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An Analogue of Napoleon’s Theorem
in the Hyperbolic Plane
Angela McKay

Abstract. There is a theorem, usually attributed to Napoleon, which states that if one takes any triangle
in the Euclidean Plane, constructs equilateral triangles on each of its sides, and connects the midpoints
of the three equilateral triangles, one will obtain an equilateral triangle. We consider an analogue of
this problem in the hyperbolic plane.

1 Introduction

In the Euclidean Plane, Napoleon’s Theorem is easily proven (see below), and hence,
an obvious question will be whether or not the theorem holds in the Hyperbolic
Plane. In what follows, we shall consider a slight variation of Napoleon’s Theorem;
that is, we shall push out a fixed distance d along the perpendicular bisector of a
side, whereas in Napolean’s Theorem, the distance is proportional to the length of
the side. We show that, for a given d, the space of triangles (modulo orientation
preserving isometry) under this map has a fixed point (an equilateral triangle whose
side length can be written down explicitly in terms of d), and furthermore, that this
fixed point is attracting. First, however, we state and prove Napoleon’s Theorem. The
research for this article was done as a master’s thesis at the University of Maryland,
College Park under the direction of Dr. Richard Schwartz.

Theorem 1.1 (Napoleon’s Theorem) Given any triangle, T, construct an equilateral
triangle on each side of T (see figure). Then the new triangle, T ′, formed by connecting
the midpoints of the three equilateral triangles will be equilateral.

Although Napoleon’s Theorem can be easily verified using basic trigometry, the
following well-known proof is somewhat more insightful:

Proof Write a given triangle as a triple of points in the complex plane. We will then
define a map

τ : C3 −→ C3,

where
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Figure 1: Napoleon’s Theorem

It is easy to see that for a ∈ C,

τ (az1, az2, az3) = aτ (z1, z2, z3),

and hence that τ is C-linear. Note that if the vertices of the triangle are entered in
the appropriate order, the map τ yields the triangle T ′ described in the theorem.
Now, notice that any 3-tuple of vertices can be rewritten as aΣ1 + bΣ2 + cΣ3, where
Σ1 = (1, ω, ω2), Σ2 = (1, ω2, ω), Σ3 = (1, 1, 1) and a, b, c ∈ C (ω is a third root
of unity). Since τ is C-linear, τ (aΣ1 + bΣ2 + cΣ3) = aτ (Σ1) + bτ (Σ2) + cτ (Σ3).
The Σi are eigenvectors for τ with the appropriate eigenvalues. Now, τ (aΣ1 + bΣ2 +
cΣ3) = aµΣ1 + cΣ3, which is obtained from the standard equilateral triangle Σ1 by
applying a linear similarity transformation (complex scalar multiplication by aµ and
then translating by c). Thus, this is simply a translation of an equilateral triangle.

2 An Analogue of Napoleon’s Theorem in the Hyperbolic Plane

Take S to be the space of triangles in the hyperbolic plane modulo orientation pre-
serving isometries, and let T be a triangle in the hyperbolic plane. From T, construct
the map f : S −→ S as follows: Let d be any fixed real number. On each side of
T, locate the point on the perpendicular bisector at distance d from the midpoint.
Let the three points thus obtained be the vertices of f (T). We wish to know what
limn→∞ f n(T) looks like.

Notice that the question under consideration is not precisely the hyperbolic ana-
logue of Napoleon’s Theorem, because whereas we push out the same distance d from
each side, in Napoleon’s Theorem the distance depends on the length of the side in
question.

We shall prove the following theorem:
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Figure 2: Proof of the Existence of a Fixed Point

Theorem 2.1 For any d > 0 there is an equilateral Td in S and a neighborhood Nd(Td)
such that for any triangle T, T ⊆ Nd implies limn→∞ f (T) = Td.

Calculations are greatly simplified if we use the substitution

cosh d =

√
8

9− A2
,

where A is a variable which ranges between 1 and 3 in absolute value. Thus, the use
of this substitution will be assumed.

Lemma 2.2 The equilateral triangle Td of side length x = cosh−1 2A
3−A is fixed under

iteration by f .

Proof Let α, β, h be as in the figure above. Then

cosα =
2A

A + 3

and

cosh h =
2

3− A
.

So, using the law of cosines, f (Td) will have side length

cosh−1(cosh2 h− sinh2 h cos (α + 2β)
)
,

or (
2

3− A

)2

−

((
2

3− A

)2

− 1

)(
2A

A + 3
cos 2β − sinα sin 2β

)
.
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Again via the law of cosines, we obtain

cos 2β =
−9 + 2A− A2

(−5 + A)(3 + A)

and

sinα sin 2β = ±
12(3− A)(1 + A)

(−5 + A)(3 + A)2
.

Since finding sinα sin 2β involves taking a square root, we must stop at this point
and establish which of the two possible values is appropriate. Notice, however, that

−
12(3− A)(1 + A)

(−5 + A)(3 + A)2

is a strictly positive function, while

12(3− A)(1 + A)

(−5 + A)(3 + A)2

is a strictly negative function. Furthermore, the value of sinα sin 2βmust be positive,
since by construction, both α and 2β must be less than π. Thus, we conclude that

sinα sin 2β = −
12(3− A)(1 + A)

(−5 + A)(3 + A)2
l

Substituting for cos 2β and sinα sin 2β, we obtain an expression which simplifies to
2A

3−A , the same side length we started with. Thus, f fixes Td.

Lemma 2.3 Td is an attracting fixed point of f .

Proof It suffices to show that the eigenvalues of the Jacobian are less than one in the
norm. Given Td, create the new triangle Tdε , with side lengths x, x, x + ε, and let x1,
x2, x3 be the side lengths of f (Tdε). Then if a1 = limε→0

x1−x
ε

, a2 = limε→0
x2−x
ε

, and
a3 = limε→0

x3−x
ε

, we need to show that the eigenvalues of
a1 a2 a3

a3 a1 a2

a2 a3 a1




are all less than one in the norm. Notice that we actually only need to do two of the
above calculations, since x2 = x3.

Since the calculation of the Jacobian involves a great deal of computation and very
few ideas, we will not show the derivation here, but rather describe the method we
used to obtain our results.

The calculation of a1 and a2 rest almost entirely on the observation that if xl is
sufficiently close to x, to find limε→0

(xl−x)
ε

, we can simply find

1

sinh x
lim
ε→0

(cosh xl − cosh x)

ε
.
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This is done using the laws for sine, cosine, cosh, sinh, and the appropriate trigono-
metric identities to reduce the original limit to summands of the form

k lim
ε→0

cosh(x + ε)− cosh x

ε
,

or

k lim
ε→0

sinh(x + ε)− sinh x

ε
,

where k is a constant. Using this procedure, we obtain

lim
ε→0

(x1 − x)

ε
=

sinh2 y

sinh x

(
cos 2β

sinh x
+

sin 2β cosα

sinh x sinα

)
=

1

3

and

lim
ε→0

(x2 − x)

ε

=
cosh2 d

4
− cosh2 d cosh x

(
1

2(cosh x + 1)2
+

1

4(cosh x + 1)

)

+
sinh2 d cosh x

(cosh x + 1)2(cosh x − 1)
−

cosh2 x cosh d sinh d

(cosh x + 1)2
√

2(2 cosh2 x − cosh x − 1)

+
sinh 2d

2 cosh x


1

2

√
(cosh x + 1)(2 cosh3 x − 3 cosh2 x + 1)

2 sinh4 x

+

√
(cosh x − 1) sinh4 x

2(2 cosh3 x − 3 cosh2 x + 1)

cosh2 x − cosh x

sinh2 x
coth x

(
1

cosh2 x
−

cosh x

sinh2 x

)

=
2− 3A

3(3 + A)
.

Thus, 
a1 a2 a3

a3 a1 a2

a2 a3 a1


 =


 1/3 2−3A

3(3+A)
2−3A

3(3+A)
2−3A

3(3+A) 1/3 2−3A
3(3+A)

2−3A
3(3+A)

2−3A
3(3+A) 1/3




In order to achieve our objective, namely to show that fixed points are attracting,
we need to show that eigenvalues of the Jacobian are less than one in the norm. Since
(given our substitution) |A| can only take on values between 1 and 3, it follows that
limε→0

x2−x
ε

can only take on values between 1
12 and− 1

6 , and hence that all eigenval-
ues are less than one in the norm. Thus, our fixed point is attracting.

Our theorem now follows directly from the lemmas above.
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3 Concluding Remarks

In the above, we show that for every d, space of triangles under f has an attracting
fixed point. Computational results suggest, however, that the function f is in fact a
great deal stronger, i.e., that f is in fact a contraction map which sends every initial
triangle to the fixed point in the infinite limit. Computer results also suggest that a
similar result holds for polygons.
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