
J. Appl. Probab. 1–18 (2024)
doi:10.1017/jpr.2024.8

THE LIMITING SPECTRAL DISTRIBUTION OF LARGE RANDOM
PERMUTATION MATRICES

JIANGHAO LI ,∗ ∗∗
HUANCHAO ZHOU,∗ ∗∗∗
ZHIDONG BAI,∗ ∗∗∗∗ AND

JIANG HU,∗ ∗∗∗∗∗ KLASMOE and Northeast Normal University

Abstract

We explore the limiting spectral distribution of large-dimensional random permuta-
tion matrices, assuming the underlying population distribution possesses a general
dependence structure. Let X = (x1, . . . , xn) ∈C

m×n be an m × n data matrix after self-
normalization (n samples and m features), where xj = (x∗

1j, . . . , x∗
mj)

∗. Specifically, we
generate a permutation matrix Xπ by permuting the entries of xj (j = 1, . . . , n) and
demonstrate that the empirical spectral distribution of Bn = (m/n)UnXπ X∗

π U∗
n weakly

converges to the generalized Marčenko–Pastur distribution with probability 1, where Un

is a sequence of p × m non-random complex matrices. The conditions we require are
p/n → c > 0 and m/n → γ > 0.
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1. Introduction

In multivariate statistical analysis, the sample covariance matrix is an extremely important
statistic; see [1] for more details. Its spectral properties serve as a fundamental theoretical
underpinning for principal component analysis [17]. In situations where the population size
remains ‘small’ while the sample size becomes sufficiently large, the spectral properties are
well understood. Classical probability outcomes reveal that the sample covariance matrix is a
good approximation of the population one. However, when both sample and population sizes
escalate indefinitely, this is not the case. Consequently, modern statistics urgently require a
more robust theoretical framework, possibly with the constraint that their aspect ratio cn :=
p/n approaches a finite limit c ∈ (0, ∞). In this context, the asymptotic spectral properties
of the sample covariance matrix have garnered increasing attention in recent years, initiated
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2 J. LI ET AL.

by [21] and further developed by [4, 18, 26, 29]. Extensive research has been carried out on
models with a general population covariance; see, e.g., [22, 24, 25] for references.

To make the following discussions precise, we detail some notation.

Definition 1. Let A be a p × p Hermitian matrix, and denote its real eigenvalues by λi(A),
i = 1, 2, . . . , p. Then, the empirical spectral distribution (ESD) of A is defined by FA(x) =
(1/p)

∑p
i=1 1(λi(A) ≤ x), where 1(A) is the indicator function of an event A.

Definition 2. If G(x) is a function of bounded variation on the real line, then its Stieltjes
transform is defined by

sG(z) =
∫

1

x − z
dG(x),

where z = u + iv ∈C
+. Further, the Stieltjes transform of FA(x), which is the ESD of a p × p

Hermitian matrix A, is given by

sFA(z) =
∫

1

x − z
dFA(x) = 1

p
tr (A − zIp)−1,

where Ip is the identity matrix.

Remark 1. For more details on the Stieltjes transform, we refer the reader to [13, 23] and
references therein.

We briefly review some relevant theoretical background here. Assume wj = �
1/2
n vj, 1 ≤

j ≤ n, where �
1/2
n is the square root of the non-negative definite Hermitian matrix �n,

and Vn = (v1, v2, . . . , vn) is a p × n matrix. Its elements are independent and identically
distributed (i.i.d.) complex random variables with zero means and unit variances. When
p, n → ∞, p/n → c ∈ (0, ∞), the ESD F�n of �n tends to a non-random probability dis-
tribution H, and the sequence �n is bounded in spectral norm. Then, the limiting spectral
distribution (LSD) of the sample covariance matrix has been well studied in [22, 24]. The
theory states that with probability 1, the ESD FSn of the sample covariance matrix Sn =
(1/n)

∑n
j wjw∗

j = (1/n)�1/2
n VnV∗

n�
1/2
n weakly converges to a non-random distribution F as

n → ∞. Here, W∗
n and V∗

n are the conjugate transpose of matrices Wn and Vn, respectively.
For each z ∈C

+ = {u + iv : v > 0}, s(z) = sF(z) is the unique solution to the equation

s(z) =
∫

1

t(1 − c − czs(z)) − z
dH(t) (1)

in the set {s(z) ∈C : − (1 − c)/z + cs(z) ∈C
+}, where sF(z) is defined as the Stieltjes transform

of F. For more details, we refer the reader to [3, 10, 28] for references.
In the fields of biology and finance, high-dimensional data with very small sample sizes are

common. The permutation approach is an elegant technique in non-parametric statistics dating
back to Fisher’s permutation test [12]. The basic consideration is that permuting the observa-
tions of a sample preserves the magnitude of the sample (i.e. keeps sample moments of all
orders invariant) while weakening the dependence between observations. Therefore, by com-
paring the statistics based on the original sample with that based on the permuted sample,
we can find whether the original sample contains the assumed information. The permuta-
tion approach has been widely used for recovering data permutations from noisy observations
[16, 20], permutation parallel analysis for selecting the number of factors and principal compo-
nents [7, 11], and so on. Given these considerations, the sample covariance matrix of permuted
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The LSD of large random permutation matrices 3

samples may be of particular interest within the field of random matrix theory. In this paper, our
exploration is centered around this compelling matter: the LSD of eigenvalues of random per-
mutation matrices. An investigation into the limiting properties of large-dimensional random
permutation matrices can instigate new challenges for classical statistical theory and propel the
progression of large-dimensional random matrix theory

In what follows, we are ready to propose our model. We reprocess the raw data and
divide the process into the following three steps. First, suppose that the raw data sample
z1, . . . , zn ∈C

m, where zj = (z∗
1j, . . . , z∗

mj)
∗, j = 1, . . . , n. Then, we centralize the raw data

sample. Let z̃j = zj − z̄j · 1, where 1 = (1, . . . , 1)∗ denotes the m-dimensional vector of ones
and z̄j = (1/m)

∑m
i=1 zij. Accordingly, z̃ij = zij − z̄j. Second, we further standardize the sample

by letting

xij = z̃ij√∑m
i=1 |zij − z̄j|2

= zij − z̄j√∑m
i=1 |zij − z̄j|2

.

Thus, we could form the new m × n data matrix X = (x1, . . . , xn) ∈C
m×n (n samples and m

features), where xj = (x∗
1j, . . . , x∗

mj)
∗. Finally, we focus on the self-normalized samples below.

We shuffle each column of X independently by randomly permuting its entries. Each column
has a random permutation independent of all the other columns, and the permutation π j (j =
1, . . . , n) permutes the entries of the jth column of X, where π1, . . . , πn are n independent
permutations of the set {1, . . . , m}. Then, we obtain a permuted data matrix Xπ , so Xπ has
entries (Xπ )ij = x

π
(j)
i ,j

, i = 1, . . . , m, j = 1, . . . , n. Let xπ (1) , xπ (2) , . . . , xπ (n) be the n columns

of Xπ . We propose a random permutation matrix model

Bn = m

n
UnXπ X∗

π U∗
n, (2)

where Un is a sequence of p × m non-random complex matrices.
In the literature, there are a few works on the eigenvalue distribution of random permutation

matrices based on data permutation. The closest studies to this subject are the recent papers
[14, 15], which prove that, with probability 1, the ESD of (m/n)Nπ N�

π for random permutation
matrices Nπ weakly converges to the generalized Marčenko–Pastur distribution. Here, N =
UX, U is an m × m diagonal matrix, and Nπ is the randomly row-permuted matrix of N, i.e.
for each l ∈ {1, . . . , m}, the entries of the lth row of N are randomly permuted. Compared to the
results in [14, 15], we examine the LSD of a covariance matrix comprised of column-permuted
data with a non-permuted matrix Un. Moreover, we do not require Un to be diagonal.

The approach used in this article is similar to that used by our third author in [5], i.e. the
Stieltjes transform sFBn (z) converges with probability 1 as n → ∞ to a limit, which can be
divided into the following three key steps. We first apply the martingale technique to obtain
almost sure convergence of the random part. Secondly, we select a deterministic matrix K to
ensure the convergence of the non-random part. Finally, the existence and uniqueness of the
solution of the system of equations (1) is established.

Throughout the paper, let |A| be the matrix whose (i, j)th entry is the absolute value of
the (i, j)th entry of A. We denote the trace of a matrix A by tr (A). We denote the Hadamard
product of two matrices A and C of the same size by A ◦ C. For a p × n matrix A, the notation
‖A‖ means the spectral norm of the matrix A. The Lp norm of a vector x ∈R

m is defined

as ‖x‖p = (∑m
i=1 |xi|p

)1/p, p ≥ 1. The symbol
a.s.−→ means almost sure convergence, and ‘∗’

denotes the conventional conjugate transpose. We use big-O and little-o notation to express the
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asymptotic relationship between two quantities. And we also use L to denote various positive
universal constants which may be different from one line to the next.

The remainder of the paper is structured as follows. In Section 2 we formulate the main
result. In Section 3, application of this model is presented. Proofs of the main results are given
in Section 4. Appendix A contains some auxiliary lemmas for convenience.

2. Main results

We begin to investigate the asymptotic properties of the ESD of random permutation
matrices in high-dimensional frameworks, under the following assumptions.

Assumption 1. cn = p/n → c ∈ (0, ∞) and γn = m/n → γ ∈ (0, ∞) as n → ∞.

Assumption 2. Let Un be a sequence of p × m non-random complex matrices. The spectral
norm of the matrix Tn = UnU∗

n is uniformly bounded and its ESD converges weakly to a
probability distribution H.

Assumption 3. Let X = (x1, . . . , xn) ∈C
m×n be an m × n random matrix with, for all j ∈

{1, . . . , n},∑m
i=1 xij = 0,

∑m
i=1 |xij|2 = 1, and

∑m
i=1 E|xij|4 → 0 uniformly in j ≤ n, as m → ∞.

The main result of this paper is as follows.

Theorem 1. Suppose that Assumptions 1–3 hold. Then, almost surely, the ESD of Bn weakly
converges to the generalized Marčenko–Pastur distribution, whose Stieltjes transform s(z)
satisfies

s(z) =
∫

1

t(1 − c − czs(z)) − z
dH(t), z ∈C

+. (3)

Remark 2. Note that in this theorem we do not need the entries of X to be i.i.d. Moreover, the
conditions

∑m
i=1 xij = 0 and

∑m
i=1 |xij|2 = 1 hold after self-normalization and are necessary to

make sure that the moment calculation is simpler under a very general dependence structure.

Remark 3. The condition
∑m

i=1 E|xij|4 → 0 is straightforward when the fourth moment of the
raw data is finite uniformly, by the relationship between uniformly integrable and moment.

Remark 4. When the entries xij of X are non-random, we apply the same shuffling process to
each column of X. Theorem 1 apparently still holds.

Specifically, considering a non-random normalized vector x = (x1, x2, . . . , xm)�, we per-
mute the entries of x randomly n times to obtain random permutation matrices Xπ . The
permutation method is similar to sampling without replacement from finite populations. Thus,
the following result is in line with Application 2.3 of the main theorem investigated by [5].

Corollary 1. Let Xπ = (Xπ )ij ∈R
m×n be a sequence of random permutation matrices with

independent columns, where Xπ is taken with respect to the non-random vector x =
(x1, x2, . . . , xm)�. Suppose that n, m → ∞ such that γn = m/n → γ > 0 and the vector x sat-
isfies ‖x‖2

2 = 1, ‖x‖4
4 → 0, and

∑m
i=1 xi = 0. Then, with probability 1, the empirical spectral

distribution of Xπ X�
π converges weakly to the Marčenko–Pastur distribution, whose Stieltjes

transform s = s(z) satisfies

s = (1 − γ − zγ ) +√(1 − γ − zγ )2 − 4γ 2z

2zγ
, z ∈C

+.
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3. Application of the model

In this section, we discuss a potential application of the introduced model. Assume that
W1, . . . , Wn are n observations from the AR (p) process defined as Wt − φ1Wt−1 − · · · −
φpWt−p = Zt, where φ1, . . . , φp are real constants, (1 − φ1z − · · · − φpzp) �= 0 for |z|� 1, and

{Zt} i.i.d.∼ (0, σ 2), i.e. {Zt} are i.i.d. random variables with mean 0 and covariance σ 2 > 0. Recall
that [8, 9] advocated a selection algorithm by employing a data-driven penalty to select the
proper model among AR(p). The algorithm is defined as follows. First, choose a fixed integer
K, which is believed to be greater than the true order p, and compute the Yule–Walker estimates
φ̂K1, . . . , φ̂KK, σ̂ 2

K from the observed data, {Wt}n
t=1. The residual sequence is given by Ẑt =

Wt − φ̂K1Wt−1 − · · · − φ̂KKWt−K for t = K + 1, . . . , n. Centralize and standardize the resid-
uals by subtracting the sample mean Z̄t = 1/(n − K)

∑m
t=K+1 Ẑt and standardized deviation

snt =
√

1/(n − K − 1)
∑n

t=K+1 (̂Zt − Z̄t)2. For simplicity, we use the same notation {̂Zt}n
K+1

for the normalized residuals. Then, choose a positive intege K1 ≤ K for each k = 0, . . . , K1,
select proper AR coefficients φ̃k1, . . . , φ̃kk and construct a pseudo-AR (k) series Y (k)

1 , . . . , Y (k)
n

from the model Y (k)
t − φ̃k1Y (k)

t−1 − · · · − φ̃kkY (k)
t−k = Ẑ∗

t , where {Ẑ∗
t } is an i.i.d. sequence sampled

from the normalized residuals, {̂Zt}n
K+1. The case k = 0 corresponds to Y (0)

t = Ẑ∗
t . Note that

φ̃k1, . . . , φ̃kk are user-selected coefficients in accordance with the real requirement of accu-
racy. Next, apply a larger set of pseudo-time series to approximate the range of correct penalty
factors, and then ultimately make the estimated order of the model more accurate.

In fact, the data-driven selection criterion can easily extend to the causal ARMA (p, q)
process satisfying the recursive equation �(B)Wt = �(B)Zt, {Zt} ∼ WN(0, σ 2), where the
polynomial �(z) := 1 − φ1z − · · · − φpzp satisfies the causality condition �(z) �= 0 for |z|�
1, �(z) := 1 + θ1z + · · · + θqzq, WN(0, σ 2) stands for white noise with zero mean and
variance σ 2, and B as usual denotes the backward shift operator. By [6, Theorem 3.1.1
(Causality Criterion), p. 85], the causal ARMA (p, q) process has the representation Wt =
�−1(B)�(B)Zt := 
(B)Zt. Thus, we have the desired representation Wt =∑∞

i=0 
iZt−i, where
the sequence {
i} is determined by 
(z) =∑∞

i=0 
izi = �(z)/�(z), |z| ≤ 1.
We deal with the causal ARMA (p, q) process similarly to the AR process. For the pair (K,

Q), where it is believed that K ≥ p and Q ≥ q, we could estimate the coefficients φ̂k and θ̂s from
the observed data, 1 ≤ k ≤ K, 1 ≤ s ≤ Q. Then, centralize and normalize the residuals after
computing them using the estimated coefficients. Note that each column is a time series, so
the coefficients are estimated by column, and thus the residuals are also calculated by column.
Next, choose positive integers K1 ≤ K, Q1 ≤ Q, for each pair (k, s) and construct the pseudo-
ARMA (k, s) series Y (k,s)

j,t for k = 1, . . . , K1, s = 1, . . . , Q1 from the model

Y (k,s)
j,t = 
̃(B)Ẑ∗

t = 
̃j,0Ẑ∗
j,t + 
̃j,1Ẑ∗

j,t−1 + 
̃j,2Ẑ∗
j,t−2 + · · · , (4)

where the coefficients 
̃(B) are determined by the preselected coefficients of �(B) and �(B)
with the relation 
̃(B) = �−1(B)�(B), and set the residuals {Ẑ∗

t } to be sampled from the
normalized residuals. Ẑ∗

j,t is assigned to be 0 if there is no such residual. Say, if the last

coefficient is too small, the order of the model would be a lower one. Note that 
̂(B) is an
infinite series and there are only finitely many residuals, so one has to truncate the backward
operator 
̂(B) to a finite sum, say the first m terms. In that way, the jth reconstructed series
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Y(k,s)
j = (Y (k,s)

j,1 , . . . , Y (k,s)
j,m )′ in (4) can be written as

Y(k,s)
j = �̃Ẑ

∗
j for k = 1, . . . , K1, s = 1, . . . , Q1, (5)

where

�̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


̃j,0 0 0 · · · 0


̃j,1 
̃j,0 0 . . . 0


̃j,2 
̃j,1 
̃j,0 · · · 0

... · · · · · · . . .
...

· · · · · · · · · · · · 
̃j,0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

To avoid confusion, it is worth noting once more that the elements in the matrices �̃ are prese-
lected here, similar to the way they were handled in [8, 9]. Inspired by (5), the sample from the
normalized residuals can also be regarded as a procedure for permuting the normalized resid-
ual sequences. Thus, the construction of pseudo-time series may benefit from a permutation
of the normalized residuals to reduce sampling variability. This approach introduces increased
randomness and enables the construction of a larger set of pseudo-series. This, in turn, pro-
vides a sound rationale for our proposed model (2). That is, the columns of Xn are permuted
(corresponding to the permuted residuals), while those of Un (corresponding to the preselected
coefficient matrices �̃) remain as is.

An attractive model order estimation technique was developed in [19, 27] based on the
minimum eigenvalue of a covariance matrix derived from the observed data, which avoided
the need for estimating the model parameters. In conjunction with the above discussion, we
may make it feasible to estimate the true orders of the model by using the minimum eigen-
value of the covariance matrix of a larger set of pseudo-sequences. Consequently, the results
established in this paper could offer useful insights for the theoretical analysis pertaining to
data-driven model selection for order detection in time series. This prospect is indeed intrigu-
ing for future research. Nevertheless, the issue of model selection falls outside the scope of
random matrix theory. For this reason, our discussion is limited to a straightforward descrip-
tion of the structure of the reconstructed models in this paper. The further investigation of the
spectral properties of large-dimensional random permutation matrices in order determination
for the causal ARMA (p, q) process will be left for future work.

4. Proof of the main result

Proof of Theorem 1. Throughout the proof, for any z we write z = u + iv, where u, v are
the real and imaginary parts of z. Since z ∈C

+, we always have v > 0. For convenience, in the
following we write

Bn := m

n
UnXπ X∗

π U∗
n = m

n

n∑
k=1

Unxπ (k) x∗
π (k) U

∗
n, Bk,n :=

(
n∑

k=1

rkr∗
k

)
− rkr∗

k ,

and rk = √
m/nUnxπ (k) , k = 1, . . . , n. Note that the matrix Bk,n is obtained from Bn with rk

removed. Recall that sFBn (z) = sn(z) = p−1 tr ((m/n)UnXπ X∗
π U∗

n − zIp)−1 = p−1 trB−1
n , where
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Bn := Bn − zIp. We also write Bk,n := Bk,n − zIp. With this observation, we can make the
following moment calculations:

Ex
π

(1)
i ,j

=E

∑m
i=1 xij

m
= 0,

E|x
π

(1)
i ,j

|2 =E

∑m
i=1 |xij|2

m
= 1

m
,

Ex
π

(1)
i1

,j
x
π

(1)
i2

,j
=E

∑m
i1 �=i2 xi1jxi2j

m(m − 1)
= −1

m(m − 1)
, i1 �= i2.

We further write �π := Exπ (j) x∗
π (j) for j = 1, . . . , n, which is in fact independent of j and

will be denoted as �π = (σil) for later use. Write ˜�π = Im − (1/m)11∗, which is in fact (m −
1)�π , i.e. �π = (1/(m − 1))˜�π , and 1 = (1, . . . , 1)∗.

According to [3, Theorem B.9], the almost sure convergence of the Stieltjes transform sn(z)
to s(z) ensures that the ESD weakly converges to a probability distribution almost surely. Thus,
we proceed with the proof by the following two steps:

(i) sn(z) −Esn(z)
a.s.−→ 0;

(ii) Esn(z) → s(z), which satisfies (3).

Step (i): sn(z) −Esn(z)
a.s.−→ 0. Let Ek( · ) =E( · | xπ (k+1), . . . , xπ (n) ) denote the conditional

expectation with respect to the σ -field generated by xπ (k+1) , . . . , xπ (n) . It follows that Esn(z) =
En(sn(z)) and sn(z) =E0(sn(z)). Similar to [2], we can write sn(z) −Esn(z) as the sum of
martingale differences, i.e.

sn(z) −Esn(z) =E0sn(z) −Ensn(z)

=
n∑

k=1

(Ek−1sn(z) −Eksn(z))

= 1

p

n∑
k=1

(Ek−1 −Ek)
(
trB−1

n − trB−1
k,n

)= 1

p

n∑
k=1

(Ek−1 −Ek)εk,

where εk := trB−1
n − trB−1

k,n. Notice that

B−1
n =B−1

k,n − B
−1
k,n(rkr∗

k )B−1
k,n

1 + r∗
kB−1

k,nrk
.

By Lemma 1, we have

|εk| ≤
‖B−1

k,nrk‖2

|1 + r∗
kB−1

k,nrk|
≤ v−1.

It follows that (Ek−1 −Ek)εk forms a bounded martingale difference sequence. By the
Burkholder inequality (see Lemma 2), this yields

E|sn(z) −Esn(z)|q ≤ Kqp−q
E

(
n∑

k=1

|(Ek−1 −Ek)γk|2
)q/2

≤ Kq

(
2

v

)q

p−q/2
(

p

n

)−q/2

,
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which implies that it is summable for q > 2. By the Borel–Cantelli lemma, sn(z) −Esn(z) =
p−1∑n

k=1 (Ek−1 −Ek)εk
a.s.−→ 0 is obtained.

Step (ii): Esn(z) → s(z). The fundamental technique of the approach is to surmise the determin-
istic equivalent of sn(z) by writing it in the form p−1 tr (K − zIp)−1 at first, where K is assumed
to be deterministic. Then, it will be performed by taking the difference p−1

E tr (Bn − zIp)−1 −
p−1

E tr (K − zIp)−1 and, during the calculation, determining K such that the difference tends
to zero. Define

K = Un ˜�π U∗
n

(
1 + m

n
E tr (U∗

nB−1
n Un�π )

)−1

.

Since

(Bn − zIp) − (K − zIp) =
{

n∑
i=1

rkr∗
k

}
− K,

by (20) of Lemma 3 and the resolvent identity A−1 − C−1 = −A−1(A − C)C−1 for any p × p
invertible matrices A and C, we have

(K − zIp)−1 − (Bn − zIp)−1

= (K − zIp)−1((Bn − zIp) − (K − zIp))(Bn − zIp)−1

=
{

n∑
k=1

(K − zIp)−1rkr∗
k (Bn − zIp)−1

}
− (K − zIp)−1K(Bn − zIp)−1

=
{

n∑
k=1

(K − zIp)−1(rkr∗
k )B−1

k,n

1 + r∗
kB−1

k,nrk

}
− (K − zIp)−1K(Bn − zIp)−1. (6)

Let T0
n = Ip and T1

n = Tn. Multiplying (1/p)Tl
n for l = 0, 1 on both sides of (6), and then taking

the trace and expectation, we obtain that

1

p
E tr Tl

n(K − zIp)−1 − 1

p
E tr Tl

n(Bn − zIp)−1

= 1

p
E

{
n∑

k=1

r∗
kB−1

k,nTl
n(K − zIp)−1rk

1 + r∗
kB−1

k,nrk

}
− 1

p
E tr Tl

n(K − zIp)−1K(Bn − zIp)−1. (7)

Note that

E

∣∣∣∣(1 + r∗
kB−1

k,nrk
)−(1 + m

n
E tr U∗

nB−1
n Un�π

)∣∣∣∣2
≤E

∣∣∣∣r∗
kB−1

k,nrk − m

n
tr U∗

nB−1
k,nUn�π

+ m

n
tr U∗

nB−1
k,nUn�π − m

n
tr U∗

nB−1
n Un�π

+ m

n
tr U∗

nB−1
n Un�π − m

n
E tr U∗

nB−1
n Un�π

∣∣∣∣2
≤ 3γ

(
E
∣∣x∗

π (k) U
∗
nB−1

k,nUnxπ (k) − tr U∗
nB−1

k,nUn�π

∣∣2 (8)
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+E

∣∣∣∣ 1

m − 1
tr U∗

nB−1
k.nUn ˜�π − 1

m − 1
tr U∗

nB−1
n Un ˜�π

∣∣∣∣2 (9)

+E

∣∣∣∣ 1

m − 1
tr U∗

nB−1
n Un ˜�π − 1

m − 1
E tr U∗

nB−1
n Un ˜�π

∣∣∣∣2), (10)

where the last inequality follows from Jensen’s inequality. For (8), writing B = U∗
nB−1

k,nUn =
(bil) and �π = (σil), we can obtain that

E
∣∣x∗

π (k) U
∗
nB−1

k,nUnxπ (k) − tr U∗
nB−1

k,nUn�π

∣∣2 =E

∣∣∣∣∣
m∑

i=1

m∑
l=1

bil
(
x
π

(k)
i ,k

x
π

(k)
l ,k

− σil
)∣∣∣∣∣

2

→ 0. (11)

Since the calculation of (11) is tedious, we postpone it to the appendix for interested readers.
For (9), it follows from Lemma 1 that, as m → ∞,

∣∣∣∣ 1

m − 1
tr U∗

nB−1
k.nUn ˜�π − 1

m − 1
tr U∗

nB−1
n Un ˜�π

∣∣∣∣2 ≤
∥∥U∗

n
˜�π Un

∥∥2

(m − 1)2v2
→ 0,

which implies that (9) converges to zero. For (10), by the similar martingale decomposition in
Step (i) and Lemma 2, we have, as n → ∞,

E

∣∣∣∣ 1

m − 1
tr U∗

nB−1
n Un ˜�π − 1

m − 1
E tr U∗

nB−1
n Un ˜�π

∣∣∣∣2

≤ K2(m − 1)−2
E

(
n∑

k=1

∣∣(Ek−1 −Ek)( tr U∗
n
˜�π UnB−1

n − tr U∗
n
˜�π UnB−1

k,n)
∣∣2)

≤ K2

(
2
∥∥U∗

n
˜�π Un

∥∥
v

)2

(m − 1)−1
(

m − 1

n

)−1

→ 0.

Therefore, by combining (8), (9), and (10), we obtain

E

∣∣∣∣(1 + r∗
kB−1

k,nrk
)−(1 + m

n
E tr U∗

nB−1
n Un�π

)∣∣∣∣2 = o(1). (12)

Moreover, note that ∣∣∣∣ 1

1 + r∗
kB−1

k,nrk

∣∣∣∣≤ |z|
v

.
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It then follows from (7) and (12) that

1

p
E

{
n∑

k=1

r∗
kB−1

k,nTl
n(K − zIp)−1rk

1 + r∗
kB−1

k,nrk

}
− 1

p
E tr Tl

n(K − zIp)−1K(Bn − zIp)−1

= 1

p

n∑
k=1

E

{
r∗

kB−1
k,nTl

n(K − zIp)−1rk

(
1 + m

n
E tr U∗

nB−1
n Un�π

)−1}

− 1

p
E trB−1

n Tl
n(K − zIp)−1K + o(1)

= 1

np

n∑
k=1

E

{
trB−1

k,nTl
n(K − zIp)−1Un ˜�π U∗

n

(
1 + m

n
E trB−1

n Un�π U∗
n

)−1}

− 1

p
E trB−1

n Tl
n(K − zIp)−1K + o(1)

= 1

np

n∑
k=1

E
{

trB−1
k,nTl

n(K − zIp)−1K
}− 1

p
E trB−1

n Tl
n(K − zIp)−1K + o(1)

= 1

np

n∑
k=1

{
E trB−1

k,nTl
n(K − zIp)−1K −E trB−1

n Tl
n(K − zIp)−1K

}+ o(1) = o(1),

where for the last equality we used Lemma 1 again. Finally, we deduce that, for l = 0, 1,

1

p
E tr Tl

n(K − zIp)−1 − 1

p
E tr Tl

n(Bn − zIp)−1 → 0. (13)

Write

(K − zIp)−1 =
(

Un ˜�π U∗
n

1 + (m/n)E tr U∗
nB−1

n Un�π

− zIp

)−1

=
(

Tn

1 + (m/n)E tr U∗
nB−1

n Un�π

− zIp − (1/m)Un11∗U∗
n

1 + (m/n)E tr U∗
nB−1

n Un�π

)−1

.

For any real λ > 0, it is easy to show that

Im
(
λ + z(1 + m

n
E tr U∗

nB−1
n Un�π )

)
> v (z ∈C

+).

Then, we can check that∥∥∥∥( Tn

1 + (m/n)E tr U∗
nB−1

n Un�π

− zIp

)−1∥∥∥∥≤ max
t≥0

∣∣∣∣ t

1 + (m/n)E tr U∗
nB−1

n Un�π

− z

∣∣∣∣−1

≤ max
t≥0

∣∣∣∣ 1 + (m/n)E tr U∗
nB−1

n Un�π

t − z(1 + (m/n)E tr U∗
nB−1

n Un�π )

∣∣∣∣≤ L/v,
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where the constant L may change from one appearance to the next. Consequently, we could
find that

1

p
E tr

[
(1/m)1∗U∗

n((Tn)/(1 + (m/n)E tr U∗
nB−1

n Un�π ) − zIp)−2Un1

1 + (m/n)E tr U∗
nB−1

n Un�π

]
→ 0. (14)

By using (21) from Lemma 3 and (14), we can show that

1

p
E

{
tr

(
Tn

1 + (m/n)E tr U∗
nB−1

n Un�π

− zIp

)−1

− trB−1
n

}
→ 0. (15)

Similarly, by using (21) from Lemma 3 again and Lemma 4, we have ‖(K − zIp)−1‖ ≤ L. Thus,
we obtain ∣∣∣∣1p E tr (1/m)Un11∗U∗

n(K − zIp)−1

1 + (m/n)E tr U∗
nB−1

n Un�π

∣∣∣∣∣→ 0. (16)

Notice that ∣∣∣∣1pE tr
1

m
Un11∗U∗

nB−1
n

∣∣∣∣→ 0. (17)

By (16) we obtain

1 + z

p
E

{
tr

(
Un ˜�π U∗

n

1 + (p/n)E tr U∗
nB−1

n Un�π

− zIp

)−1}
− (1/p)E tr TnB−1

n

1 + (m/n)E tr U∗
nB−1

n Un�π

→ 0

as n → ∞. Then, combining (13), (15), and (17), it follows that

1 + zEsn(z) − (1/p)E tr U∗
n
˜�π UnB−1

n

1 + (m/n)E tr U∗
nB−1

n Un�π

→ 0,

where we utilized the identity relation between �π and ˜�π . Consequently, we deduce that

1 − cn(1 + zEsn(z)) = 1

1 + (m/n)E tr U∗
nB−1

n Un�π

+ o(1).

Substituting this into (15), we obtain

1

p
E{tr (Tn(1 − cn(1 + zEsn(z))) − zIp)−1} −Esn(z) → 0. (18)

For any fixed z ∈C
+, Esn(z) = p−1

E trB−1
n is a bounded sequence. Thus, for any subsequence

{n′}, there is a subsubsequence {n′′} such that Esn′′ (z) converges to a limit s(z). Then, from
(18), s(z) satisfies

s(z) =
∫

1

t(1 − c − czs(z)) − z
dH(t), z ∈C

+. (19)

In [22], it is proved that for any z ∈C
+ (19) has a unique solution in C

+. Thus, we conclude
that Esn(z) tends to a unique s(z). We have therefore finished the proof of Theorem 1. �
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Appendix A. Supporting results

In this appendix we list some results that are needed in the proof.

Lemma 1. ([24, Lemma 2.6].) Let A and C be p × p Hermitian matrices. For τ ∈R, q ∈C
p,

and z = u + iv ∈C
+,

| tr ((C − zIn)−1 − (C + τqq∗ − zIn)−1)A| ≤ ‖A‖
v

.

Lemma 2. (Burkholder inequality in [3, Lemma 2.12].) Let {Xk} be a complex martingale
difference sequence with respect to the increasing σ -field {Fk}. Then, for q > 1,

E

∣∣∣∣∑Xk

∣∣∣∣q ≤ KqE

(∑
|Xk|2

)q/2

.

Lemma 3. For any z ∈C with Im(z) �= 0, any Hermitian matrix C ∈C
p×p, and α, β ∈C

p

where C + αα∗ − zIp, C + αβ∗ − zIp, and C − zIp are invertible, we have

α∗(C + αα∗ − zIp)−1 = α∗(C − zIp)−1

1 + α∗(C − zIp)−1α
, (20)

(C + αβ∗ − zIp)−1 − (C − zIp)−1 = − (C − zIp)−1αβ∗(C − zIp)−1

1 + β∗(C − zIp)−1α
. (21)

The formula in (20) can be regarded as a special case of [24, (2.2)], and (21) is a direct
result of the resolvent identity

(A + pq∗)−1 = A−1 − A−1pq∗A−1

1 + q∗A−1p
,

where A is a p × p Hermitian matrix and p, q ∈C
p.

Lemma 4. (Weyl’s inequality) Let A and C be p × p Hermitian matrices. Let λ1(C) ≥ λ2(C) ≥
· · · ≥ λp(C) denote the p eigenvalues of C, and λi(A) the ith eigenvalue of A. Then λi(A) +
λp(C) ≤ λi(A + C) ≤ λi(A) + λ1(C).

Proof of (11). Before proceeding, let us introduce some notation. Let ek be the m × 1 vec-
tor with the kth element being 1 and the others zero. In addition, we will use Assumption 3
repeatedly, often without mention. For k = 1, . . . , n, let

σil =

⎧⎪⎪⎨⎪⎪⎩
Ex

π
(k)
i ,k

x
π

(k)
l ,k

=E

∑m
i �=l xikxlk

m(m − 1)
= −1

m(m − 1)
, i �= l;

Ex
π

(k)
i ,k

x
π

(k)
i ,k

=E

∑m
i=1 xikxik

m
= 1

m
, i = l.

We start with the quantity

E

∣∣∣∣∣
m∑

i=1

m∑
l=1

bil
(
x
π

(k)
i ,k

x
π

(k)
l ,k

− σil
)∣∣∣∣∣

2

=

m∑
i1=1

m∑
i2=1

m∑
l1=1

m∑
l2=1

bi1l1 bi2l2E
(
x
π

(k)
i1

,k
x
π

(k)
l1

,k
− σi1l1

)(
x
π

(k)
i2

,k
x
π

(k)
l2

,k
− σi2l2

)
.
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Note that the matrix B = U∗
nB−1

k,nUn = (bil) is independent of xπ (k) , and its spectral norm is
uniformly bounded. In this expression, the random variables with the same first index (i, l) are
dependent. Thus there are now five cases, depending on how many distinct indices there are
among them.

One unique index: i1 = i2 = l1 = l2. In this case, we can write the summation as

I =
m∑

i1=1

|bi1i1 |2 ·E(∣∣x
π

(k)
i1

,k

∣∣2 − σi1i1

)2 =
m∑

i1=1

|bi1i1 |2 · (E∣∣x
π

(k)
i1

,k

∣∣4 − σ 2
i1i1

)
,

where

E
∣∣x

π
(k)
i1

,k

∣∣4 − σ 2
i1i1 = E

∑m
i1=1 |xi1k|4

m
− 1

m2
= − 1

m2
+ o(1/m).

Here we used the condition
∑m

i=1 E|xik|4 → 0 (k = 1, . . . , n). Note that

m∑
i1

∣∣bi1i1

∣∣2 =
m∑

i1=1

(
e∗

i1 Bei1

) (
e∗

i1 Bei1

)
≤ m ‖B‖ · ‖B‖.

Thus, we conclude that I = o(1).

Two distinct indices. i1 = i2 = l1 �= l2 and i1 = i2 = l2 �= l1 are symmetric cases; i1 = l2 = l1 �=
i2 and l1 = i2 = l2 �= i1 are symmetric cases. Then we have that

II = 2
m∑

i1=i2=l2 �=l1

bi1l1bi1i1 ·E(x
π

(k)
i1

,k
x
π

(k)
l1

,k
− σi1l1

)(
x
π

(k)
i1

,k
x
π

(k)
i1

,k
− σi1i1

)

+ 2
m∑

l1=i2=l2 �=i1

bi1l1bl1l1 ·E(x
π

(k)
i1

,k
x
π

(k)
l1

,k
− σi1l1

)(
x
π

(k)
l1

,k
x
π

(k)
l1

,k
− σl1l1

)
,

where for i1 �= l1 we have

E
(
x
π

(k)
i1

,k
x
π

(k)
l1

,k
− σi1l1

)(
x
π

(k)
l1

,k
x
π

(k)
l1

,k
− σl1l1

)=E
(
x
π

(k)
i1

,k
x
π

(k)
l1

,k
− σi1l1

)(
x
π

(k)
i1

,k
x
π

(k)
i1

,k
− σi1i1

)
=Ex

π
(k)
i1

,k
(x

π
(k)
i1

,k
)2x

π
(k)
l1

,k
− −1

m2(m − 1)

= −E
∑m

i1=1 |xi1k|4
m(m − 1)

− −1

m2(m − 1)

= 1

m2(m − 1)
+ o(1/m2).

Note that∣∣∣∣∣ ∑
i1 �=l1

bi1l1bl1l1

∣∣∣∣∣=
∣∣∣∣∣ ∑

i1 �=l1

bi1l1 bi1i1

∣∣∣∣∣=
∣∣∣∣∣

m∑
i1=1

bi1i1 · e∗
i1B(1 − ei1 )

∣∣∣∣∣≤ m2‖B‖ · ‖B‖.

Thus, we obtain II = o(1).
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Two distinct indices: i1 = i2 �= l1 = l2, i1 = l1 �= l2 = i2, and i1 = l2 �= i2 = l1. Here we could
simplify the summation as III = III1 + III2 + III3, where

III1 =
m∑

i1=i2 �=l1=l2

|bi1l1 |2 ·E(x
π

(k)
i1

,k
x
π

(k)
l1

,k
− σi1l1

)2;

III2 =
m∑

i1=l1 �=l2=i2

bi1i1 bi2i2 ·E(x
π

(k)
i1

,k
x
π

(k)
i1

,k
− σi1i1

)(
x
π

(k)
i2

,k
x
π

(k)
i2

,k
− σi2i2 );

III3 =
m∑

i1=l2 �=i2=l1

bi1i2 bi2i1 ·E(x
π

(k)
i1

,k
x
π

(k)
i2

,k
− σi1i2

)(
x
π

(k)
i2

,k
x
π

(k)
i1

,k
− σi2i1

)
.

When i1 �= i2, we can write

E
(
x
π

(k)
i1

,k
x
π

(k)
i2

,k
− σi1i2

)2 =Ex2
π

(k)
i1

,k

(
x
π

(k)
i2

,k

)2 − σ 2
i1i2

= E
∑p

i1 �=i2
x2

i1k(xi2k)2

m(m − 1)
− 1

m2(m − 1)2
= O(m−2);

E
(
x
π

(k)
i1

,k
x
π

(k)
i1

,k
− σi1i1

)(
x
π

(k)
i2

,k
x
π

(k)
i2

,k
− σi2i2

)=E
∣∣x

π
(k)
i1

,k

∣∣2∣∣x
π

(k)
i2

,k

∣∣2 − σi1i1σi2i2

= E
∑m

i1 �=i2 |xi1k|2|xi2k|2
m(m − 1)

− 1

m2

= E
(∑m

i1=1 |xi1k|2
)2 −E

(∑m
i1=1 |xi1k|4

)
m(m − 1)

− 1

m2

= o(1/m2).

Here, III2 = o(1) follows from the fact that E
∑m

i1=1 |xi1k|2 = 1. As to the term Ex2
π

(k)
i1

,k

(
x
π

(k)
i2

,k

)2,

we check that ∣∣∣∣∣E∑
i1,i2

x2
i1k(xi2k)2

∣∣∣∣∣≤E

∑
i1,i2

|x2
i1k||xi2k|2 ≤ 1. (22)

Note that ∑
i1 �=l1

|bi1l1 |2 =
∣∣∣∣∣ tr BB∗ −

m∑
i1=1

|bi1i1 |2
∣∣∣∣∣≤ Lm‖B‖ · ‖B‖,

∣∣∣∣∣ ∑
i1 �=l1

bi1i2bi2i1

∣∣∣∣∣=
∣∣∣∣∣ tr BB −

m∑
i=1

|bi1i1 |2
∣∣∣∣∣≤ Lm‖B‖ · ‖B‖.

Thus, as m → ∞, we could obtain

III1 + III3 ≤
m∑

i1 �=l1

bi1l1bi1l1

∣∣Ex2
π

(k)
i1

,k

(
x
π

(k)
l1

,k

)2∣∣+ m∑
i1 �=i2

bi1i2 bi2i1

∣∣Ex2
π

(k)
i1

,k

(
x
π

(k)
i2

,k

)2∣∣= o(1).

Eventually, we get III = o(1).
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Three distinct indices. In this case, we divide it into six classes, writing I1 = {i1 = i2, other
indices different}; I2 = {i1 = l1, other indices different}; I3 = {i1 = l2, other indices different};
I4 = {l1 = i2, other indices different}; I5 = {i2 = l2, other indices different}; and I6 = {l1 = l2,
other indices different}. In what follows, we proceed to deal with the summation of three
distinct indices, IV = IV1 + IV2 + IV3 + IV4 + IV5 + IV6. Here,

IV1 =
m∑

l1,i1,i2,l2∈I1

bi1l1 bi1l2 ·E(x
π

(k)
i1

,k
x
π

(k)
l1

,k
− σi1l1

)(
x
π

(k)
i1 ,k

x
π

(k)
l2

,k
− σi1l2

)
;

IV2 =
m∑

l1,i1,i2,l2∈I2

bi1i1 bi2l2 ·E(∣∣x
π

(k)
i1

,k

∣∣2 − σi1i1

)(
x
π

(k)
i2

,k
x
π

(k)
l2

,k
− σi2l2

)
;

IV3 =
m∑

l1,i1,i2,l2∈I3

bi1l1 bi2i1 ·E(x
π

(k)
i1

,k
x
π

(k)
l1

,k
− σi1l1

)(
x
π

(k)
i2

,k
x
π

(k)
i1

,k
− σi2i1

)
;

IV4 =
m∑

l1,i1,i2,l2∈I4

bi1l1 bl1l2 ·E(x
π

(k)
i1

,k
x
π

(k)
l1

,k
− σi1l1

)(
x
π

(k)
l1

,k
x
π

(k)
l2

,k
− σl1l2

)
;

IV5 =
m∑

l1,i1,i2,l2∈I5

bi1l1 bi2i2 ·E(x
π

(k)
i1

,k
x
π

(k)
l1

,k
− σi1l1

)(∣∣x
π

(k)
i2

,k

∣∣2 − σi2i2

)
;

IV6 =
m∑

l1,i1,i2,l2∈I6

bi1l1 bi2l1 ·E(x
π

(k)
i1

,k
x
π

(k)
l1

,k
− σi1l1

)(
x
π

(k)
i2

,k
x
π

(k)
l1

,k
− σi2l1

)
.

By carefully checking the expectations, we point out that the main components of the above
expectations are as follows:

For all l1, i1, i2, l2 ∈I1, we have

E
∣∣x

π
(k)
i1

,k

∣∣2x
π

(k)
l1

,k
x
π

(k)
l2

,k
= 1

m(m − 1)(m − 2)
E

m∑
l1,i1,i2,l2∈I1

|xi1k|2xl1kxl2k

= − 1

m(m − 1)(m − 2)

[
E

m∑
i1 �=l1

|xi1k|2|xl1k|2 −E

m∑
i1

|xi1k|4
]

= O(m−3),

where we used the fact that E
∑m

i1=1 |xi1k|2 = 1.
For all l1, i1, i2, l2 ∈I3, we similarly obtain

E
(
x
π

(k)
i1

,k

)2
x
π

(k)
l1

,k
x
π

(k)
i2

,k
= 1

m(m − 1)(m − 2)
E

m∑
l1,i1,i2,l2∈I3

(xi1k)2xl1kxi2k

= − 1

m(m − 1)(m − 2)

[
E

m∑
i1 �=l1

(xi1k)2x2
l1k −E

m∑
i1

|xi1k|4
]

= O(m−3),

where we used (22) again.
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And then, for all l1, i1, i2, l2 ∈I4, E
(
x
π

(k)
l1

,k

)2
x
π

(k)
l2

,k
x
π

(k)
i1

,k
= O(m−3) is immediate. Note that

IV2 = IV5 = o(1) since

∣∣∣∣∣
m∑

l1,i1,i2,l2∈I2

bi1i1 bi2l2

∣∣∣∣∣
=
∣∣∣∣∣ tr B · 1∗B1 −

m∑
i1=l1=i2,l2

bi1i1 bi1l2 −
m∑

i1=l1=l2,i2

bi1i1 bi2i1 +
m∑

i1=l1=i2=l2

bi1i1 bi1i1

∣∣∣∣∣
=
∣∣∣∣∣ tr B · 1∗B1 − 1∗(BdB)1 − 1∗(BdB)1 +

m∑
i=1

|bii|2
∣∣∣∣∣= O(m2),

where Bd is the diagonal matrix of the diagonal entries of B. Then, we turn to analyze the
remainder terms. It follows that∣∣∣∣∣

m∑
l1,i1,i2,l2∈I1

bi1l1 bi1l2

∣∣∣∣∣=
∣∣∣∣∣1∗BB∗1 − 1∗BdB1 − 1BBd1 +

m∑
i=1

|bii|2
∣∣∣∣∣= O(m2),

∣∣∣∣∣
m∑

l1,i1,i2,l2∈I3

bi1l1 bi2i1

∣∣∣∣∣=
∣∣∣∣∣1∗BB1 − 1∗BBd1 − 1∗BdB∗1 +

m∑
i=1

|bii|2
∣∣∣∣∣= O(m2).

Similarly, we can obtain
∣∣∑m

l1,i1,i2,l2∈I4
bi1l1 bi2i1

∣∣= O(m2) and
∣∣∑m

l1,i1,i2,l2∈I6
bi1l1 bi2i1

∣∣=
O(m2). Hence, IV1 + IV3 + IV4 + IV6 = O(m−1). Thus, we conclude that the overall terms
IV = o(1).

Four distinct indices: i1 �= i2 �= l1 �= l2. In this case, we can write the summation as

V =
p∑

i1 �=i2 �=l1 �=l2

bi1l1 bi2l2 ·E(x
π

(k)
i1

,k
x
π

(k)
l1

,k
− σi1l1

)(
x
π

(k)
i2

,k
x
π

(k)
l2

,k
− σi2l2

)
.

For i1 �= i2 �= l1 �= l2, we write

E
(
x
π

(k)
i1

,k
x
π

(k)
l1

,k
− σi1l1

)(
x
π

(k)
i2

,k
x
π

(k)
l2

,k
− σi2l2

)=Ex
π

(k)
i1 ,k

x
π

(k)
i2

,k
x
π

(k)
l1

,k
x
π

(k)
l2

,k
− 1

m2(m − 1)2

= E
∑m

i1 �=i2 �=l1 �=l2 xi1kxl1kxl2kxi2k

m(m − 1)(m − 2)(m − 3)

− 1

m2(m − 1)2
= O(m−4).
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Note that∑
i1 �=i2 �=l1 �=l2

bi1l1 b̄i2l2

=
[ ∑

{i1,l1,i2,l2}
−
∑

{i1=i2}
−
∑

{i1=l1}
−
∑

{i1=l2}
−
∑

{l1=i2}
−
∑

{l1=l2}
−
∑

{i2=l2}
+

∑
{i1=i2=l1}

+
∑

{i1=i2=l2}

+
∑

{i2=l1=l2}
+

∑
{i1=l1=l2}

+
∑

{i1=i2,l1=l2}
+

∑
{i1=l1,i2=l2}

+
∑

{i1=l2,i2=l1}
−

∑
{i1=i2=l1=l2}

]
(bi1l1 bi2l2 )

= (1∗B1)(1∗B1) − tr B · 1∗B1 − tr B · 1∗B1 − 21∗BB1 − 21∗BB∗1+

2Re(1∗BdB∗1) + 2Re(1∗BBd1) + | tr B|2 + tr BB∗ + tr BB −
m∑

i=1

|bii|2

= O(m2).

Here we used the results established in the previous calculation of the four cases. Now, it is
easy to see that the summation term of the bil part is at most of the order of m2. However, the
expectation terms are of the order of m−4, since

∑m
i=1 E|xik|4 → 0 (k = 1, . . . , n). Hence, the

term V = o(1).
Putting together the results from the five cases, we obtain the desired result:

E
∣∣x∗

π (k) U
∗
nB−1

k,nUnxπ (k) − tr U1/2
n B−1

k,nUn�π

∣∣2 = o(1).
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