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THE DIRICHLET PROBLEM FOR THE EQUATION
OF PRESCRIBED GAUSS CURVATURE

NEIL S. TRUDINGER AND JOHN I.E. URBAS

We treat necessary and sufficient conditions for the classical

solvability of the Dirichlet problem for the equation of

prescribed Gauss curvature in uniformly convex domains in

Euclidean n space. Our methods simultaneously embrace more

general equations of Monge-Ampere type and we establish

conditions which ensure that solutions have globally bounded

second derivatives.

1. Introduction

Let S2 be a domain in Euclidean n space IR and u a function in

CT(fi) with graph S c |R . The Gauss curvature of S at a point

(x, z) - [x, w(x)) € S is given by the formula

(1.1) K(x, z) =
(i+ | /M*)|2) ( n + 2 ) / 2 '

Here Du, uu denote respectively the gradient and Hessian of u . In

this paper we are concerned with the problem of recovering the function u

from the prescription of K , and given boundary values on dil , which is

equivalent to the Dirichlet problem for the equation ( l . l ) . We shall prove

the following sharp theorem.
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THEOREM 1.1. Let ft be a uniformly convex Cr* domain in IK and

K a positive function in C ' (ft) r> Q ' (ft) . Then the classical

Dirichlet problem,

(1.2) det D2u = Kix){l+\Du\2){n+2)/2 , u = $ on 3ft,

is uniquely solvable for arbitrary <J> € c' (ft) , with convex solution

p 0 1
u € c (ft) n C ' (fi) j if and only if the following two conditions hold,

(1.3) K < u ,

(l.U) X = 0 on 3fi .

generally we consider the Dirichlet problem for equations of

Monge-Ampere type,

(1.5) det ETu = fix, u, Du) in ft , u = <p on 3ft ,

where f is a positive function in ( r ' (fl x R x R j subject to the

following structure conditions

(1.6) f > 0 in ft x IR x Iff ,
z

(1.7) fix, -N, p) 5 ^ j - j - for all x € ft , p € IK" ,

(1.8) f[x, 4>(z), p) S y / ( l + | p | 2 ) a / 2 for al l x € W , p € if ,

where /I/, y, a, 3 are non-negative constants such that 3 ^ a-n-1 , g

and ?i are positive functions in L (ft) , L [R ) respectively such

that

(1.9) j 0 < { h ,

d = dist(:r, 3ft) , and N is some neighbourhood of 3ft . We then have the

following existence result .

THEOREM 1.2. Let ft be a uniformly convex CT' domain in Iff ,

<{> € C ' (ft) and let f be a positive function in C ' (ft x |R x |Ff)
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satisfying (1.6)., (1.7) and (1.8). Then the Dirichlet problem (1.5) is

uniquely solvable with convex solution u € CT(Si) n c ' (Si) .

The work of Lions [ I / ] , [12] reduces the classical solvability of the

Dirichlet problem (1.5) to the existence of a generalized subsolution in

the sense of Aleksandrov [2]. Results pertaining to the solvability of the

generalized Dirichlet problem for equations of the above type are treated

by Bakel'man [4] and established for equations in two variables in [5],

[6], [7]. We provide in the next section a direct derivation of Theorem 2

from one of Lions' basic results thereby avoiding any consideration of

generalized solutions. At the same time we are able to infer that our

solution is uniformly Lipschitz. We also indicate an alternative

derivation of Theorem 1.2, from the recent work of Caffarelli, Nirenberg

and Spruck [S] on globally smooth solutions.

The necessity of conditions (1.3) and (1.9) is readily shown; (see

[JO]). For, suppose that the function f satisfies an inequality of the

form

(1.10) f(x, z, p) > | p | for a l l (x, z, p) € Si x |R x Iff ,

where g and h are positive functions in L (Si) , L (|FT)

respectively and l e t w be a convex CT(Si) solution of the equation

(1.5). Since Du : SI •*• Iff is one-to-one, we obtain

f f p
(1.11) g < 7z(Ou) det ZTu

?!(p)4?
Ow(fi)

h

with strict inequality holding if Du(Si) is bounded, that is if

u € C ' (ft) . The necessity of inequality (1.3) follows since

M = ,..I
Using an argument similar to that of Serrin [13] we shall show in Section 3
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that conditions (l.U) and (1.8) are necessary in tile following sense.

THEOREM 1.3. Let Q be a uniformly convex u' domain in FT and

f a positive function on fi x R x | T satisfying

( 1 . 1 2 ) f ( x , z , p ) > v / [ l + | p | 2 ) a / 2 f o r a l l x € W y , 2 € R , p € f t 1 ,

where M is a neighbourhood of some point y i 9ft , v is a positive

constant and a and 3 are non-negative constants satisfying g < a-n-1 .
00 ——

Then there exists a function (J> € C (ft) for which the Dirichlet problem

(1.5) is not solvable for convex u € C (ft) r> C (ft) .

In the las t section of this paper we treat further global regularity
of the solution of (1.2) and (1.5), giving conditions on K and / which
imply the boundedness of second derivatives.

Finally we remark that a l l notation in this paper, unless otherwise

indicated, is as in [70].

2. Existence

In this section we prove Theorem 1.2 and consequently the sufficiency
of conditions (1.3) and (l.U) in Theorem 1.1. We first need two lemmas
ensuring a priori bounds for solutions of the Dirichlet problem (1.5) • The
f i r s t , taken from Bakel'man [4] , [6] (see also [70], Theorem 17.1*),
provides an estimate for the solution while the second is a gradient
estimate.

LEMMA 2.1 . Let u € C2(fi) n C°(n) be a convex solution of the
Dirichlet problem (1.5) where the function f satisfies conditions (1.6)
and (1.7). Then we have the estimate

(2.1) Inf <|> - N - C diam SI 2 u 5 sup <J>

where C depends on n, g and h .

LEMMA 2.2. Let ft be a uniformly convex domain in IK }

<$> € C 1 ' 1 ^ ) and let u € (?{&) " C (ft) be a convex solution of the
Dirichlet problem (1.5) where the function f satisfies conditions (1.6)

and (1.8). Then u € C ' (ft) and we have the estimate
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(2.2) sup \Du\ 2 C ,

where C depends o n n , u , a , 3 , N , fi , l M l 0 . n ant^ I<f>t-. , .

Proof. Without loss of general i ty we may replace <j> by a convex

function. Let us f ix at a point y i 3£2 an enclosing b a l l B = B_(i/) 3 Q

with 35 n 3£2 = {y} . We now take as a b a r r i e r , the convex function

w = <j>

where d(x) = dist(a;, 3B) and <|> i s given by

where v and fe are posi t ive constants to be determined. Using a

pr incipal coordinate system for 3B at J , we may then estimate in

Q n B ,

det

while from the s t ruc ture conditions ( 1 . 6 ) , (1.8) we have

f{x, w, flJ) S fix, <(>, a?)

provided x € N and

We now choose

= sup

V = 1 +

so that ty'd 5 1 , and then k and a > 0 such tha t N = f i n { d < a } c W
a

and
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ka = e - 1 , k > Vr)
ve >

where M = sup \u\ . I t then follows that
a

det D2U > / (x , u, ZJJ) in W , u 5 M on dN ,

and hence by the comparison principle, w 5 u in W . Thus we obtain a

lower bound

u{x)-u(y)
l 1 ~c

\x-y\
for any y £ 3fi , a; € fi , where C depends on the same quantities as in
(2 .2) . A two sided bound,

( 2 . 3 )

follows immediately since w is subharmonic. Finally, by the convexity o
u , the estimate (2.3) extends to al l x , y € fi , x ± y . / /

Theorem 2.1 can now be deduced from the following result of Lions
[72].

THEOREM 2 .3 . Let SI be a uniformly convex C' domain in IFT s

<)> € C1'1(fi) 3 and let f be a positive function in C ' (fi * IR x |R"j y^

/ 2; 0 and

for all (x, 3, p) g f i x I R x p f 1 , for some positive constant y . Then the

Divichlet problem (1.5) is uniquely solvable, with convex solution

u € C2(Sl) " C 0 ' 1 ^ ) .

Proof of Theorem 1.2. To use Theorem 2.3, we truncate the function J

with respect to z and p . Accordingly let / be a sequence of

positive functions in C 1 ' 1 ^ x R x R™} satisfying / > 0 , f S f in

a x R x Rn with f = f for |z| + |p| < m . By Theorem 2.3, there

exists a sequence \u } c (; (Q) n C * (ft) of solutions of the Dirichlet
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problems,

( 2 . 5 ) de t D2u = f [x, u , Du ) in ft , u = (j> on 3ft ,

m m^ m rrr

and since the functions / satisfy by hypothesis the conditions (1.7),

(1.8) uniformly in m , we obtain a uniform bound

by virtue of Lemmas 2.1 and 2.2. But this means that u will solve the
m

given Dirichlet problem for sufficiently large m . //

The above proof is similar to that given in [70] for the case ty = 0
where we need only assume ft is uniformly convex and bounded.

We conclude this section by pointing out that Theorem 2.3 may also be
derived by approximation from the following existence theorem of
Caffarelli, Nirenberg and Spruck for globally smooth solutions, rather than
the penalization method of Lions [12],

THEOREM 2 . 4 . Let ft be a uniformly convex C 3 ' 1 domain in IpT _,

<}> € C3'1(JT) and let f be a positive function in C1'1^ x IR x $?)

satisfying / > 0 and (2.1*). Then the Dirichlet problem ( 1 . 5 ) is

uniquely solvable with convex solution in u{Q.) .

The passage from Theorem 2.k to 2.3 may be accomplished by f i rs t
obtaining a generalized solution by approximation and then deducing i t s
regularity as in [9] or [J2] or alternatively by direct use of the interior
second derivative estimates in [15].

3. Nonexistence

In this section we prove Theorem 1.3. We shall use the following
comparison lemma.

LEMMA 3.1. Let Q be a bounded domain in W and F a relatively

open C1 portion of dti . Let u € C°(ft) n (?(Q u T) and

v € C (ft) n CT(il) be uniformly convex functions satisfying
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, , , v detrPu ,, de tZ^v . o

( i i 2 ) a / 2 ~ [ i i 2 r / 2

u 5 v on 8ft - F and 3u/3v = °° on F , where v -is tfre outer unit

normal to V . 27ten w 5 u in ft .

Proof. By the comparison principle we have

sup (w-u) 2 sup (u-v)
ft F

Since (3/8V)(M-I>) = -°° on F , the function u - v cannot achieve a

maximum value on F . Hence u - V in ft . / /

Proof of Theorem 1.3. Let u € C°(ft) " (^(ft) be a convex solution of

the equation

det uu = f{x, u, Du) in ft ,

where f satisfies (1.12). Let B = B_(w) be an interior sphere at y .
ti

We may assume that BJy) n Q. c U and R S \ .
u I)

Since u i s convex, we have

(3.2) sup u 5 sup u .

Let P € (i?/2, i?) and

W = <|<(r) = sup

where r = d i s t (x , %BAy)) and Y € (0, 1) and A are to be chosen.

Then for x € BAy) n S D / 2 ^ ^ w e h a v e

< vd3

2^a/2 '
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provided (a-n)(l-v) - 1 > B and 2H~1{l-y)(Ay)n~a 5 vi/1"1 . Thus from

Lemma 3.1 we obtain u 5 w in B (y) r, 5 (y) . Letting p •* R we

obtain

(3.3) u{y) 5 sup u + 4i?Y ,

from which Theorem 1.3 follows. / /

4. Further regularity

When the curvature K vanishes sufficiently rapidly at the boundary

we can infer that the solutions of the Dirichlet problem (1.2) l i e in the

space u ' (f2) . More generally we shall assume in (1.5) that the function

g = j is convex with respect to the p variables and that for any

L > 0 , we have

(l+.l) s u p { \ g { x , z , p ) \ + \ D g ( x , z , p ) \ ) < u ,
| 3 |+ |p |<L ' X

s u p \ l £ g { x , z , p ) \ < u { x ) ,
| 2 | + | p | S L d

for a l l x € £2 , where u i s constant and p € L (fi) . We now have

THEOREM 4 . 1 . Let Q be a uniformly convex u' domain in If/1 ,

1)) = 0 on dti and let f be a positive function in ( T ' 1 ^ x R x ipf1)

satisfying f > 0 and ( I t . l ) . Then if u € (?{Q.) n C*3>1(JT) i s eonuea;

and solves the Dirichlet problem (1.5) we have u € t ' (fi) , together with
the estimate

(U.2) sup | 0 2 M | S C

where C depends on n, (I, \u\ o , u , y .

Proof. Let us first derive the estimate (U.2) for solutions of (1.5)

which lie in u (J2) . Local regularity considerations (see [JO], Lemma

IT.16), ensure that they also lie in the Sobolev space I/,' (fl) . We now

loc
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write the equation (1.5) in the form

(It. 3) F{D2u) = (det I?u)lln = g(x, u, Du)

and differentiate twice with respect to x, , k = 1, . . . , n , to obtain

v ' zj voKk 13 ,lm zjk Ink x-^k kz kP'

+ q T>T,U + a (0, w) + 2g D.uD..u + a D . , , M + 0 D.,uD.,uy s fefe ys2 l k - yzp^ t f̂e yp^ vkk yp .p . f̂e jk

where

Using the concavity of F , the convexity of g and u and the conditions

( U . I ) , we therefore obtain the d i f fe ren t ia l inequal i ty

(U.5) -F. .D. Au + g D.Aw < c(u +M,](l+Au)
^.7 t.,7 c p_ . t v l *••

where C depends on n and luL o . Since de t | f . . | = n , we can now

deduce from the Aleksandrov maximum pr inc ip le (see [3] or [JO], Theorem

9 - 1 ) ,

sup Aw < sup Aw + C\\ (y, +vi9)(HAu) ||
n afi L (n)

where C depends on n, \u\. n , diam fi and ||^ || . We now make use
1;" P Ln(tt)

of the interpolation type inequality

(^•6) ||/a|| < esup \f\ +C
Ln(n) a £

which holds for any / € L°°(fJ) , g € Ln(J2) and e > 0 ; the constant C

depending on both e and g . Accordingly we obtain
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{k.7) sup AM S 2 sup Aw + C (l+Aw)
ft 3ft -"ft

< 2 sup AM + C 1 +
3ft *• > 3fc

5 2 sup AM + C
3ft

where C depends on n, ft, |u| o , y and yo .

The estimation of AM on the boundary 3ft can be accomplished with

only minor modification to the method presented in [JO], Theorem 17.20 (see

also [7 ] , [&]). We insert the proof here for completeness. Let y € 3ft

and le t N be a neighbourhood of y such that each x t N has a unique

nearest point on 3ft . Let v(x) be the outwards directed normal to 3ft

at th is point. Since 3ft € (T' , M can be chosen so that V £ Cryl(N) .

For k = 1, . . . , n , l e t 6 be the tangential gradient operator in 3ft

given by

Differentiating (U.3) with respect to x, we get

( l K 8 ) FijDi3-k
u = \ + 9zDku + gpDi

Using (U.8) and the equality

we thus obtain

(U-9) FiAAu = V +

Since

F. .D.nu = - gS.

-n
= *

we have

T = t r a c e [ F . . ] > 1 .
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Therefore from [JO], Corollary lU.5, we conclude

\ \ £ c ,

where C depends on n, y , N n 3fi, \ , A similar

estimate then holds for the mixed partial derivatives D i,u{y) ,

k = 1, ..., n-1 , with respect to a principal coordinate system at y .

The partial derivatives D.jU{y) , j, k = 1, ..., n-l are bounded "by

\D <j)L o , so it remains only to estimate D u(y) . In a principal
U jo6 YlYl

coordinate system at y we have

D 2 u - D2<\> =

where K , . . . , K are the pr incipal curvatures of

assume t h a t -<{> i s convex, so that we have

(*t.12) |Z

at y . We may

> (sup |iM>|)/(diamn) .

Using (it.11) to solve (U.3) for , and taking $ = 0 , we thus obtain

an upper bound for D u(y) and hence also for Au(i/) , which on

combination with (it.7) yields (It.2).

Finally to get the regularity assertion of Theorem U.I, we truncate

the function / as in the proof of Theorem 1.2, and solve by means of

Theorem 2.U, the Dirichlet problems,

d e t u =

lj -2 1

where <}> i s redefined so tha t i t l i e s in the space C (fi) n u ' (fi) and

{fi^} i s an increasing sequence of uniformly convex C domains, with

union fi . By Lemmas 2 . 1 , 2.2 and the estimate (It .2), we obtain tha t the
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norms \u 7 | o are bounded independently of t and hence using also the

in t e r io r second derivat ive Holder estimates (see [74] or [10] , Theorem

17-11*), we obtain a subsequence of {u T\J--, converging in CT{U.) n CT{9,)

to a solut ion u € u{ti) n CT' (Q) of the Dir ichlet problem ( 2 . 5 ) . Butm

by uniqueness u must coincide with our given solution u for

sufficiently large m .

For the special case of the equation of prescribed Gauss curvature we

now have

COROLLARY 4 .2 . If in addition to the hypotheses of Theorem 1.1, the

function K1 € J / 2 ' " ^ ) , ft i s C 2 ' 1 and <$> = 0 on 3fi ., tfren t^e second

derivatives of the solution u of (1.2) are bounded in Q .

Note tha t when / i s posi t ive in fi x |R x Rn (so tha t 6 = 0 ) and.

8fi and <\> are suff ic ient ly smooth we can infer further global regular i ty

of solutions of (1.5) from the work of Caffarell i , Nirenberg and Spruck.

Finally to conclude t h i s paper we remark tha t the growth conditions

(1.8) and (1.12) in Theorems 1.2 and 1.3 may be extended s l i gh t l y by

adapting the ba r r i e r constructions of Serrin [13] . Furthermore by using

bar r ie r s of the form

(U.lU) w = <J> + kdy , k > 0 , 0 < Y < 1 ,

we may deduce the existence of uniformly Holder continuous solutions of

(1.5) when ( 1 . 6 ) , ( 1 .7 ) , (1.8) are s a t i s f i e d with possibly g < a-n-1 ,

provided the curvature of 3£2 i s suf f ic ient ly l a rge .

The equation of prescribed Gauss curvature without boundary conditions

i s t rea ted in the forthcoming paper [76] .
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