; if a large number of frequency
and angle points has to be taken into account because
of high flow velocities, one would choose the inte-
gral equation method. If both complications are
present, one could attempt to reformulate the equa-
tions in terms of the local frequency variable that
has been used by Magnan in the Monte Carlo method.
For typical problems arising in extended atmospheres,
both Feautrier's technique and our integral equation
method could be used successfully, but the latter
might give somewhat better results.

2. THE BASIC EQUATIONS

We seek the solution of the simultaneous
equations of statistical equilibrium and radiative
transfer. Following Thomas (1957), we express the
statistical equilibrium equation in the form

J-S=¢(S-B) |, (1)

where S is the frequency- and angle-independent 1line
component of the source function, J is the mean inte-
grated intensity, € is the probability of true
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absorption, and B is the Planck function that de-

pends, in general, on the electron temperature and
on the radiation field exclusive of the line radia-
tion. We write the equation of radiative transfer

as

J(t) - S(t) = H(T,Tt')S(Tt') + C(1) , (2)

where C is the contribution of the background radia-
tion to the line intensity J, and H is an integral
operator. In the special case of vanishing back-
ground radiation, zero flow velocity, and isotropic
Doppler broadening, H is related to the well-known
A-operator. .

In the integral equation method we combine
equations (1) and (2) into a single equation for the
line component S of the source function. The result-
ing equation, in matrix form, is solved for S by
means of a matrix inversion,

S = (e -H '(eB+0C) . (3)

This procedure, with perhaps minor alterations, is
standard for the integral equation method. For
depth- and frequency-dependent but angle-independent
absorption profiles, this method was developed by
Athay and Skumanich (1967). The new feature that

we want to discuss is the calculation of the matrix
operator H when the absorption profile of the line
depends on depth, frequency, and angle so that the
monochromatic A-operator cannot be used.

We assume that the gas in the atmosphere is
moving with the velocity g along the outward normal
of the plane-parallel atmosphere; q is an arbitrary
function of the depth. The quantity in the transfer
equation that is modified by the flow is the absorp-
tion profile. If the line is broadened by the
Doppler effect and by damping, the profile is given
by the Voigt function,

1

YT oA Vg

' (4)

. —_ry 2
J e Y dy

—o a2 + (v - y)?

=T

¢A\),U(T) =

where a is the damping parameter, Avp is the Doppler
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width due to thermal and random microturbulent
motion, and v is given by

Av —(vo/c)q(T)u
- Evg (T,0)

(5)

The frequency displacement Av is measured in the rest
frame of the atom and vg is the frequency at the line
center. We note that the Doppler width depends on
direction when the microturbulence is anisotropic.

An important property of the absorption profile
¢ is its symmetry with respect to the frequency dis-
placement Av and the direction cosine yu,

Oy, (1) = 6,y () . (6)

Because of this symmetry in ¢ it is convenient to
define an average intensity I:

— 1 + -
IA\),“(T) =35 [IA\), a (o I—A\),—U(T)] W > 0,(7)

in which the intensity in the forward direction

along the ray (Av,u) is combined with the intensity

in the opposite direction along the ray (-Av,-u).
_The integral form of the transfer equation

for I is given by the equation

Av,u

IAv,p(TAv,u) = J dt K(TAV
0

ﬁ’t)X{v,u(t)’ (8)

4

whereyf is the total source function,

k4

J kL(T)d)AV u(r)s(r) k©. (t)B(T)
Av (1) = )
At

kKU (1) 0,y (1) + KO (1)

with kL and kC the opacities of the line and of the
background continuum, respectively, and B the source
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function of the background continuum, and where
Tav, is the specific monochromatic optical distance
4

along the ray (Av,u); T is the corresponding

Av,u
distance between the two boundaries if the medium
has finite optical thickness.

The integral kernel K is given by the equation

K(T,t) = % o~ lT=tl (10)

The kernel has the following asymptotic behavior:

K(t,t) = 8(t,t){1 + dz + O H+ ote” T
dT

where § is the Dirac ¢6-function. At large distances
from the boundaries of the medium, therefore, the
kernel K becomes essentially the second-derivative
operator. The mean integrated intensity J is de-
fined by the expression

© 1
J(1) = f d(4v) J d“¢Av,u(T) TAV,U(T) . (12)

0

In order to solve the equations numerically,
we choose a discrete set of depth points and expand
the total source functionsd in terms of piecewise
quadratic segments. Instead of the integral operator
involving the kernel K, we obtain for equation (8)
the product of a matrix operator and the vector of
the total source function »f . By combining equations
(8), {9), and (12) and regrouping terms, we finally
obtain the transfer equation in the form of equation

(2).

3. SOLUTIONS

Our aim is to study the influence of macroscopic
flow on the line source function and on the emergent
monochromatic flux, and hence to investigate the
formation of "P Cygni lines." To keep the interpre-
tation relatively simple, we have worked with a
single model of a semi-infinite plane-parallel atmos-
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Figure 1.

phere with a temperature rising in the outer layers
from 8000°K - 10,000°K. In this medium we compute

a line source function with the frequency of the

Ho line for € = 107%, a = 0, and constant thermal
Doppler width. The function B in equation (1) of
statistical equilibrium is equal to the source
function B of the background continuum. The function
B(t), divided by 2hy3%®/c?, is plotted in Figures 1
and 3. The ratio of the opacity of the line at the
center to that of the background continuum is con-
stant with kI/kC = 10*. The velocities q(t) are
given in units of the constant thermal Doppler width
by the equation

v (0)
V(O = y5=7m - (13)
whefe
o g
v = c Av

D

The optical depth T is measured along the local line
center.
In a preliminary investigation we have deter-
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TABLE 1.

ACCURACY OF THE ANGLE QUADRATURE

Angle Error (in percent)

approximation S (0) S (0.1) I (0.3)

7 0.04 0.2 0.06

6 0.1 0.5 0.16

5 0.2 0.9 0.3

4 0.3 1.4 0.6

3 0.5 2.3 1.1

2 1.3 4 2.5

1 1.4 8 9

mined the dependence of the computed source function,
the emergent normal intensity, and the emergent mono-
chromatic flux on the angle quadrature. For this
purpose we have solved the equations with V(0) = 2
and T = 0.1. This flow velocity produces a shift of
the absorption profile by two Doppler widths at the
surface, and¢ the velocity gradient is large only in
the outermost layers. The source function has a
minimum at a depth of v = 0.1, and the minimum of
the intensity is displaced in the violet direction
by 0.3 thermal Doppler width. Table 1 gives the
accuracy in percent of the solutions for the first
to the seventh angle approximations measured against
the solution in the eighth approximation. All
solutions were obtained with 63 frequency points

in the range (-4,4) of the frequency in Doppler
units and 40 points in the depth range (0,10°). An
accuracy of at least one percent in the quantities
listed requires at least five discrete angle points.
All subsequent solutions were therefore computed
with the fifth angle points. All subsequent solu-
tions were therefore computed with the fifth angle
approximation. In the calculation of the monochro-
matic emergent flux, five angles did not give
sufficiently accurate results. This quantity was
therefore computed in the 24th approximation.
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In order to investigate the effects of flow in
a moving atmosphere, we have solved the equations
for four cases of macroscopic flow and for the

static atmosphere. For the flow problems we have
chosen

v(0) = 10 and T = 10, 102, 10%, 10“.

Thus the velocity is lar?est at the surface and
decays essentially as T~ The gradient is large
only near 1t = T. The computer plot of these
velocities is given in Figure 2.

We note that for € = 102, the "thermalization
length" of a Doppler-broadened line is 1, = 100.
The line that is formed in the atmosphere with the
flow parameter T = 10*, therefore, sees only the
constant flow velocity corresponding to 10 Doppler
widths in the line formation region. Hence the
source function should be identical with that of a
static atmosphere. This is indeed the case, as can
be seen from Figure 3, where the solutions for the
stationary medium and for the atmosphere with

10.00 |

8.00
6.00

4.00

VELOCITY

2.00

0.00 ]
-2.00 0.00 2.00 4.00 6.00

log T

MACROSCOPIC VELOCITIES

0
v(r)= ——=  v(0)=10, T=10,10%,10°, 10°

Figure 2.

128

https://doi.org/10.1017/50252921100151218 Published online by Cambridge University Press


https://doi.org/10.1017/S0252921100151218

015 [

0.09 -

S,B

0.06

0,10%,10°,10°

0.00 ! L I | ] 1 ] J
-2.00 0.00 200 . 4.00 6.00

log T
PLANCK FUNCTION AND LINE SOURCE FUNCTIONS
-2
FOR €=10-AND v(1)=:—2— T=10,10%10%10% THE
/T
STATIC CASE IS LABELLED BY O.

Figure 3.

constant expansion velocity in the significant sur-
face layers coincide. For T = 103, there is already
a noticeable gradient in the macroscopic flow in

the region of the atmosphere in which the line
radiation reaches saturation. Because of the fre-
quency shift of the line opacity, photons emitted
near the maximum of S can escape more easily than
they can in the static case. The source function
maximum is therefore reduced. The surface layers
below T = 100, however, still have a nearly constant
flow velocity. The surface value of S is therefore
still virtually identical with that of the static
solution. The same effects are seen in the source
function for T = 100, for which the velocity change
is large in the relaxation region and small near

the surface. Thus the value of the source function
at its maximum is further reduced but its surface
value is nearly unchanged. For T = 10, the velocity
gradient is small in the relaxation region and

large near the surface. Near the source function
maximum, the solution foer S, therefore, moves back
toward the static solution. But in the surface
layers where V is varying rapidly, the line absorp-
tion coefficient is now large in a spectral range
where the background radiation can exert a stronger
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influence on the line radiation. The surface value
of S is consequently raised above that of the static
case.

If the region in which the velocity gradient
is large is pushed sufficiently close to the surface
by reducing T further, or if € is reduced signifi-
cantly below 10-2, the source function can be forced
by the background radiation to rise near the surface.
This effect can, indeed, be seen in Figure 1, where
V(0) = 2 and T = 0.1.

The most striking result of these calculations
is the similarity in the solutions for a wide range
of flows, which indicates that the source functions
are not very sensitive to the Doppler shift. The
emergent radiation field, however, is strongly
influenced by the flow.

The emergent normal intensities are shown in
Figure 4. For the static atmosphere the intensity
is symmetric. For the flow parameter T = 10%, the
intensity is blue-shifted by 10 Doppler widths.

The profile is nearly symmetric, only the slight
enhancement of the red peak indicating the flow.

For smaller values of the flow parameter T, the
peaks on the low-frequency side of the line, center
are more and more shifted to the red, the amplitudes
having heights that correspond to the values of the
maximum in the source functions. For T = 10, the

intensity minimum is shifted to Av = 8.75.
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Figure 4.
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The emergent monochromatic fluxes are plotted
in Figure 5. Since the fluxes result from the
weighted superposition of intensities for normal
emergence, for which the frequency shift amounts to
10 Doppler widths, down to those for grazing emer-
gence, for which the line is centered on Av = 0, the
flux proflles are nonsymmetrical even for the uniform
expansion given by the case of T = 10*. Only the
static atmosphere produces a symmetrical flux pro-
file. The flux curves for the flows with T = 10? and
T = 10 have peaks on the low-frequency side of the
line profile. The condition for the appearance of
such emission features is that the maximum of the
source function fall into a region of the atmosphere
for which the flow velocity is sufficiently small.

The minima of the fluxes are blue-shifted by
Av = 8.25 thermal Dopgler widths for the flow para—
meters T = 10" and 10°, by Av = 7.75 for T = 102
and by Av = 4.5 for T = 10. The two maxima occur
at AV = 0.25 for T = 10% and at Av = 1.75 for T = 10.
The separation of the extrema is therefore Av = 7.5
Doppler widths for T = 10? and Av = 6.25 for T = 10.
Thus, the blue shift of the central absorption
feature is smaller than might have been expected on
the basis of a rormal velocity displacement of 10°
Doppler widths, even when the outer layers expand
uniformly as, in effect, they do for T = 10%; and
the separation of emission and absorption features

.25
1.00
2
- 0.75
L.
0.50
0.25 |
-4.00 0.00 4.00 8.00 12.00
FREQUENCY

THE EMERGENT MONOCHROMATIC FLUX FOR
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Figure 6.
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is not simply related to the flow velocity in_the
line formation region. The thermal Doppler width
can be easily determined only in the line of the

static atmosphere.

4. CONCLUSIONS

The profiles that we have computed have the
general appearance of "P Cygni lines," from which
they differ mainly in the relatively low emission
intensities. The emission can be increased by
means of a higher temperature rise in the outer
layers of the star. Our model atmosphere was
chosen more in accordance with the model calculations
of Feautrier (1968) and of Auer and Mihalas (1969),
who found temperature increases of 1000° - 2000 K
for their models of early-type atmospheres in
radiative and statistical equilibrium. Some mechan-
ical mode of energy transport could give a much
larger temperature rise as, for example, it does in
the Sun. Such a temperature increase has been postu-
lated for the supergiant o Cygni by Groth (1960),
who furthermore placed the emission into an inward-
falling outer shell at a high temperature. Such
an elaborate model atmosphere is clearly not
necessary, as our calculations show. The only re-
quirements for the appearance of P Cygni lines are
a temperature inversion in the atmosphere or envelope
and flow in the outward direction.

It is a pleasure to thank Deane Peterson for
discussions of the numerical method, Charles Whitney
for useful comments on the interpretation of the
results, and Lane Emerson for his help in computing
and plotting with the aid of an electronic computer.
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DISCUSSION

Undenhiff: How many levels did you include in
your calculations?

Kalkofen: We included only two levels to show
the principle of the problem.

Underhilf: The observations do not show the
long tails which you have calculated.

Kalkofen: But there is also an increase in the
line core, which is in agreement with the observa-
tion. If you apply the theory to the lines in the
spectrum of € Ori the agreement is fairly good.

Undenhilf: The observations show only very
weak P Cyg profiles in Ha.
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