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ON PERIODIC GROUPS HAVING ALMOST
REGULAR 2-ELEMENTS*

by N. R. ROCCO and P. SHUMYATSKY
(Received 19th August 1996)

We show that if a periodic residually-finite group G has a 2-element with finite centralizer then G is locally
finite.

1991 Mathematics subject classification: 20F50.

1. Introduction

An element a of a group G is called almost regular if Cg(a) is finite. In some
situations existence of an almost regular element in G implies very strong conclusions
about G. For example Sunkov proved in [14] that a periodic group G having an almost
regular element of order two is locally finite (and even contains a solvable subgroup
of finite index). Two other proofs of this result can be found in [2] and [7]. Locally
finite groups having an almost regular element of arbitrary prime order have been
studied intensively in the seventies and eighties (see for example [7]). Khukhro showed
that these groups have a nilpotent subgroup of finite index [10]. In general, a very
interesting direction in locally finite group theory is to classify in some sense locally
finite groups G having a finite subgroup A such that C;(A) possesses some prescribed
property, as for example the property to be a linear group [8].

In this paper we are interested in the following question, which is natural in view
of the result of Sunkov.

Given a periodic group G with an almost regular element, under what conditions
does it follow that G is locally finite?

According to Ol’shanski, for any positive integer n which has at least one odd divisor
there exists an infinite group G having an almost regular element of order n such that
all proper subgroups of G are finite [12]. Therefore the result of Sunkov cannot be
extended to periodic groups having an almost regular element whose order is not a
2-power.

In this paper we consider periodic residually-finite groups having an almost regular
element of order 2". Note that groups constructed in [1, 4, §, 6, 13] are finitely-generated
periodic residually-finite and infinite. We will prove here the following result.
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Theorem A. Let G be a periodic residually-finite group having an almost regular
2-element. Then G is locally finite.

The above theorem will be derived from the following closely related result.

Proposition B. Let G be a periodic residually-nilpotent group admitting a fixed-
point-free automorphism of order 2". Then G is locally finite.

2. Proof of Proposition B

Let G be a periodic group. For any element x € G of odd order let us use xt to
denote the element y € (x) such that y* = x. If G is a periodic 2’-group and ¢ is an
involutory automorphism of G then x(x*x) e Cy(¢). Indeed, let h = x(x®x)7%.
Note that

(x~x)t = x~*x(x~%x)"1.
We have

ht — X"(x"xd’)_i = xd’(x“’x)% = xd’x_d’x(x"’x)_i _ x(x"d’x)—% —h

Lemma 2.1. Let G be a periodic group acted on by a finite 2-group A. Suppose that
Cs(A) contains no 2-element. Then G is a 2-group.

Proof. We will use induction on |A4|. Suppose first that 4 is of order two and let
¢ be the involution in A4. If G contains elements of even order there exists an involution
1€ G. If 1-1% is of even order then the involution from (z - 7%) is contained in Cg4(A),
a contradiction. Assume that the order of 7 - 1% is odd. Then («* - 1)5,- 7 is an involution
contained in C;(A).

Let now |A| >4 and ¢ an involution in Z(A). Set H = C;(¢). By the preceding
paragraph, if G contains elements of even order then so does H. Obviously, H is A-

~ invariant and A induces a group of automorphisms of H whose order is strictly less
than that of A. Now the induction hypothesis yields that C,(A) contains elements of
even order. The lemma follows. |

Lemma 2.2. Let G be a periodic 2'-group acted on by a finite 2-group A. Suppose that
N is a normal A-invariant subgroup of G. Then

CG(A)N/N = CG/N(A)'

Proof. Let |A] =2". Using induction on n we will show that

https://doi.org/10.1017/50013091500019726 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500019726

ON PERIODIC GROUPS HAVING ALMOST REGULAR 2-ELEMENTS 387
Cs(A)N/N = Cg/n(A).

Suppose first that n=1 and let ¢ be the involution in A. Let xe€ G and
xN € Cgn(A). Then x™®x € N. Since

x = x(x~*x) " }(x"*x)t and x(x*x)"t € C.(¢).

we obtain that xN € C;(A)N/N.
Let now n be arbitrary and ¢ an involution in Z(A4). Set H = C4(¢). Let again
x € G and xN € Cg/y(A4). Then (x""x) € N. As above we have

x = x(x~*x) " H(x"*x)t and y = x(x*x) "t € H.
It is easy to see that
y(H N N) € Cyunn(A).

Since the automorphism group of H induced by A4 has order strictly less than |A|, we are
in a position to apply the mductlon hypothesis. This yields that y = ht, where h € C(A4),
t € HN N. Recall that x = y(x"*x)%. It follows that xN € C5(A)N/N.

Thus, we showed that Cg/y(A4) < C4(A)N/N. The reverse inclusion is obvious. O

Let now G be any group and p a prime. For i > 1 set
k
D(G) =[] 16,
etz

where y,(G) stands for the j-th term of the lower central series of G and for any
subgroup H < G the symbol H” denotes the subgroup of H generated by the set
{k* | h € H). It follows that y,(G) < D, for all i > 1 and that (D,(G)),,, is a descending
series of characteristic subgroups of G. This series is called the Lazard p-series of G.

Lemma 2.3 [9, p. 250). For any group G and all i, j > 1 we have

[Di(G), D(G)] = Di(G).

The above lemma shows that the Lazard p-series (D(G)),,, is a strongly central series
of G in the sense of [9].

Given a group G and a prime p we shall associate the Lie algebra L,(G) to G.
Consider the series

G =D,(G)= Dy(G) > ....
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For all i > 1 the factor group D{G)/D,,,(G) can be viewed as a vector space over the
field with p elements F,. Let L(G) denote their direct sum,

L(G) = €D D{G)/D...(G)-

To avoid overloading the notation, we write D; for D,(G). For arbitrary cosets
aD,,, € D;/D;;, and bD;,, € D;/D,,, we define a bracket product

[@D.,y; bD;,.\] = [a, b]Di+j+l' (2.4)

where [a, b] denotes the group commutator a”'b'ab. Lemma 2.3 implies that the
product above is well defined in the sense that the right-hand side of 2.4 does not
depend on the coset representatives a, b. Extending now the product 2.4 linearly to the
whole L(G), we give L(G) the structure of a Lie algebra over the field F,. The
subalgebra of L(G) generated by D,/D, will be denoted by L,(G).

If G is a finitely-generated residually-finite p-group such that L (G) satisfies a non-trivial
polynomial identity, then by a deep result of Zelmanov G is finite [15, Theorem 1.6].

Proposition B. Let G be a periodic residually-nilpotent group admitting a fixed-
point-free automorphism ¢ of order 2". Then G is locally finite.

Proof. We may assume that G is a finitely-generated p-group. Obviously ¢ induces
an automorphism of the Lie algebra L, (G). By Lemma 2.1 p is odd, so Lemma 2.2
guarantees that ¢ induces a fixed-point-free automorphism of every quotient
D{(G)/D,,,;i=1,2,.... This yields that the induced automorphism of L,(G) has no
non-zero fixed element. A theorem of Kreknin [11] now tells us that L,(G) is solvable.
Hence by Zelmanov’s Theorem cited above [15] G must be finite. |

3. Proof of Theorem A

Let G be an arbitrary periodic group. We denote by |x| the order of element x € G.
Set T,(G) = G, and fori =1, 2,... define

Ty =[x, ¥} x, y € T(G), (Ix], Iyl) = 1).
Obviously we have

TG zTG) 2 2T(G) =2 T,(G)=....

Lemma 3.1. Let G be a periodic group, N a normal subgroup of G. Then for any
positive integer k we have
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T{G/N) = T,(G)N/N.

Proof. Since T,,,(G) = T,(T,(G)), it suffices to prove the lemma only for k = 2.

Certainly, if x and y have relatively prime orders in G, then xN and yN have
relatively prime orders in G/N. Therefore the inclusion T,(G/N) = T(G)N/N is
obvious.

To prove that T,(G/N) < T,(G)N/N let us take xN, yN € G/N of relatively prime
orders in G/N and show that [x, y] € T,(G)N.

Let n, be the set of prime divisors of |xN| and =, the set of prime divisors of |yN|.
By assumption =n,N=n, =@. Let |x|=m,, n, |y| =m,n, where n, is the maximal
n,-divisor of |x| and n, is the maximal =,-divisor of |y|. Then {(x™N) = (xN) and
(y™N) = (yN). Therefore there exist integers i,j such that x € xX™N, and y € y’™N.
The orders of x™ and y’™ are relatively prime. Therefore

[x, y] € [x™, y'™IN € T,(G)N,

as required. a

Given a periodic group G, let t(G) denote the minimal number i (possibly co) such
that T, ,(G) = 1. Recall that if G is a finite solvable group, then the Fitting height h(G)
of G is defined as follows. Let F(G) denote the Fitting subgroup of G, i.e., the subgroup
generated by all normal nilpotent subgroups of G. Set

Fy(G) = 1, F,,(G)/F(G) = F(G/F(G)), i=1,2,....

Then h(G) is the minimal number h such that F,{(G) = G.
Lemma 3.2. Let G be a finite solvable group. Then t(G) = h(G).

Proof. Let N be the minimal normal subgroup of G such that G/N is nilpotent,
Then, obviously, T,(G) = N. Now use induction on t(G) along with the equalities
t(T(G)) = t(G) — 1 and h(N) = h(G) - 1. O

Lemma 3.3. Let G be a periodic residually-finite group admitting a fixed-point-free
automorphism ¢ or order 2". Then t(G) < n.

Proof. Suppose that (G} >n+1, ie., T,,, # 1. Since G is residually-finite, there
exists a ¢-invariant normal subgroup N of finite index in G such that
T,,2(G) £ N. By Lemma 3.1 T,,,(G/N) # 1. We remark that by 2.1 and 2.2 G/N is
a finite group of odd order on which ¢ acts without non-trivial fixed points. By
a result of Th. Berger [3] i(G/N) < n. Now the previous lemma vyields t(G/N) <n,
a contradiction. O
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Proof of Theorem A. Given an almost regular element of order 2" in a periodic
residually-finite group G, let ¢ denote the inner automorphism of G induced by this
element. Of course, without any loss of generality we may assume that G is finitely-
generated. Since Cg(¢) is finite and G is residually-finite, there exists a normal
¢-invariant subgroup H of G such that (G : H| < oo and HNC4(¢) = 1. By Lemma 2.1
H is a 2-group. Applying Lemma 3.3 with H in place of G, we conclude that
t = t(H) < n. Suppose first that ¢t = 1. In this case H is a direct product of maximal
p-subgroups. Proposition B yields that each ¢-invariant p-subgroup of H is locally
finite and, therefore, so is H. Since H is of finite index in G, it follows that G is locally
finite and we are done.

Thus, without loss of any generality we may assume that ¢t > 2 and use induction
on t. By the induction hypothesis assume that T,(H) is locally finite. Set N = T,(H).
Then H/N is a direct product of its maximal p-subgroups. By Lemma 2.2 this group
admits a fixed-point-free 2-automorphism. To use Proposition B now we need to know
that H/N is residually-finite: but this can be false. So, let H, be the intersection of all
normal subgroups of finite index in H which contain N. Then H/H, is a direct product
of its maximal p-subgroups (because N < H,) and is residually-finite (by the definition
of H,). Lemma 2.2 shows that H/H, admits a fixed-point-free automorphism whose
order divides 2". Now Proposition B implies that H/H, is locally finite. Since H is a
subgroup of finite index of a finitely-generated group, H/H, also is finitely-generated.
Thus, we derive that H/H, is finite. In particular each subgroup of H, having finite
index in H, has also finite index in H. Now the definition of H, implies that for any
subgroup K of finite index in Hy; we have NK = H,. It follows that each finite quotient
of H, is isomorphic to a finite quotient of N. Since N = T,(H), it follows that
t(N)=t—1. We conclude now that for any finite quotient H of H, we have
t(H) <t — 1. Since H, is residually-finite, Lemma 3.1 yields now that t(H,) <t — 1. By
the induction hypothesis we derive now that H, is locally finite. Due to the fact that
H, has finite index in G it follows that G is locally finite. The proof is complete. O
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