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Abstract

This paper is concerned with the three-parameter generalized gamma distribution (g.g.d.) which
is widely employed as a model in life testing. The structural probability distributions of the
parameters and a number of structural prediction densities for specific future measurements
have been derived based on type-II progressively censored sample.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): primary 62 F 25;
secondary 62 F 15, 62 P 20.

1. Introduction

In many cases in life tests, the experiment may be discontinued after the
first r failures have been observed from a sample of n items. If experimen-
tation is discontinued at a pre-determined time so that the number r is a
random variable, the data obtained are said to be time censored, or type-I
censored. Unfortunately, in this case structural distributions of parameters
can not be obtained. This has been pointed out by Whitney and Minder
[9]. If experimentation is discontinued at a pre-determined number, r, of
observations, the data obtained are said to be type-II censored. In many life
testing situations, the initial censoring results in withdrawal of only a por-
tion of the survivors, with some remaining on test and therefore continuing
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16 M. S. Maswadah [2]

under observation until ultimate failure or until a subsequent stage of censor-
ing is performed. For sufficiently large samples, censoring may be progressive
through several stages.

Suppose a random sample of n items is placed under observation at time
T = 0 . At time Tx when the first failure occurs, Kx of the survivors are
censored and the sample is reduced to n2 = n -K{ - 1. At time T2 when the
second failure occurs, k2 of the survivors are censored, and the sample of
survivors is again reduced to size n3 = n2-K2-l, etc. Suppose that censoring
occurs progressively in m stages and at time Tj, where j = 1, 2, 3, . . . , m.
In this situation, at the time 7" , AT survivors are randomly censored from
the sample. If r items actually fail from the sample, then the size of the
initial sample is n = r + £y l i Kj •

The purpose of this paper is to apply the structural method to derive a
posterior distribution of the parameters and predictive densities for specific
future measurements based on type-II progressively censored sample from a
three-parameter g.g. population whose probability density function is given
by

0, x<0,

where a > 0, P > 0, k > 0. The corresponding cumulative distribution
function (c.d.f.) is given by

(1.2) G(x;a,fi,k) = I[k,(x/a)l>),

where I[k, x] = (l/T(k)) f£ uk~le~udu is the incomplete gamma function.
It is clear that this model includes many well-known distributions used in

life time as special cases: Weibull distribution (k = 1), gamma distribution
(fi — 1), exponential distribution (0 = k = 1) and log-normal distribution
as k —> oo, where a is the scale parameter, k is the index parameter and
P is the power parameter. Consequently, it has been suggested for use as a
general life-testing model.

2. Derivation of the structural distribution
of the g.g. parameters

The structural probability distribution of the three-parameter g.g.d. is
derived directly from considerations of the group structural of its density
function (1.1) by means of invariant differentials described in Fraser's book
[5, page 53] when k is assumed known, where good inference procedures
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are difficult to obtain with k assumed unknown. One can easily show that
the model (1.1) is related to an error model

ek~l exp(-e), e > 0 ,
(2.1) f(e;k)={ T(k)

I 0 , e < 0 ,
by the equation X = ae1^, 0 < a, /? < oo, which can be written as
X = [a, /?]e. Here [a, /?] is a member of a group G of transformations of
the sample space of X = (xx, x2,... , xn) or of e = {ex, e2, ... , en) onto
itself.

The group G = {[a, b], 0 < a, b < oo} is denned by the operations
[a, b][c, d] = [acl/b,bd], [a, b]~l = [a~b, ZT1] and [1, 1] is the iden-
tity of G. Thus the structural probability density function (p.d.f.) of the
parameters given a complete sample (x{, x2,... , xn) is given by
(2.2)

**(«, fi\X, k) = C[T{k)TTlcrnkp-1 f[xfk exp

Equation (2.2) has been derived in Maswadah [6]. The approach in [6] has
been followed by Tan [7] for Weibull distribution, and by Bury and Bernholtz
for different life-time models which are special cases of the g.g. model (see
Bury and Bernholtz [2, 3, 4]).

Given a set of type-II progressively censored data from the g.g. population
(1.1) specified by

X = (Xj < x2 < • • • < xr), 1 < r < n,

we can derive the structural p.d.f. of the parameters from the modified struc-
tural model as follows.

Let e = (el < e2 < •• • < er) have the p.d.f.

(2.3) h(e ,k) = f[ n'tf(et; *)[1 - F(et; k)f'
i=\

where rit = n - X)ylJ Kj-i+l, f[ei; k) is given by (2.1), and F(ei; k) =
I(k; et) is the c.d.f. of f{ei; k). The structural model in this case has two
parts: an error distribution (2.3) which describes the multiple operation of the
internal sources of variation in the experiment, and the structural equation

X = [a, p]e={[a, fte^, ... ,[a, f}]er),

in which a realized vector e from the error distribution provides the link
between the observation vector X = {xx, x2, ..., xr) and the physical quan-
tities a and fl.
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Now a direct application of Fraser's structural method, using the invariant
differential as described in Maswadah [6] yields the following structural p.d.f.
of t, and t2 given D and k:

(2.4) g(t{ ,t2\D;k) = C ffif'' f n*( [* , ' '2K > k),

where

[t^),t2m = [a, fl-

is the position variable, D = Z)(Ar) = (d{(X), d2(X), ... , dr{X)) is the refer-
ence point which index the orbit GX, JN(Q) is the Jacobian \d[Q]Y/dY\Y=D

= WHi=idl/t2~l, &&)) is the Jacobian \d[e]g/dg\g=i = t{, where 1
is the identity of G, [Q]€G and /»(•) is the p.d.f. as denned in (2.3).

From (2.4) we can transform the variables from (tl, t2) into (a, /?) and
using the values of the above Jacobians we obtain the conditional structural
probability density for a and /? as follows:

(2.5)

where C, is the normalizing constant and is denned by

(2.6) C, =[r(/c)] I I P a l l x f
./a=0 .//?=0 "

Hence for censored samples, (2.5) is the basis for inference, just as (2.2) is
the basis for inference in the case of complete samples.

In fact, a simple method of obtaining (2.5) by using Bayes concepts has
been discussed by Bury and Bernholtz [2] for deriving the corresponding
structural p.d.f. in case of Weibull distribution, which is a special case from
(2.5) at k = 1. They used as prior distribution for a and p the struc-
tural p.d.f. of a and P given X = (x{ < x2 < • • • < xr), and k as a
complete ordered sample of size r which is given by (2.2) when n = r,
and combined it with the likelihood modulation of K. withdrawals at time
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Tj (j = 1, 2, ... , m). Thus an application of Bayes theorem yields the
posterior p.d.f. of a and fi which is defined by (2.5).

Another simple method of obtaining (2.5) using the right invariant differ-
ential which is defined in Fraser's book [5, page 64]. This method yields

(2.7) g*(a, fi\X, k)dadfi = Cg(x; a, 0, k)dv([a, fi]),

where the right invariant differential under the group G for the g.g.d. is

(2.8) dv([a, fi]) = d/i{[a, fif1) = a"1 fi'1 dadfi,

and

O Q̂  <r( V • n R k) — TT n <T(Y • n R lr\\\ — d(tc • n R icV^'

i=\

where «(. = « - £^~J Kj - i + 1. Substituting (2.8) and (2.9) in (2.7) yields
immediately (2.5).

From (2.5), the marginal structural densities of a and fi can be obtained
to construct conditional confidence intervals for a and fi respectively, for
any desired probability level 0 < y < 1, given X and k.

3. Structural prediction densities

A number of structural prediction densities have been derived, based on
N independent future measurements Zs from a three-parameter g.g. popu-
lation with type-II progressively censored data.

(i) Consider the problem of predicting an arbitrary vector Z = (zx, ... ,
z2, ..., zs, ... , zN) of N future measurements zs. The marginal density
of Z is found as

JV

gx{z;a,p,k,N)= ]\g(zs;a,p,k,N)
s=\

exp f £ ^
\ S=l

We can now obtain the conditional structural density of the prediction vector
Z by taking the expectation of gl (z; a, fl, k, N) with respect to the struc-
tural distribution of (a, fi) given X and k which is given in (2.5). Thus
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(3.1)

<t>,{z\X,k,N)= ^ r g{{z;a,0,k,N)g*{a,0\X,k)d0da

Jp=0Ja=0 J-=1

N

s=\
—a

l-I

Ks=l

=•(5) a.

For a single future observation Z , its prediction density can be obtained
from (3.1) when N = 1.

(ii) Consider the problem of predicting the smallest future observation
Z(1) of the N future measurements Zs. From order statistics, the density
function of Z(1) is given by

fzjz;a,0,k, N) = N[l - G(z; a, 0, k)f~l g(z; a, 0),

where G(z; a, 0, k) is the corresponding distribution function of the three
parameter g.g.d. Thus the structural prediction density of Z(1) is given by

(3.2)

, k,N) = *(a, 0\X, k)d0da

1 - 7 k, -1 d0da.

Similarly we can find the structural prediction density of Z{N), the largest
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of N future measurements Z c , as

(3.3) <f>z (z\X

roo /"oo fr r uxyfi'z1"-1**-'™-1

" * ' •
(iii) Consider now the problem of predicting the average Z of N future

observations Zs from the model (1.1). By the addition theorem of gamma
variables, with common parameters, Y = J2^=\ Zs *s distributed as a gamma
variable with parameters a , /? and kN. Thus the p.d.f. of the mean
Ẑ  = Y/N is given by

As above, the structural prediction density of Z is given by
(3.4)

,k,N)= ^ r q{z;a, fi,k, N)gm(a, fi\X,k)dfida
Ja=0 Jfi=O

1 f"J°° pr

(4
-pk(N+r)-\

where Cx in (3.1) to (3.4) is the normalizing constant which is given in
(2.6). It is seen that these densities in (3.1) to (3.4) are similar to those
corresponding for a complete sample which can be deduce from Maswadah
[6] by following the same procedures, so that censored and complete samples
can be analysed by essentially the same numerical procedure by using tables
of the incomplete gamma function I(k, x).

Finally, it is noteworthy that the corresponding densities derived by Bury
and Bernholtz [2] for the Weibull distribution are special cases of the densities
(3.1) to (3.3) when k = 1, as might be expected from the nature of the g.g.d.
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4. Conclusion

Structural inference theory provides structural probability densities for pa-
rameters of the model, which permits us to determine prediction densities
for some future measurements without making any prior assumption such as
in Bayesian inference. Thus the structural inference is a consistent mathe-
matical framework for statistical inference.
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