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1. Introduction

The Riemann zeta function must be one of the most studied objects in mathematics.
It is an analytic function on the punctured plane C − {1} with a simple pole at 1. The
initial description of zeta is as a Dirichlet series

ζ∞(σ) =
∞∑

n=1

n−σ, where Re(σ) > 1.

Furthermore, in the same right half-plane it admits an Euler product expansion

ζ∞(σ) =
∏

primes l

1
1 − l−σ

.

Famously, the difference between the Riemann zeta function at σ = 1 and the area under
the real curve f(x) = x−1 is measured by the Euler–Mascheroni constant γ. There are
many formulae describing how to compute it numerically.

Let p be a prime number. The p-adic analogue of ζ∞(σ) was constructed by Kubota
and Leopoldt in the 1950s, exploiting earlier congruences due to Kummer. In this paper,
we are interested in addressing the following ugly anomaly.

Question 1.1. Why does the p-adic zeta function of Kubota and Leopoldt appear to
be nothing like the classical Riemann zeta function ζ∞(−) mentioned above?
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584 D. Delbourgo

Before we look for an answer, let us first describe the Kubota–Leopoldt L-function.
Fix an odd prime number p, and let χ : Z → Q̄ denote any Dirichlet character. Via
embeddings ι∞ : Q̄ ↪→ C and ιp : Q̄ ↪→ Cp, one may view χ as taking both complex and
p-adic values. We shall write ω for the Teichmüller character, which maps x ∈ Z×

p to the
unique (p − 1)st root of unity congruent to x modulo p.

By its very definition, Lp(s, χ) is a continuous function on the disc s ∈ Cp, |s|p <

p(p−2)/(p−1) satisfying the interpolation property

Lp(1 − n, χ) = ιp ◦ (ι∞)−1((1 − χω−n(p)pn−1) × L∞(1 − n, χω−n))

at all integers n � 1.
Whenever χ is an odd character, i.e. χ(−1) = −1, this interpolation forces Lp(s, χ) to

be identically zero. It is rather annoying to keep writing ιp ◦ (ι∞)−1 and we will drop it
altogether in what follows.

The aims of the paper

For each prime p �= 2 and character χ, we aim to prove that

(A)p the p-adic zeta function Lp(s, χ) is equal to a Dirichlet series over Cp,

(B)p the p-adic zeta function possesses an Euler product expansion over Cp,

(C)p there exists an explicit formula for the p-adic Euler–Mascheroni constant.

The naive approach one might adopt is the following. First normalize the p-adic loga-
rithm so that logp(p) = 0, and let us write

expp(X) =
∑
m�0

Xm

m!

for the exponential map.
For all x ∈ O×

Cp
, define the function 〈x〉s := expp(s logp(x)) which converges everywhere

on the disc |s|p < p(p−2)/(p−1). In particular, if x ∈ Z×
p , then 〈x〉1 = xω−1(x). We now

consider the partial sums/products

N∑
m=1,
p�m

χ(m)〈m〉−s and
∏

primes l,
l �=p, l�N

1
1 − χ(l)〈l〉−s

.

Do either of these converge p-adically as N → ∞?
Clearly, the norm ‖χ(m)〈m〉−s‖ = 1, and thus the terms in each successive partial

summation are not tending towards zero. If fχ denotes the conductor of χ, then

−orders=0

( ∏
l�N

1
1 − χ(l)〈l〉−s

)
= #{primes l � N such that χ(l) = 1}

� #{primes l � N such that l ≡ 1 (mod fχ)}

≈ N

φ(fχ) log N
,
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The convergence of Euler products over p-adic number fields 585

Figure 1. The ∞-polydisc over X which has unit radius showing the contour
traced out by ξm �→ ωβ(m)〈m〉−s as s varies (X = (X0, X2, X3, X5, . . . )).

which slowly tends to ∞ with N . As a consequence, the infinite product
∏

primes l ( · · · )
picks up pole after pole at s = 0, and cannot possibly tend to a rigid meromorphic
function.

2. The main results

Essentially the method failed because 〈m〉−s did not get any smaller as m → ∞. The
p-adic topology can see neither the sum nor the product structure in zeta. Making these
things converge over the Tate field would appear to be impossible! Since the usual topol-
ogy has let us down, we replace it with a non-standard one.

In this section and primarily the next, we shall consider a topological space of ‘shadow
∇-functions’ which exists as a dense subset inside the Iwasawa functions. It is generated
over the p-adics by elements ξm for each m ∈ N, viewed as avatars of the complex func-
tions m−σ with Re(σ) > 1. In particular, ξm is small in the shadow topology whenever
the integer m is large. In this context, it makes good sense to speak about convergence
of Dirichlet series and Euler products.

For each choice of β modulo p − 1 there is a boundary map β∇p discontinuously
injecting our space of shadow ∇-functions into the larger ring of Iwasawa functions; on
finite sums, it sends

β∇p :
N∑

m=1

cmξm �→
N∑

m=1,
p�m

cmωβ(m)〈m〉−s ∈ Cp〈〈s〉〉.

We refer the reader to § 3 for full details of the construction of the shadow space.
As usual, one writes φ for Euler’s totient function and µ for the Möbius function. In

particular, we define Γ̂χ := Hom((Z/2fχZ)×, Gm) to be the group of characters with
conductors dividing 2fχ.

Hypothesis 2.1. Throughout we assume that gcd(p, 2fχ · φ(fχ)) = 1.
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At every divisor k of 2fχ and Ψ ∈ Γ̂χ, denote by E
(Ψ)
k (χ) the algebraic numbers

∑
d|gcd(k,2fχ/fΨ )

µ(k/d)Ψ(k/d)
φ(2fχ/d)

×
2fχ/d∑
c=1,

gcd(c,2fχ)=1

Ψ−1(c)
( cd−1∑

j=�(cd−1)/2�+1

χ(j) −
�(cd−1)/2�∑

j=1

χ(j)
)

.

These scalars occur as structure constants, for the decomposition of the χ-twisted p-adic
L-function in terms of shadow Euler products.

Definition 2.2. The χ-twisted zeta-element is defined by the formula

ΘHu ⊗ χ :=
(

L∞(0, χ) +
∑
k|2fχ

E
(1)
k (χ)ξk

)
×

∏
primes l

1
1 − ξl

+
∑

Ψ∈Γ̂χ,Ψ �=1

( ∑
k|2fχ

E
(Ψ)
k (χ)ξk

)
×

∏
primes l

1
1 − Ψ(l)ξl

.

Theorem 2.3. The element ΘHu ⊗ χ exists in the space of shadow ∇-functions, and
under the boundary map

β∇p(ΘHu ⊗ χ) = (2ωβ(2)〈2〉−s − 1) × Lp(s, χω1+β)

for each branch β modulo p − 1.

This is weaker than (B)p as it indicates that the p-adic L-function is a sum of at most
φ(2fχ) Euler products, rather than a single one (much like a Hurwitz zeta function).
The proof of Theorem 2.3 for general Dirichlet characters χ is based upon the following
estimate coming from fractional calculus.

Theorem 2.4. Along every branch β mod p − 1, we have the equality of functions

Lp(s, χω1+β) = (2ωβ(2)〈2〉−s − 1)−1 × lim
t→∞

( ptφ(2fχ)∑
m=1,
p�m

am(χ)ωβ(m)〈m〉−s

)
,

where each coefficient am(χ) := L∞(0, χ) +
∑m−1

j=1 χ(j) − 2
∑�(m−1)/2�

j=1 χ(j).

This result is important in its own right, and shows that every p-adic L-function
attached to an abelian field can be expanded in a Dirichlet series. Thus, property (A)p

is always satisfied by these functions. The terms am(χ) are periodic of modulus 2fχ and
intriguingly depend not on the choice of prime p, but only on the character χ.

Remark 2.5. As the referee pointed out, when χ = 1 and β = −1 the above formula is
quite close to one found by Iwasawa [6] using Stickelberger elements, where the twisting
to make the elements integral is at c = 2. While a relatively easy argument shows both
formulae to be congruent modulo pt−1, we were unable to show required equivalence
modulo pt (a short proof of this assertion would be nice).
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Certainly Iwasawa’s methods are a lot more elementary than the calculations we under-
take here, our intention being very much a ‘from first principles’ approach. The main
advantage of using fractional differentiation and reciprocity is that one obtains Dirichlet
series expansions whose coefficients are stable from the outset, without requiring any
subsequent fiddly modifications.

As a useful illustration of Theorem 2.3, consider the situation when χ = 1 is the trivial
character. The element ΘHu ⊗1 is composed of just a single Euler product. On the other
hand, at non-positive integers s = −k the p-adic function Lp(s, ω1+β) interpolates the
critical values L∞(−k, ωβ−k) of its complex counterpart.

Corollary 2.6. Writing ∂k
p for the specialization k∇p|s=−k, we have the equality

ζ∞(−k) =
1

(21+k − 1)(1 − pk)
× ∂k

p

(
(ξ2 − 1

2 ) ×
∏

primes l

1
1 − ξl

)

for all integers k � 0.

In essence, the shape of the Riemann zeta function at negative integers is that of an
Euler product over the p-adics, for every prime number p �= 2. Somewhat abusively, it is
tempting to write down the formula

(21+k − 1)(1 − pk)ζ∞(−k) = ‘(2+k − 1
2 ) ×

∏
l �=p

1
1 − l+k

’

and interpret the right-hand side as converging in the space of shadow ∇-functions. With
a pleasant degree of symmetry, it is precisely in the right half-plane Re(σ) > 1 where
ζ∞(σ) admits an expansion as a complex Euler product.

Finally, the following formula expresses the p-adic version of Euler’s constant to arbi-
trary accuracy, and in so doing provides a favourable response to point (C)p. By defini-
tion, γp is taken to be the constant term occurring in the trivial branch of the Kubota–
Leopoldt L-function, i.e.

Lp(s, χ)|χ=1 =
1 − 1/p

s − 1
+ γp + higher-order terms in (s − 1)

due to the simple pole at s = 1.

Theorem 2.7. Let ε2 = ordp(〈2〉 − 1). Then γp is congruent to the p-adic number

(
∑p2(n+ε2)

m=1, p�m((−1)m+1/2m)〈m〉pn+ε2 ) − (1 − 1/p) logp(2)(1 + pn+ε2 1
2 logp(2))

(1 − 〈2〉pn+ε2 )

modulo pnZp, for all integers n � 1.

This formula is highly reminiscent of an Archimedean version which was proved by
Brent and McMillan in 1980, and relates γ to the difference between a partial harmonic
series and the logarithm function.

https://doi.org/10.1017/S0013091507000636 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091507000636


588 D. Delbourgo

For example, at the first three odd primes one finds

γ3 = 2 × 31 + 2 × 32 + 1 × 33 + 2 × 34 + 1 × 35 + 2 × 36 + O(37),

γ5 = 1 × 51 + 0 × 52 + 3 × 53 + O(54),

γ7 = 5 × 70 + 2 × 71 + 4 × 72 + O(73), and so on. . .

Question 2.8. Is γp an irrational number?

This is still an open question in the Archimedean situation, although it is widely
conjectured that γ �∈ Q.

The plan of the paper is as follows. We shall start by introducing the space of shadow
∇-functions in § 3, and write down some basic topological properties of it. In the next
section, we prove a key equality linking ΘHu with a Dirichlet expansion in the shadow
space. Then in §§ 5–7 we use fractional differentiation and reciprocity to compute some
brand new approximations for the χ-twisted p-adic L-function. We next explain how the
ideas outlined in this paper reduce the calculation of the quadratic twist Lp(s, (D/·)) to
the determination of a finite set of coefficients. Lastly, the missing proof of Theorem 2.7
is contained in § 9.

3. Visibility of Euler products

We begin by constructing the space of shadow ∇-functions out of a projective limit. Let
O denote the ring of integers of a local field K of residue characteristic p > 2. For any
integer N � 1, we shall write ΣN for the finite set {2, 3, 5, . . . , lN} of the first N prime
numbers in order (so lN will denote the Nth least prime).

Consider the complete Noetherian local ring

BN := O[[X0, X2, X3, . . . , XlN ]]

as an Iwasawa O-algebra in N + 1 variables, indexed by the elements of ΣN ∪ {0}. The
sequence {B1,B2,B3,B4, . . . } may then be viewed as a projective system via transition
maps ϕ : BN+1 → BN , induced from the deletions

ϕ : Xl �→
{

Xl if the index l �= lN+1,

0 if the index l = lN+1.

Note that the projective limit B∞ := lim←−ϕ
BN inherits its topology from the BN s, and

consists of power series convergent on the interior of an infinite-dimensional polydisc of
radius 1, parametrized by coordinates X = (X0, X2, X3, X5, . . . ) (see Figure 1).

Definition 3.1. For each integer m � 1, we shall write ξm for the image of the
monomial

∏
primes l(X

l
0Xl)ordl(m) inside the ring B∞.

We define the space of ξ-tempered functions B†
∞ to be the O-subalgebra of B∞ gen-

erated by convergent series in the ξms, i.e.

B†
∞ :=

{
θ ∈ B∞ such that θ is of the form

∞∑
m=1

cmξm with cm ∈ O
}

.
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Listed below are some basic properties.

Lemma 3.2.

(a) ξmn = ξmξn for all m, n ∈ N.

(b) limm→∞ ξm = 0.

(c) 1/(1 − ξm) = 1 + ξm + ξm2 + ξm3 + · · · lies in B†
∞.

Proof. Only assertion (b) needs justification. Assume that the integer N � m. On
the closed (N + 1)-dimensional disc Dr,N of fixed radius ρr = p−1/r,

‖ξm‖ρr
= sup

x∈Dr,N

∣∣∣∣ ∏
l

(xl
0xl)ordl(m)

∣∣∣∣
p

= p−(1/r)
∑

l(1+l) ordl(m).

Since
∑

l(1 + l) ordl(m) tends to +∞ as the number m increases, clearly ξm tends to 0
pointwise on any interior region of the infinite-dimensional polydisc. �

One huge advantage of working with the arithmetic of these ξ-tempered functions is
that the Euler product

∏
primes l

(
1

1 − χ(l)ξl

)
=

∞∑
m=1

χ(m)ξm exists inside B†
∞

for any purely multiplicative function χ : N → O. However, the infinite product of the
terms (1 − χ(l)〈l〉−s)−1 over Spec Z can never converge p-adically.

We next establish connections between our ξ-tempered series and the more familiar
rigid analytic functions occurring in nature. Fix a branch β modulo p − 1. Consider the
maps β∇f

p : B†
∞ → O〈〈s〉〉N, defined for integers f � 1 by

β∇f
p

( ∞∑
m=1

cmξm

)
n

:=
pnφ(f)∑
m=1,
p�m

cmωβ(m)〈m〉−s.

We say that an element θ ∈ B†
∞ is visible at level f if it gives rise to a Cauchy sequence

in O〈〈s〉〉 under β∇f
p , along every branch β. Clearly, θ will also be visible at any integer

multiple cf of f , since φ(f) always divides into φ(cf); it makes good sense to call the
minimal such level the conductor of θ.

If θ1 is visible at level f1 and θ2 is visible at level f2, then their sum θ1 + θ2 will
always be visible at level lcm(f1,f2). Perversely, the element θ1 × θ2 ∈ B†

∞ may not be
visible at any level whatsoever, so the product of two visible elements can often become
invisible!

Definition 3.3. Let O〈〈s〉〉conv denote the space of Cauchy sequences in O〈〈s〉〉N, and
write O〈〈s〉〉null for the closed subspace of sequences converging to zero.
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We define the space of shadow ∇-functions over K as the direct limit

Ashw := lim−→
f

(⋂
β mod p−1(β∇f

p )−1(O〈〈s〉〉conv ∩ Im(∇p))⋂
β mod p−1(β∇f

p )−1(O〈〈s〉〉null ∩ Im(∇p))

)
⊗O K,

where the partial ordering on f ∈ N is with respect to divisibility.

In more down-to-earth terms, elements of Ashw may be represented by convergent
power series θ =

∑∞
m=1 cmξm with cm ∈ K, visible beyond some integer level fθ. More-

over, along each branch β modulo p − 1,

β∇p : Ashw → Arig by β∇p(θ) = lim
n→∞

(β∇fθ
p (θ)n),

where Arig := K〈〈s〉〉 denotes the affinoid K-algebra of the closed unit disc.

Proposition 3.4. The map ⊕β∇p : Ashw →
⊕

β mod p−1 Arig is a non-continuous
injection of topological spaces whose image is dense under the rigid topology.

Proof. Let T = ⊕β∇p; clearly T is an additive map of infinite-dimensional vector
spaces over the field K, since the sum of any two visible elements remains visible (ditto
for multiplication by scalars).

The injectivity of T follows from the fact that any two f -visible elements which have
the same image under T differ by an element of B†

∞ which is zero at level f . However,
in Definition 3.3 we carefully quotiented out the null sequences under T ; hence, their
difference in the shadow space must be trivial.

To prove that the image of T is dense in the Iwasawa functions, it is a well-known fact
that the K-linear span of the countable set {〈m〉−s with m ∈ N and p � m} is p-adically
dense. Consequently, any element γ ∈

⊕
β mod p−1 Arig may always be approximated by

a finite K-linear sum like

γpN =

(
pN∑

m=1,
p�m

cβ,m,N (γ)〈m〉−s

)
β

.

Here the cβ,m,N (γ)s are the moments of the bounded measure representing γ|β .
Choose any integer xN which is a primitive root modulo p − 1, and such that 〈xN 〉 ∈

1 + pNZp. Consider the element h
(j)
xN ∈ B†

∞ satisfying

h
(j)
xN

=
ωj(xN )
p − 1

×
p−2∏
i=0,

i �≡j (mod p−1)

(ξxN
− ωi(xN )).

It can be easily checked that

β∇p(h(j)
xN

) ≡
{

1 (mod pN ) if β ≡ j (mod p − 1),

0 (mod pN ) if β �≡ j (mod p − 1).
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If we define θpN (γ) ∈ K ⊗O B†
∞ by

θpN (γ) :=
p−2∑
j=0

h
(j)
xN

×
pN∑

m=1,
p�m

ω−j(m)cβ,m,N (γ)ξm,

then θpN (γ) will be visible at level 1 (and therefore at all levels) as it is a finite combination
of ξms. It represents an element of Ashw, and one readily verifies that T (θpN (γ)) coincides
exactly with the approximation γpN modulo pN .

Lastly, to establish the discontinuity of T we simply observe that the monomials
ξm → 0 in Ashw as m → ∞. However, T (ξm) �→ 0 = T (0) inside Arig because the
Iwasawa functions T (ξm) = (ωβ(m)〈m〉−s)β fail to stabilize as m increases. Thus, T
cannot possibly be a continuous mapping. The underlying cause is that at every integer
level f � 1 there is a factorization

β∇f
p : B†

∞
� � �� lim←−ϕ

BN
proj �� �� ∏

n∈N

(
lim←−ϕ̃

B̃N,f ,n

)
Xm �→ωβ(m)〈m〉−s

�� O〈〈s〉〉N,

where for each n ∈ N the intermediate rings are quotients

B̃N,f ,n :=
O[[X0, X2, . . . , XlN ]]

〈Xe2
2 Xe3

3 . . . X
elN

lN
|
∑

l∈ΣN
el > pnφ(f)〉

.

Since B̃N,f ,n contains zero-divisors, the topology on lim←−ϕ̃
B̃N,f ,n is non-separated. How-

ever, O〈〈s〉〉N is a complete Hausdorff space, which forces the topology on the space of
shadow ∇-functions to be incompatible with the rigid analytic one. �

4. Outline of the proof

Let us see how the main results of this paper can be deduced from the following.

Key equality. Inside the ring B†
∞, we have ΘHu ⊗ χ =

∑∞
m=1 am(χ)ξm.

Firstly, assuming the statement of Theorem 2.4 actually holds, we remark that∑∞
m=1 am(χ)ξm represents a 2fχ-visible element of Ashw (in the language of § 3).
Thus, along all branches β mod p − 1,

β∇p(ΘHu ⊗ χ)
by key eq.

= β∇p

( ∞∑
m=1

am(χ)ξm

)

= lim
t→∞ β∇2fχ

p

( ∞∑
m=1

am(χ)ξm

)
t

= lim
t→∞

(
ptφ(2fχ)∑
m=1,
p�m

am(χ)ωβ(m)〈m〉−s

)

by Thm 1.3
= (2ωβ(2)〈2〉−s − 1) × Lp(s, χω1+β)

and Theorem 2.4 follows.

https://doi.org/10.1017/S0013091507000636 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091507000636


592 D. Delbourgo

It therefore remains to give the proofs of the key equality and Theorem 2.4. The latter
proof is lengthier and occupies the entirety of §§ 5–7. In this section, we shall establish
the former.

Proof of key equality. For m ∈ N consider

ãm(χ) :=
m−1∑

j=�(m−1)/2�+1

χ(j) −
�(m−1)/2�∑

j=1

χ(j).

It is easily checked that the ãm(χ)s are periodic with modulus 2fχ. Thus, one may
write

∞∑
m=1

ãm(χ)ξm =
2fχ∑
c=1

ãc(χ)
∞∑

m=1,
m≡c (mod 2fχ)

ξm =
∑
d|2fχ

2fχ/d∑
c=1,

(c,2fχ)=1

ãcd(χ)ξd

∞∑
m=1,

m≡c (mod(2fχ/d))

ξm.

Focusing on the rightmost summation, we have

∞∑
m=1,

m≡c (mod(2fχ/d))

ξm

=
1

#Gd

∑
Ψ∈Gd

Ψ−1(c) ×
∞∑

m=1,
(m,(2fχ/d))=1

Ψ(m)ξm

= φ

(
2fχ

d

)−1 ∑
Ψ∈G1,

fΨ |2fχ/d

Ψ−1(c)
∏

primes l|2fχ/d

(1 − Ψ(l)ξl) ×
∞∑

m=1

Ψ(m)ξm,

where Gd := Hom((Z
/
2fχd−1Z)×, Ō×).

Substituting this formula back into our original expression, we discover that the
ξ-tempered series

∑∞
m=1 ãm(χ)ξm equals

∑
Ψ∈G1

∑
d|2fχ/fΨ

φ

(
2fχ

d

)−1 2fχ/d∑
c=1,

(c,2fχ)=1

Ψ−1(c)ãcd(χ) × ξd

∑
k|2fχ/d

µ(k)Ψ(k)ξk ×
∞∑

m=1

Ψ(m)ξm

upon surreptitiously replacing
∏

primes l|2fχ/d above with
∑

k|2fχ/d µ(k).

Remarks 4.1.

(a) Under the arithmetic of B†
∞, we naturally identify

∑∞
m=1 Ψ(m)ξm with the infinite

product
∏

primes l(1 − Ψ(l)ξl)−1.

(b) The dual group G1 = Hom((Z
/
2fχZ)×, Ō×) is isomorphic to Γ̂χ under ι−1

p .
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Using (a) and (b) in tandem, the function
∑∞

m=1 ãm(χ)ξm can be rewritten as

∑
Ψ∈Γ̂χ

∏
primes l

1
1 − Ψ(l)ξl

×
∑

d|2fχ/fΨ

∑
k|2fχ/d

µ(k)Ψ(k)
φ(2fχ/d)

ξkd ×
2fχ/d∑
c=1,

(c,2fχ)=1

Ψ−1(c)ãcd(χ);

furthermore, we can swap around the middle two terms involving d and k since∑
d|2fχ/fΨ

∑
k|2fχ/d

µ(k)Ψ(k)ξkd =
∑
k|2fχ

ξk ×
∑

d|gcd(k,2fχ/fΨ )

µ

(
k

d

)
Ψ

(
k

d

)
.

It follows directly that

∞∑
m=1

ãm(χ)ξm =
∑

Ψ∈Γ̂χ

∏
primes l

1
1 − Ψ(l)ξl

×
∑
k|2fχ

ξk × E
(Ψ)
k (χ),

where

E
(Ψ)
k (χ) =

∑
d|gcd(k,2fχ/fΨ )

µ(k/d)Ψ(k/d)
φ(2fχ/d)

×
2fχ/d∑
c=1,

(c,2fχ)=1

Ψ−1(c)ãcd(χ)

are the structural constants appearing in ΘHu ⊗ χ (cf. Definition 2.2).
The final step is merely to point out that (am(χ))˜ = am(χ) − L∞(0, χ), whence

∞∑
m=1

am(χ)ξm =
∞∑

m=1

L∞(0, χ)ξm +
∞∑

m=1

ãm(χ)ξm = ΘHu ⊗ χ.

The demonstration is finished. �

5. Calculating χ-twisted Dirichlet expansions

Let us now supply the missing proof of Theorem 2.4. We introduce a power series

Lχ(X) :=
fχ∑

a=1

χ(a) ·
(

(1 + X)a

(1 + X)fχ − 1
− 2

(1 + X)2a

(1 + X)2fχ − 1

)
which converges everywhere on the open unit disc, centred at the point X = 0. The
validity of the theorem then follows readily from the following two results.

Lemma 5.1. The Iwasawa function (2ωβ(2)〈2〉−s − 1) · Lp(s, χω1+β) is always con-
gruent to the summation

pn∑
m=1,
p�m

(
p−n

∑
ζ∈µpn

Lχ(ζ−1 − 1) · ζm

)
ωβ(m)〈m〉−s modulo pn

for all s ∈ Zp and n ∈ N.
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Proposition 5.2. If pn ≡ 1 (mod 2fχ), then p−n
∑

ζ∈µpn
Lχ(ζ−1 − 1) · ζm equals the

coefficient am(χ) for every integer m lying in the range 1 � m � pn − 1.

By Fermat’s little theorem, whenever n is divisible by φ(2fχ) the above condition
pn ≡ 1 (mod 2fχ) will automatically be satisfied. Indeed, if n = tφ(2fχ), then

(2ωβ(2)〈2〉−s − 1)Lp(s, χω1+β) ≡
ptφ(2fχ)∑
m=1,
p�m

am(χ)ωβ(m)〈m〉−s mod ptφ(2fχ), (5.1)

which is strong enough to imply Theorem 2.4.
Proposition 5.2 relies on Iwasawa’s cyclotomic reciprocity law [5], the implementation

of which may be found in the next couple of sections. To prove Lemma 5.1 we employ a
bit of fractional calculus.

Proof of Lemma 5.1. We start by logarithmically differentiating our generating
function. As in § 4, we assume that O is a finite integral extension of Zp containing the
values of the character χ.

The poles of Lχ are of the form α − 1, where α ranges over the (2fχ)th-roots of unity.
Under Hypothesis 2.1, the prime p � 2fχ; therefore, |α − 1|p = 1 when α �= 1. Its poles
must then be scattered uniformly around the boundary of the unit disc. In particular,
Lχ lies in O[[X]], and, changing variables, we obtain

Lχ(exp(Z) − 1) =
1
Z

fχ∑
a=1

(
χ(a) · Z exp(aZ)

exp(fχZ) − 1
− χ(a) · 2Z exp(2Za)

exp(fχ2Z) − 1

)
.

Recall that the χ-twisted Bernoulli numbers Bn,χ can be defined as the coefficients in a
certain Taylor series, namely

fχ∑
a=1

χ(a) · Z exp(aZ)
exp(fχZ) − 1

=
∞∑

n=0

Bn,χ
Zn

n!
.

Thus,
dkLχ(X)

d log(1 + X)k

∣∣∣∣
X=0

=
dkLχ(exp(Z) − 1)

dZk

∣∣∣∣
Z=0

= (1 − 2k+1)
Bk+1,χ

k + 1

for all integers k � 0.
Unfortunately this equation is not quite in the correct form to be interpolated. Instead,

consider χ as a single element of Ŵ := Hom(W, Ō×), where W = (Z/fχZ)×. From this
viewpoint the set of power series {LΨ}Ψ∈Ŵ corresponds to an Ō-valued measure ΦL on
W × Zp, in other words

dkLΨ (X)
d log(1 + X)k

∣∣∣∣
X=0

=
∫

W×Zp

Ψ(x)xk · dΦL(x) for all k � 0.
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Let us now apply Coleman’s idempotent ψ ∈ End(O[[X]]), constructed in [2] via the
formula

ψ(g(X)) = g(X) − 1
p

∑
ζ∈µp

g(ζ(1 + X) − 1) for all g(X) ∈ O[[X]].

In terms of the underlying distribution theory, it restricts a bounded measure on the
topological space W × Zp (corresponding to the series g(X)) to a bounded measure
supported on the subgroup W × Z×

p of invertible elements.
Again, the hypothesis we make (Hypothesis 2.1) forces the action of p on W to be

invertible, since p is assumed to be coprime to #W = φ(fχ). Writing the Lie group
W × Z×

p as a subtraction W × Zp − W × pZp = W × Zp − p(W × Zp), it follows that

dkψ ◦ Lχ(X)
d log(1 + X)k

∣∣∣∣
X=0

=
∫

W×Z×
p

χ(x)xk · dΦL(x)

=
∫

W×Zp

χ(x)xk · dΦL(x) −
∫

W×Zp

χ(px)(px)k · dΦL(x)

= (1 − χ(p)pk)
dkLχ(X)

d log(1 + X)k

∣∣∣∣
X=0

.

We have just computed the latter quantity, which equals

(1 − 2k+1)(1 − χ(p)pk)
Bk+1,χ

k + 1
.

Furthermore, Bk+1,χ/(k + 1) is minus the special value of the χ-twisted zeta function at
the critical point −k (unless χ = 1 and k = 0). We therefore deduce that

dkψ ◦ Lχ(X)
d log(1 + X)k

∣∣∣∣
X=0

= −(1 − 2k+1) × (1 − χ(p)pk)L∞(−k, χ) at all k ∈ Z, k � 0.

This is now in the right form to be interpolated. Fix a class β ∈ Z/(p− 1)Z, and let us
consider exclusively integers k � 0 which are congruent to β (mod p−1). We focus first on
the right-hand side of the above equation. The p-adic L-function Lp(−s, χω1+β) coincides
with (1 − χ(p)pk)L∞(−k, χ) at s = k ≡ β (mod p − 1). Similarly, the Iwasawa function
(2ωβ(2)〈2〉s − 1) will interpolate −(1− 2k+1) at these non-negative integer values. What
about the left-hand side?

In [3] we defined a fractional differential operator βDs : O[[X]]ψ=1 → O[[X]]ψ=1 varying
continuously in the parameter s ∈ Zp, and satisfying

βDk =
dk

d log(1 + X)k
at every k � 0 with k ≡ β (mod p − 1).

By [3, Lemma 3.1] we have the numerical approximation

βDs(ψ ◦ g(X)) ≡
pn∑

m=1,
p�m

(
p−n

∑
ζ∈µpn

g(ζ−1 − 1) · ζm

)
ωβ(m)〈m〉s · (1 + X)m

modulo (p, X)nO[[X]]〈〈s〉〉, for all elements g(X) ∈ O[[X]].
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Putting g(X) = Lχ(X) and evaluating at X = 0, it follows directly from our approxi-
mation that the p-adic function (2ωβ(2)〈2〉s − 1) · Lp(−s, χω1+β) is congruent to

pn∑
m=1,
p�m

(
p−n

∑
ζ∈µpn

Lχ(ζ−1 − 1) · ζm

)
ωβ(m)〈m〉s modulo pnO〈〈s〉〉.

Finally, the substitution s �→ −s yields the formula stated in Lemma 5.1. �

6. The base case

All that remains is to give the demonstration Proposition 5.2. Let us recall that we need
to equate the sum ∑

ζ∈µpn

Lχ(ζ−1 − 1) · ζm

with the coefficient pnam(χ). We shall use induction; the initialization step is treated in
this section, while the inductive step is given in § 7.

We start with a basic yet useful result. If m ∈ Z, let λpn(m) denote the unique integer
satisfying

1 � λpn(m) � pn and λpn(m) ≡ m (mod pn).

Lemma 6.1. For all m ∈ N, we have the equality∑
ζ∈µpn ,

ζ �=1

ζm

ζ − 1
=

pn + 1
2

− λpn(m).

Proof. We can carry out this calculation equally well inside the complex numbers,
courtesy of the embedding ι∞ ◦ (ιp)−1. Firstly, if m ≡ 1 (mod pn), then∑

ζ �=1

ζ1

ζ − 1
=

∑
ζ �=1

(
1 +

1
ζ − 1

)
= pn − 1 +

∑
ζ �=1

1
ζ − 1

= pn − 1 + 1
2

∑
ζ �=1

ζ̄ − 1
1 − Re(ζ)

.

Now ∑
ζ �=1

ζ̄ − 1
1 − Re(ζ)

=
∑
ζ �=1

(
− 1 +

Im(ζ)
1 − Re(ζ)

)
,

and the term Im(ζ)/(1 − Re(ζ)) cancels out the term Im(ζ̄)/(1 − Re(ζ̄)) involving the
conjugate root ζ̄. Consequently,∑

ζ �=1

ζ1

ζ − 1
= pn − 1 + 1

2

∑
ζ �=1

−1 =
pn − 1

2
,

so the result is true for m ≡ 1.
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We now assume that m �≡ 1 (mod pn) and proceed inductively:

∑
ζ �=1

ζm

ζ − 1
=

∑
ζ �=1

ζm−1(ζ − 1 + 1)
ζ − 1

=
∑
ζ �=1

ζm−1 +
∑
ζ �=1

ζm−1

ζ − 1
.

The first sum is −1 since m − 1 �≡ 0, and the second sum equals 1
2 (pn + 1) − λpn(m − 1)

by our inductive hypothesis. The lemma then follows because

∑
ζ �=1

ζm

ζ − 1
= −1 +

(
pn + 1

2
− λpn(m − 1)

)
=

pn + 1
2

− λpn(m).

�

Let us next focus our attention on computing the value of Lχ(X) at zero. Expanding
this function as a Taylor series in the variable X yields

Lχ(X) =
fχ∑

a=1

χ(a) ·
(

(1 + X)a((1 + X)fχ + 1) − 2(1 + X)2a

(1 + X)2fχ − 1

)

=
fχ∑

a=1

χ(a) ·
(

(fχ − 2a)X +
((

a+fχ

2

)
+

(
a
2

)
− 2

(2a
2

))
X2 + · · ·

2fχX +
(2fχ

2

)
X2 + · · ·

)
;

hence,

Lχ(0) =
fχ∑

a=1

χ(a) ·
(

fχ − 2a

2fχ

)
.

Definition 6.2. For all m, n ∈ N, let Ω
(m)
n,χ :=

∑
ζ∈µpn

Lχ(ζ−1 − 1) · ζm.

The calculation of this quantity will be our primary objective. Taking the definition
above as our starting point, we derive the expression

Ω(m)
n,χ = Lχ(0) +

∑
ζ∈µpn ,

ζ �=1

Lχ(ζ−1 − 1) · ζm

=
fχ∑

a=1

χ(a) ·
(

fχ − 2a

2fχ

)
+

∑
ζ∈µpn ,

ζ �=1

ζm

fχ∑
a=1

χ(a)
(

ζ−a−fχ + ζ−a − 2ζ−2a

ζ−2fχ − 1

)

=
fχ∑

a=1

χ(a) ·
(

1
2

− a

fχ
+

∑
ζ∈µpn ,

ζ �=1

ζm−a−fχ + ζm−a − 2ζm−2a

ζ−2fχ − 1

)
.

Remark 6.3. Under the conditions of Proposition 5.2, we assumed pn ≡ 1 (mod 2fχ).
One nice consequence is that en := (pn −1)/2fχ will always be a positive integer; in fact,
each en is a multiplicative inverse of −2fχ modulo pn.
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Since the map ζ �→ ζen extends linearly to an automorphism of O[µpn ], we clearly have∑
ζ∈µpn ,

ζ �=1

ζm−a−fχ + ζm−a − 2ζm−2a

ζ−2fχ − 1
=

∑
ζ∈µpn ,

ζ �=1

ζen(m−a−fχ) + ζen(m−a) − 2ζen(m−2a)

ζen(−2fχ) − 1

and the denominator equals ζ − 1 by the above remark.
Substituting back into our expression for Ω

(m)
n,χ , we obtain the closed formula

Ω(m)
n,χ =

fχ∑
a=1

χ(a) ·
(

1
2

− a

fχ
+

∑
ζ∈µpn ,

ζ �=1

ζen(m−a−fχ)

ζ − 1
+

ζen(m−a)

ζ − 1
− 2

ζen(m−2a)

ζ − 1

)
(6.1)

which we now have the necessary tools to work out.

Proof of Proposition 5.2 when m = 1.
Applying Lemma 6.1 three times to (6.1), we see immediately that

Ω(1)
n,χ =

fχ∑
a=1

χ(a) ·
(

1
2

− a

fχ
+

pn + 1
2

− λpn(en(1 − a − fχ)) +
pn + 1

2
− λpn(en(1 − a))

− 2
(

pn + 1
2

− λpn(en(1 − 2a))
))

.

Upon remembering that en represented (pn − 1)/2fχ, a direct evaluation of the term

−λpn(en(1 − a − fχ)) − λpn(en(1 − a)) + 2λpn(en(1 − 2a))

yields the rational number

−
(

pn +
pn − 1

2fχ
(1 − a − fχ)

)
−

(
pn +

pn − 1
2fχ

(1 − a)
)

+ 2
(

pn +
pn − 1

2fχ
(1 − 2a)

)
.

The above quantity can be further simplified to give

pn

(
1
2

− a

fχ

)
+

a

fχ
− 1

2
;

hence, Ω
(1)
n,χ reduces to the algebraic element

fχ∑
a=1

χ(a) ·
(

1
2

− a

fχ
+

(
pn

(
1
2

− a

fχ

)
+

a

fχ
− 1

2

))
= pn ×

fχ∑
a=1

χ(a) ·
(

1
2

− a

fχ

)
.

If χ is the trivial character, then Ω
(1)
n,χ = pn × − 1

2 , i.e. pn times the value of the Riemann
zeta function at zero. Similarly, if χ �= 1, then

Ω(1)
n,χ =

pn

2
×

fχ∑
a=1

χ(a) − pn ×
fχ∑

a=1

χ(a) · a

fχ

=
pn

2
× 0 + pn × L∞(0, χ).
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Thus, in both cases

Ω(1)
n,χ =

∑
ζ∈µpn

Lχ(ζ−1 − 1) · ζ1 = pn · L∞(0, χ),

as asserted in the statement of Proposition 5.2. �

7. The reciprocity step

In order to finish the demonstration of Proposition 5.2, we are required to show that
Ω

(m)
n,χ − Ω

(1)
n,χ = pn(am(χ) − a1(χ)) for a general m ∈ {1, 2, . . . , pn − 1}. The delicate

part is to switch between the arithmetic of the tower {Q(µpn)}n∈N and that of the field
Q(µ2fχ), a typical instance of reciprocity in action [5].

Assume that m > 1. Subtracting equation (6.1) for the index m from the same equation
at index m + 1, we discover that Ω

(m+1)
n,χ − Ω

(m)
n,χ has the value

fχ∑
a=1

χ(a) ·
( ∑

ζ∈µpn ,
ζ �=1

ζen − 1
ζ − 1

(ζen(m−a−fχ) + ζen(m−a) − 2ζen(m−2a))

)
,

which looks particularly unpleasant.
Let us concentrate on the outer brackets. Since the terms in the geometric progression

1, ζ, ζ2, . . . , ζen−1 add up to (ζen − 1)/(ζ − 1), clearly

∑
ζ∈µpn ,

ζ �=1

ζen − 1
ζ − 1

( · · · ) =
∑

ζ∈µpn ,
ζ �=1

en−1∑
j=0

ζj × ( · · · )

=
en−1∑
j=0

∑
ζ∈µpn ,

ζ �=1

(ζj+en(m−a−fχ) + ζj+en(m−a) − 2ζj+en(m−2a)).

In fact, we can even replace
∑

ζ∈µpn ,ζ �=1 above with
∑

ζ∈µpn
without changing anything.

One deduces that

Ω(m+1)
n,χ − Ω(m)

n,χ =
fχ∑

a=1

χ(a) × β(a, m, n, fχ),

where

β(a, m, n, fχ) =
en−1∑
j=0

∑
ζ∈µpn

(ζj+en(m−a−fχ) + ζj+en(m−a) − 2ζj+en(m−2a)).

Definition 7.1. If x, y, d ∈ Z with d > 0, then define

∆x≡y (mod d) :=

{
1 if x ≡ y modulo d,

0 if x �≡ y modulo d.
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For example, ∑
ζ∈µpn

ζj+x = pn × ∆j+x≡0 (mod pn),

which implies that

β(a, m, n, fχ) =
en−1∑
j=0

pn(∆j+en(m−a−fχ)≡0 (mod pn)

+ ∆j+en(m−a)≡0 (mod pn) − 2∆j+en(m−2a)≡0 (mod pn)).

Lemma 7.2. With the same assumptions and notation as before:

(a)
en−1∑
j=0

∆j+en(m−a−fχ)≡0 (mod pn) = ∆m≡a+fχ (mod 2fχ);

(b)
en−1∑
j=0

∆j+en(m−a)≡0 (mod pn) = ∆m≡a (mod 2fχ);

(c)
en−1∑
j=0

∆j+en(m−2a)≡0 (mod pn) = ∆m≡0 (mod 2) × ∆m/2≡a (mod fχ).

Deferring the proof for a moment, we explain quickly how the inductive argument
for Proposition 5.2 follows from them. Applying (a)–(c), we discover that the coefficient
β(a, m, n, fχ) equals

pn(∆m≡a+fχ (mod 2fχ) + ∆m≡a (mod 2fχ) − 2∆m≡0 (mod 2) × ∆m/2≡a (mod fχ)),

or, even more succinctly,

β(a, m, n, fχ) =

{
pn∆m≡a (mod fχ) − 2pn∆m/2≡a (mod fχ) if m is even,

pn∆m≡a (mod fχ) if m is odd.

Plugging this back into our formula for the difference of the Ω
(−)
n,χ s, we obtain

Ω(m+1)
n,χ − Ω(m)

n,χ =
fχ∑

a=1

χ(a) × β(a, m, n, fχ)

=

⎧⎪⎨⎪⎩
pnχ(m) − 2pnχ

(
m

2

)
if m is even,

pnχ(m) if m is odd.
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Consequently, for all m > 1, it follows that

Ω(m)
n,χ − Ω(1)

n,χ = (Ω(m)
n,χ − Ω(m−1)

n,χ ) + (Ω(m−1)
n,χ − Ω(m−2)

n,χ ) + · · · + (Ω(2)
n,χ − Ω(1)

n,χ)

= pn
m−1∑
j=1

χ(j) − 2pn
m−1∑
j=1,

j even

χ

(
j

2

)

= pn

( m−1∑
j=1

χ(j) − 2
�(m−1)/2�∑

j=1

χ(j)
)

= pn(am(χ) − a1(χ)),

which completes the induction step.

Remark 7.3. Before we give the proof of Lemma 7.2, it is worth asking why the
argument breaks down when p = 2. The power series Lχ(X) has a pole at X = −2 which
lies in the interior of the 2-adic unit disc; hence, Lχ(X) cannot possibly be an element
of Z̄2[[X]]. Despite trying several other generating series, we have yet to find a Dirichlet
expansion which stabilizes independent of 2n. Is this intractable?

Proof of Lemma 7.2.
Let us prove the first assertion. We need to determine whether the congruence

j + en(m − a − fχ) ≡ 0 (mod pn) with 0 � j � en − 1

has any solutions in (m, j) for fixed n, and then count up the number of solutions.
Since en = (pn − 1)/2fχ is congruent to (−2fχ)−1 modulo pn, we are asking under what
conditions the equation j − (m − a − fχ)/2fχ ≡ 0 (mod pn) is solvable, i.e.

m ≡ a + fχ + 2fχj (mod pn), where 0 � j � pn − 1 − 2fχ

2fχ
.

We make the important observation that both m and a + fχ + 2fχj are integers lying
between 1 and pn − 1; not only is the above a congruence modulo pn, it is actually an
equality.

Thus, to have an integer solution in the pair (m, j), it is a necessary condition that
m ≡ a + fχ (mod 2fχ). Conversely, if this condition is satisfied, then

(m, j) =
(

m,
m − a − fχ

2fχ

)
will be the unique solution

for j in the interval [0, (pn − 1 − 2fχ)/2fχ]. It follows that

en−1∑
j=0

∆j+en(m−a−fχ)≡0 (mod pn)

must equal ∆m≡a+fχ (mod 2fχ) and takes either the value 1 or 0, depending on whether or
not there is a solution. The proof of statement (a) is now complete.
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The demonstration of (b) is almost identical, so we shall leave it to the reader. To
prove part (c), let us consider the congruence

j + en(m − 2a) ≡ 0 (mod pn), where 0 � j � en − 1.

Exploiting the fact that en ≡ (−2fχ)−1 modulo pn, after rearranging the above we obtain
the equivalent equation

m ≡ 2a + 2fχj (mod pn) with 0 � j � pn − 1 − 2fχ

2fχ
.

Both sides of the equation are integers lying between 1 and pn − 1; hence, this becomes
an equality, namely m = 2a + 2fχj.

Clearly, to have a solution pair (m, j), it is necessary that both m ≡ 0 (mod 2) and
m2 ≡ a (mod fχ) are satisfied. On the other hand, if both congruences hold true simul-
taneously, then

(m, j) =
(

m,
m/2 − a

fχ

)
will be the only solution pair

under the constraint that the non-negative integer j is bounded above by

(pn − 1 − 2fχ)/2fχ.

Reasoning as in the proof of Lemma 7.2 (a), the summation
en−1∑
j=0

∆j+en(m−2a)≡0 (mod pn)

must equal the product ∆m≡0 (mod 2) × ∆m/2≡a (mod fχ).
The result now follows. �

8. Quadratic fields with small conductor

Let d be a square-free integer, so the discriminant of Q(
√

d) is

D =

{
d if d is congruent to 1 modulo 4,

4d if d is congruent to 2 or 3 modulo 4.

Table 1 gives coefficients am(χd) from Theorem 2.4 which occur in the Dirichlet expansion
of the p-adic zeta function, twisted by the non-trivial quadratic character χd : (Z/dZ)× →
{±1} of Q(

√
d).

Let us outline how to use the table in conjunction with previous formulae. Recall once
more Hypothesis 2.1: gcd(p, 2|D| · φ(|D|)) = 1.

For all integers t � 1, the Iwasawa function (2ωβ(2)〈2〉−s − 1)Lp(s, χd · ω1+β) is
approximated by

ptφ(2|D|)∑
m=1,
p�m

am(χd)ωβ(m)〈m〉−s modulo ptφ(2|D|)Zp〈〈s〉〉;

this is equation (5.1).
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Table 1. The values of am(χ) for quadratic fields with |D| � 20

Q(
√

d) |D| a1(χd), . . . , a2|D|(χd)

Q 1 − 1
2 , 1

2

Q(
√

−3) 3 1
3 , 4

3 , − 5
3 , − 5

3 , 4
3 , 1

3

Q(i) 4 1
2 , 3

2 , − 1
2 , − 3

2 , − 3
2 , − 1

2 , 3
2 , 1

2

Q(
√

5) 5 0, 1, −2, −3, 0, 0, 3, 2, −1, 0

Q(
√

−7) 7 1, 2, 1, 0, −1, −2, −1, −1, −2, −1, 0, 1, 2, 1

Q(
√

2) 8 0, 1, −1, −2, −2, −3, −1, 0, 0, 1, 3, 2, 2, 1, −1, 0

Q(
√

−2) 8 1, 2, 0, 1, 1, 0, −2, −3, −3, −2, 0, 1, 1, 0, 2, 1

Q(
√

−11) 11 1, 2, −1, 0, 3, 4, 1, 0, −3, −2, −5, −5, −2, −3, 0, 1, 4, 3, 0, −1, 2, 1

Q(
√

3) 12 0, 1, −1, −1, −1, −2, −2, −3, −3, −3, −1, 0, 0, 1, 3, 3, 3, 2, 2, 1, 1, 1, −1, 0

Q(
√

13) 13 0, 1, −2, −1, 2, 1, −2, −3, −6, −5, −2, −3,
0, 0, 3, 2, 5, 6, 3, 2, −1, −2, 1, 2, −1, 0

Q(
√

−15) 15 2, 3, 2, 2, 1, 1, 1, 0, −1, −1, −1, −2, −2, −3, −2, −2,
−3, −2, −2, −1, −1, −1, 0, 1, 1, 1, 2, 2, 3, 2

Q(
√

17) 17 0, 1, 0, −1, −2, −3, −2, −3, −4, −3, −2, −3, −2, −1, 0,
1, 0, 0, −1, 0, 1, 2, 3, 2, 3, 4, 3, 2, 3, 2, 1, 0, −1, 0

Q(
√

−19) 19 1, 2, −1, −2, 1, 2, 5, 6, 3, 4, 1, 2, −1, −2, −5, −6, −3, −2, −5, −5,
−2, −3, −6, −5, −2, −1, 2, 1, 4, 3, 6, 5, 2, 1, −2, −1, 2, 1

Q(
√

−5) 20 2, 3, 1, 2, 2, 2, 0, 1, 1, 2, 2, 1, 1, 0, −2, −2, −2, −3, −5, −6, −6,
−5, −3, −2, −2, −2, 0, 1, 1, 2, 2, 1, 1, 0, 2, 2, 2, 1, 3, 2

8.1. A worked example

Suppose that we choose d = −1 so χ−1 will be the imaginary character of conductor 4.
Fix our prime number p � 3. Here the am(χd)s have period 2fχd

= 2|D| = 8. If 21+β �≡
1 (mod p), then the factor (2ωβ(2)〈2〉−s − 1) must become invertible. For all such even
branches β, the function Lp(s, χ−1 · ω1+β) is congruent to

(2ωβ(2)〈2〉−s − 1)−1
8∑

c=1

ac(χ−1)
p4t∑

m=1, p�m
m≡c (mod 8)

ωβ(m)〈m〉−s (mod p4t),

where a1(χ−1), . . . , a8(χ−1) can then be read off from the third line of the table. Clearly,
if β is odd, the p-adic L-functions Lp(s, χ−1 · ω1+β) are identically zero.

Remarks 8.1.

(i) Washington [8, Theorem 1] shows, for all integers k, that

Np∑
m=1,
p�m

m−k = −
∞∑

r=1

(
−k

r

)
Lp(k + r, ω1−r−k)(Np)r,
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interpreting (
−k

1 − k

)
Lp(1, ω0)

as

lim
s→−k

(
s

1 − k

)
Lp(k + s + 1, ω0) =

−1
1 − k

(1 − p−1).

This was originally proved by Boyd [1] in the case when k = 1 using harmonic series.
Results like these express a sum of powers m−k in terms of a rapidly convergent
series whose coefficients are p-adic L-values.

(ii) In stark contrast, Theorem 2.4 tells us that if χ = 1,

Lp(k, ω1−k) = (21−k − 1)−1 × lim
t→∞

pt∑
m=1,
p�m

(−1)m

2
m−k.

Therefore, p-adic L-values may, in turn, be expressed through a convergent power
series whose coefficients are combinations of m−ks, the opposite situation to (i).

It does not seem possible to obtain our results from [1,8] (or vice versa).

(iii) Were the two approaches to be fused together in some way, this may imply alge-
braicity of Lp(4, ω−3),Lp(6, ω−5),Lp(8, ω−7), . . . over the field Q(Lp(2, ω−1)). It
is well known that ζ∞(4), ζ∞(6), ζ∞(8), . . . are rational over Q(ζ∞(2)) = Q(π2) in
the classical case, a very nice consequence of the complex functional equation.

9. The non-Archimedean Euler constant

The Euler–Mascheroni constant [4] is defined to be the positive real number

γ := lim
N→∞

( N∑
m=1

m−1 − ln(N)
)

= lim
σ→1+

(
ζ∞(σ) − Resσ=1 ζ∞(σ)

σ − 1

)
,

where ζ∞(σ) denotes the Riemann zeta function (note that the residue at σ = 1 is one).
In other words, γ represents the constant term in its Laurent expansion about σ = 1.

Numerically, the value of Euler’s constant has been computed at

γ = 0.577 215 664 901 532 860 61 . . . to 20 decimal places.

What is its non-Archimedean analogue?
Let us recall that the trivial branch of the Kubota–Leopoldt L-function

ζp-adic(s) := Lp(s, χ)|χ=1

is a meromorphic function, with a simple pole at the point s = 1 of residue 1 − 1/p.
Following [7], one defines

γp := lim
s→1, s∈Zp

(
ζp-adic(s) − 1 − 1/p

s − 1

)
as the p-adic analogue of the quantity γ.
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We are therefore required to show that γp is congruent to the p-adic number

(
∑p2(n+ε2)

m=1, p�m((−1)m+1/2m)〈m〉pn+ε2 ) − (1 − (1/p)) logp(2)(1 + pn+ε2 1
2 logp(2))

(1 − 〈2〉pn+ε2 )

modulo pnZp, where the constant ε2 = ordp(〈2〉 − 1).

Proof of Theorem 2.7. The argument is a fairly elementary consequence of Theo-
rem 2.4.

We begin by replacing the denominator in the definition of γp with an Euler factor, so
we may rewrite

γp = lim
s→1

(1 − 〈2〉1−s)−1
(

(1 − 〈2〉1−s)ζp-adic(s) +
(

1 − 1
p

)
〈2〉1−s − 1

s − 1

)
.

The rightmost term has the Taylor series development

〈2〉1−s − 1
s − 1

= − logp(2) +
(

s − 1
2

)
log2

p(2) + O((s − 1)2),

which means that the limit becomes

γp = lim
s→1

(
(1 − 〈2〉1−s)ζp-adic(s) − (1 − (1/p)) logp(2)(1 − 1

2 (s − 1) logp(2))
(1 − 〈2〉1−s)

)
.

We shall now assume that s is close to 1, so s = 1 − upM for some u ∈ Z×
p and M � 1.

Reading off the first line in Table 1, we obtain the expansion

(1 − 〈2〉1−s)ζp-adic(s) ≈
p2M∑
m=1,
p�m

(−1)m+1

2
ω−1(m)〈m〉−s + O(p2MZp〈〈s〉〉)

and it follows that

γp ≈

∑p2M

m=1, p�m((−1)m+1/2m)〈m〉upM

−(1 − (1/p)) logp(2)(1 + (1
2upM ) logp(2)) + O(p2M )

(1 − 〈2〉upM )
.

We must be careful to adjust for the size of the denominator, namely

|1 − 〈2〉upM |p =
∣∣∣∣ − upM logp(2) − (upM )2

2
log2

p(2) + · · ·
∣∣∣∣
p

= p−M−ordp(logp(2)).

In fact, ordp(logp(2)) = ordp(〈2〉 − 1), which is precisely ε2.
We have some freedom in fixing the unit u and make our favourite choice u = 1. Hence,

γp is approximated by∑p2M

m=1, p�m((−1)m+1/2m)〈m〉pM − (1 − (1/p)) logp(2)(1 + pM 1
2 (logp(2)))

(1 − 〈2〉pM )
+ O(pM−ε2).

Finally, setting M = n + ε2, the stated result follows. �
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