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THE DIRICHLET PROBLEM FOR THE EQUATION
OF PRESCRIBED GAUSS CURVATURE

NeiL S. TRuDINGER AND JouN I.E. URBAS

We treat necessary and sufficient conditions for the classical
solvability of the Dirichlet problem for the equation of
prescribed Gauss curvature in uniformly convex domains in
Euclidean 7 space. Our methods simultaneously embrace more
general equations of Monge-Ampére type and we establish
conditions which ensure that solutions have globally bounded

second derivatives.

1. Introduction

et Q be a domain in Euclidean 7 space an and u a function in

62(9) with graph S c K" . The Gauss curvature of S at a point
(xz, 2) = (x, u(x)) €S is given by the formula

- detDzu(x)
(1.1) Kz, z) = [1+[Du(x)|2)(n+2)/2 )

Here Du, Dzu denote respectively the gradient and Hessian of u . 1In
this paper we are concerned with the problem of recovering the function u
from the prescription of K , and given boundary values on 32 , which is
equivalent to the Dirichlet problem for the equation (1.1). We shall prove
the following sharp theorem.
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THEOREM 1.1. Let 9 be a wiiformly convex C-*% domain in R' and

K a positive function in C'l’l(Q) n Co’l(ﬁ) . Then the classical
Dirichlet problem,

2](n+2)/2

(1.2) det D°u = K(z) (1+]| Dul , u=6¢ on 3N,

is wniquely solvable for arbitrary ¢ € @ , with convex solution

u € (,*2(5'2) n 00,1(5) s> if and only if the following two conditions hold,

(1.3) JQK<“’n s

(1.4) K=0 on 0.

More generally we consider the Dirichlet problem for equations of

Monge-Ampere type,
(1.5) detD2u=f(x,u,Du) in @, u=¢ on M,

where f 1is a positive function in C'l’l[Q x R x an] subject to the

following structure conditions

v

(1.6) f,20 in 2@xRxR',

1A
sls

(1.7) flz, -0, p) forall z €9, p ¢R',

(1.8) flz, ¢(x), p) = ud8(1+|p|2)°‘/2 for all z €N, p eR'

where N, Y, a, B are non-negative constants such that B = a-n-1 , g

and Ak are positive functions in Ll(Q) s L:]L'oc(an) respectively such
that
(1.9) j g < j n

Q

R

d = aist(x, ) , and N is some neighbourhood of 32 . We then have the

following existence result.

THEOREM 1.2. Let @ be a wiiformly convex C-°° domain in R,

¢ € YD) and tet f be a positive fumction in 01’1(9 x R x K"
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satisfying (1.6), (1.7) and (1.8). Then the Dirichlet problem (1.5) is
witquely solvable with convex solution u € C2(Q) n Co’l(ﬁ) .

The work of Lions [11], [12] reduces the classical solvability of the
Dirichlet problem (1.5) to the existence of a generalized subsolution in
the sense of Aleksandrov [2]. Results pertaining to the solvability of the
generalized Dirichlet problem for equations of the above type are treated
by Bake!'man [4] and established for equations in two variables in [5],
[6], [7]. We provide in the next section a direct derivation of Theorem 2
from one of Lions' basic results thereby avoiding any consideration of
generalized solutions. At the same time we are able to infer that our
solution is uniformly Lipschitz. We also indicate an alternative
derivation of Theorem 1.2, from the recent work of Caffarelli, Nirenberg

and Spruck [8] on globally smooth solutions.

The necessity of conditions (1.3) and (1.9) is readily shown; (see

(10]). For, suppose that the function Jf satisfies an inequality of the

form
(1.10) flz, z, p) = %%g% for all (x, 3, p) € & xR x R? s

where g and % are positive functions in Ll(ﬂ) , LiocﬂRn)

respectively and let u be a convex CE(Q) solution of the equation

(1.5). Since Du : 2+ R is one-to-one, we obtain

A

(1.11) J g J h(Du) det DPu
Q Q

h(p)dp

JDu(Q)

[

R*

with strict inequality holding if Du(f) is bounded, that is if

1A

u € Co’l(ﬁ) . The necessity of inequality (1.3) follows since

[
] (l+|p,2)(n+2)/2 n

Using an argument similar to that of Serrin [73] we shall show in Section 3
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that conditions (1.4) and (1.8) are necessary in tHe following sense.

THEOREM 1.3. Let 9 be a uniformly convex ' domain in R and

Ff a positive function on § x R x R satisfying
(1.12) flz, 2, p) = vi> (1+|p|2)¥? for ait « ¢ N, z¢R, peR',

where Ny is a neighbourhood of some point y € 3 , VvV is a positive

constant and o and B are non-negative constants satisfying B < a-n-1 .
Then there exists a function ¢ € () for which the Dirichlet problem

(1.5) is not solvable for convex u € Co(ﬁ) n CQ(Q)

In the last section of this paper we treat further global regularity
of the solution of (1.2) and (1.5), giving conditions on X and f which

imply the boundedness of second derivatives.

Finally we remark that all notation in this paper, unless otherwise

indicated, is as in [10].

2. Existence

In this section we prove Theorem 1.2 and consequently the sufficiency
of conditions (1.3) and (1.4) in Theorem 1.1. We first need two lemmas
ensuring a priori bounds for solutions of the Dirichlet problem (1.5). The
first, taken from Bakel'man [4], (6] (see also [10], Theorem 17.4),
provides an estimate for the solution while the second is a gradient

estimate.

LEMMA 2.1. Let u € C2(Q) n CO(K_Z) be a convex solution of the
Dirichlet problem (1.5) where the function §f satisfies conditions (1.6)

and (1.7). Then we have the estimate

(2.1) inf $ - N - C diam & < u < sup ¢
19) of

where C depends on n, g and h .

LEMMA 2.2, Let Q@ be a wniformly convex domain in R* ,

¢ € Cl’l(f_l) and let u € C°(Q) n 00(5) be a convex solution of the
Dirichlet problem (1.5) where the function §f satisfies conditions (1.6)

and (1.8). Then u € Co’l(§_2) and we have the estimate
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(2.2) sup IDuI =C,
f

where C depends on n, u, a, B, N, @, lulo;ﬂ and |¢|1,1;Q .

Proof. Without loss of generality we may replace ¢ by a convex
function. Let us fix at a point ¥y € 32 an enclosing ball B = BR(y) Y
with 3B n 32 = {y} . We now take as a barrier, the convex function

w=¢ - y(d)

where d(x) = dist(x, 9B) and { is given by
W(d) = T 10g(14kd)

where v and k are positive constants to be determined. Using a
principal coordinate system for 9B at ¥ , we may then estimate in
Q0B

det 0P = det[—Dew)

! n-1
- [Tz:§1J
z —pn(y’ /BT

while from the structure conditions (1.6), (1.8) we have
flz, w, W) = flz, ¢, W)

ud® (14|20 |2)*/2

ud® (1+] 09| 2+ [y |2)%/2

2afyr |

IA

1A

1A

provided x € N and

—
<
-
1\
=
o
]

sup (1+]06]2) .
Q

We now choose

oA _9ne-
\)=l+2}iﬂlu,
so that $'d =1 , and then kX and a > 0 such that Na=Qn{d<a}CN

and
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where M = sup Iu] . It then follows that
94

det Dzw > flx, w, Ww) in Na , W<u on BNa .

and hence by the comparison principle, w = u in Na . Thus we obtain a

lower bound

u(x)—uiy) > _¢
z-y

for any y € 9 , x € Q , where ( depends on the same quantities as in

(2.2). A two sided bound,

u(x)-u(y) <c

(2.3) = :

follows immediately since u 1is subharmonic. Finally, by the convexity o
u , the estimate (2.3) extends toall x , ¥y €92 , x#y . //
Theorem 2.1 can now be deduced from the following result of Lions
[12].
. Cl’l .. g
THEOREM 2.3. Let £ be a wniformly convex domain in R,
d € @ , and let f be a positive function in Cl’l(Q x R x R') with

f,z0 and

(2.k) flz, 2z, p) = u(l*lplz)n/2 s

for all (x, z, p) € X xR X R* for some positive constant u . Then the

Dirichlet problem (1.5) is wuniquely solvable, with convex solution
w e @ o c®t@ .

Proof of Theorem 1.2. To use Theorem 2.3, we truncate the function j

with respect to 2z and p . Accordingly 1let f% be a sequence of

positive functions in Cl’l(Q x R x R”? satisfying fﬁz >0, fh < f in
QxR xR with fﬁ = f for |z| + |p| £m . By Theorem 2.3, there

exists a sequence {um} c 02(9) n Co’l(ﬁ) of solutions of the Dirichlet
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problems,

> X _
(2.5) det D u, = f%[x, U Dum] in @, u=¢ on 3N ,

and since the functions fh satisfy by hypothesis the conditions (1.7),
(1.8) uniformly in m , we obtain a uniform bound

luly.q + 1D

<
00 o0 = ¢
by virtue of Lemmas 2.1 and 2.2. But this means that u, will solve the
given Dirichlet problem for sufficiently large m . //

The above proof is similar to that given in [J0] for the case ¢ =0

where we need only assume £ is uniformly convex and bounded.

We conclude this section by pointing out that Theorem 2.3 may also be
derived by approximation from the following existence theorem of
Caffarelli, Nirenberg and Spruck for globally smooth solutions, rather thar
the penalization method of Lions [12],

3,1

THEOREM 2.4. Let 9 be a wniformly convex C domain in W',

6 € N and tet f be a positive function in Cl’l(ﬁ'x R x R?)
satisfying f, 2 0 and (2.4). Then the Dirichlet problem (1.5) is
wiiquely solvable with convex solution in 02(5) .

The passage from Theorem 2.k to 2.3 may be accomplished by first
obtaining a generalized solution by approximation and then deducing its
regularity as in [9] or [12] or alternatively by direct use of the interior

second derivative estimates in [I5].

3. Nonexistence

In this section we prove Theorem 1.3. We shall use the following

comparison lemma.

LEMMA 3.1. Zet Q be a bounded domain in R' and T q relatively
open Cl portion of o . Let u € Cp(ﬁ) n 02(9 vTl) and

v € Co(ﬁ) n 02(9) be wniformly convex functions satisfying
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detDzu > detD21)
(1+12:)2)*2 7~ (a4 0u|2)*/2

(3.1) in 9,

u<v on MN-T and Ww/dv == on T , where Vv is the outer wnit

normel to T . Then u<v in Q.
Proof, By the comparison principle we have

sup (u-v) < suwp (w-v)" .
Q T

Since (9/9v)(u-v) = - on T , the function u - v cannot achieve a

maximum value on I' . Hence u <v in § . //

Proof of Theorem 1.3, TLet u € Co(ﬁ) n 62(9) be a convex solution of

the equation

detD2u=f(ac,u,Du) in @,

where f satisfies (1.12). Let B = BR@) be an interior sphere at ¥y .

We may assume that BR(y) nQCNy and R=<1.

Since u 1is convex, we have

= sup u .
R/Z(y)

(3.2) sup u =
Q-BR/Z(y) -B

Let 0 € (R/2, R) and

w = Y(r) = sup u + AR - ar' s

BQ-BR/z(y)

where »r = dist(x, 330(5)) and Y € (0, 1) and A are to be chosen.
Then for x € Bp(g) n BR/Z(y) we have
detDw (=g’ ez )T
(1+1]%)%2  (ufyr|?)/2
2n-1(l_Y) (AY)n-ap(a-n) (1—y)—1R1-n
< vd
2

detD u
(1+] u| %) /2

1A

A
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provided (a-n)(1=y) - 1 > B8 and 2" (1-v)(4y)"™® = v . Tnus from
Lemma 3.1 we obtain u = w in Bp(g) n BR/Q(y) . Letting p > R we

obtain

(3.3) u(y) = sup u + ARY .
BQ—BR/z(y)

from which Theorem 1.3 follows. //

4. Further regularity

When the curvature K vanishes sufficiently rapidly at the boundary

we can infer that the solutions of the Dirichlet problem (1.2) lie in the
space Cl’l(ﬁ) . More generally we shall assume in (1.5) that the function

n X
g = fl/ is convex with respect to the p variables and that for any

L >0 , we have

(k.1) sup (lglz, 2, p)|+IDg(x, 2, p)|) = u
|z|+|p|<L

sup |D‘?g(x, z, p)| =u,(x) ,
[z]+|pl=L

for all x € @ , where My is constant and Hy € Ln(Q) . We now have
THEOREM 4.1, Let Q be a wniformly convex AL domain in R R
¢ =0o0n 3 and let f be a positive function in cl’l[ﬂ xR x K"

satisfying f,20 and (L.1). Then if u € 62(9) n Co’l(ﬁ) i8 convex

and solves the Dirichlet problem (1.5) we have wu € Cl’l(ﬁ) s together with
the estimate

(4.2) sup |D%u] = ¢
Q

where C depends on n, Q, Iull-Q’ His By -

Proof. Let us first derive the estimate (L4.2) for solutions of (1.5)
which lie in C2(§) . Local regularity considerations (see [10], Lemma

17.16), ensure that they also lie in the Sobolev space Wi;:(ﬂ) . We now
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write the equation (1.5) in the form

(4.3) F(DeuJ = (det Dzu)l/n = g(z, u, Du)

and differentiate twice with respect to xk , k=1, ..., n , to obtain

(b.k) FijDijkku + Fij,ZmDijkuDZ it = gxkxk + 2gxkszu + ngkpiDiku

2
+ gDkt gy, [Dku] + 2gzp1:DiuDiku + gpiDikku + gpiijikuDjku

where

F,.(r) = 22— F(r) = X prt

%) or. . n ?
id

2
d°F
F.., (r) = 45— .
iJ,lm apijaer

Using the concavity of F , the convexity of g and u and the conditions

(4.1), we therefore obtain the differential inequality

b. -F..D. Ay + Ay < + 1+
(4.5) F, iD; ;b gpiD,L u = Cluy*u,) (1+0u)
where ¢ depends on »n and Iull'Q . Since detlFijl =n" , we can now
deduce from the Aleksandrov maximum principle (see [3] or [10], Theorem
9.1),

sup Au < sup Au + C|| (ul*'uz)(l"ﬂu)” "

Q N L(Q)
where C depends on n, |ul|,.,, diam Q@ and g || . We now make use

1;9 p'mn

of the interpolation type inequality

(4.6) I <esup [f| +¢C | 7]
W6l gy = € %5 | e Jsz

which holds for any f € L (Q) , g € L' () and € >0 ; the constant C
depending on both € and g . Accordingly we obtain
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(4.7) sup Au £ 2 sup Au + C J (1+Au)
Q 193 Q

IA

2 sup Mu + 0[1 + J IDu|]
aQ 3Q

2 sup Au + C
R

1A

where C depends on n, , lull'Q’ Wy and W, .

The estimation of Au on the boundary o2 can be accomplished with
only minor modification to the method presented in [10], Theorem 17.20 (see
also [1], [8]). We insert the proof here for completeness. Let ¥ € 3Q
and let N bve a neighbourhood of ¥ such that each = € N has a unique

nearest point on 92 . Let v(x) be the outwards directed normal to 3§

at this point. Since 30 € ¢2*1 , N can be chosen so that v € CT>L(N)

For k=1, ..., n, let & be the tangential gradient operator in 3
given by

Gk = Dk - \)k\)ZDZ .
Differentiating (4.3) with respect to %, we get

(4.8) FijDijku = gxk + gszu + gpiDiku

Using (4.8) and the equality

1
Flgubl gdil ’
we thus obtain
(4.9) FlJDLJGk kg +g éku + 9, D (6 u)
2
+ gpiDi (-vkvl)Dlu - B P .7( V) Dy = = gDy (v v;)
Since
_.-n
det(l%j) n R
we have
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Therefore from [J0], Corollary 1L4.5, we conclude

(4.10) D 8uy)l = ¢,

where ( depends on n, Hys N n o, IW'O-Q and |¢)|2 1:0 ° A similar
3 b >

estimate then holds for the mixed partial derivatives anu(y) ,

k=1, ..., n-1 , with respect to a principal coordinate system at Yy
The partial derivatives Djku(y) s Jds k=1, ..., n-1 are bounded by
ID2¢IO-Q , 80 it remains only to estimate Drmu(y) . In a principal

2

coordinate system at y we have

Dn(u-qb)Kl 0 ... O Dnl(u—d))
0 .
(4.11) 0Pu - 0% = . :
C v Dn(u—¢)i<n_l
Dy (u=0) ool Dy (4-9) |
where Kis =oe5 K are the principal curvatures of 9 at y . We may

assume that -¢ is convex, so that we have

(4.12) ID (u-0)(»)| = (s;zxp lu-9])/(aiam Q)

Using (4.11) to solve (4.3) for Drmu(y) ,and teking $ = 0 , we thus obtain
an upper bound for Dnnu(y) and hence also for Au(y) , which on
combination with (4.7) yields (k4.2).

Finally to get the regularity assertion of Theorem 4.1, we truncate
the function f as in the proof of Theorem 1.2, and solve by means of

Theorem 2.4, the Dirichlet problems,

2 _ . _
(L.13)  det Du , = fm(:c, U Duml} in @, , u=¢ on 3y ,

where ¢ is redefined so that it lies in the space Ch(Q) n C’2’l(§) and
{QZ} is an increasing sequence of uniformly convex Ch domains, with

union £ . By Lemmas 2.1, 2.2 and the estimate (4.2), we obtain that the
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norms IuleZ-Q are bounded independently of I and hence using also the
b
interior second derivative Holder estimates (see [14] or [10], Theorem

17.14), we obtain a subsequence of {uml};=l converging in 02(9) n Cl(§)

to a solution u, € C2(Q) n Cl’l(ﬁ) of the Dirichlet problem (2.5). But

by uniqueness Uy must coincide with our given solution u for
sufficiently large m .
For the special case of the equation of prescribed Gauss curvature we

now have
COROLLARY 4.2. If in addition to the hypotheses of Theorem 1.1, the

function Kl/n € W2,n(9) , R 1is 02’1 and ¢ = Q on I , then the second
derivatives of the solution u of (1.2) are bounded in Q .

Note that when f is positive in 2 xR xR? (so that B = 0 ) ang
o2 and ¢ are sufficiently smooth we can infer further global regularity

of solutions of (1.5) from the work of Caffarelli, Nirenberg and Spruck.

Finally to conclude this paper we remark that the growth conditions
(1.8) and (1.12) in Theorems 1.2 and 1.3 may be extended slightly by
adapting the barrier constructions of Serrin [13]. FPurthermore by using

barriers of the form

(4.1k) w=¢+kd , k>0, 0<y<1,

we may deduce the existence of uniformly Holder continuous solutions of
(1.5) when (1.6), (1.7), (1.8) are satisfied with possibly B < o-n-1 ,

provided the curvature of 32 is sufficiently large.

The equation of prescribed Gauss curvature without boundary conditions

is treated in the forthcoming paper [16].
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