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ON PERIODIC GROUPS HAVING ALMOST
REGULAR 2-ELEMENTS*

by N. R. ROCCO and P. SHUMYATSKY

(Received 19th August 1996)

We show that if a periodic residually-finite group G has a 2-element with finite centralizer then G is locally
finite.

1991 Mathematics subject classification: 20F50.

1. Introduction

An element a of a group G is called almost regular if CG(a) is finite. In some
situations existence of an almost regular element in G implies very strong conclusions
about G. For example Sunkov proved in [14] that a periodic group G having an almost
regular element of order two is locally finite (and even contains a solvable subgroup
of finite index). Two other proofs of this result can be found in [2] and [7]. Locally
finite groups having an almost regular element of arbitrary prime order have been
studied intensively in the seventies and eighties (see for example [7]). Khukhro showed
that these groups have a nilpotent subgroup of finite index [10]. In general, a very
interesting direction in locally finite group theory is to classify in some sense locally
finite groups G having a finite subgroup A such that CG(A) possesses some prescribed
property, as for example the property to be a linear group [8].

In this paper we are interested in the following question, which is natural in view
of the result of Sunkov.

Given a periodic group G with an almost regular element, under what conditions
does it follow that G is locally finite?

According to Ol'shanski, for any positive integer n which has at least one odd divisor
there exists an infinite group G having an almost regular element of order n such that
all proper subgroups of G are finite [12]. Therefore the result of Sunkov cannot be
extended to periodic groups having an almost regular element whose order is not a
2-power.

In this paper we consider periodic residually-finite groups having an almost regular
element of order 2". Note that groups constructed in [1, 4, 5, 6, 13] are finitely-generated
periodic residually-finite and infinite. We will prove here the following result.
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Theorem A. Let G be a periodic residually-finite group having an almost regular
2-element. Then G is locally finite.

The above theorem will be derived from the following closely related result.

Proposition B. Let G be a periodic residually-nilpotent group admitting a fixed-
point-free automorphism of order 2". Then G is locally finite.

2. Proof of Proposition B

Let G be a periodic group. For any element x € G of odd order let us use x* to
denote the element y e (x) such that y2 = x. If G is a periodic 2'-group and <j> is an
involutory automorphism of G then x(x~*x)~' e Cc((f>). Indeed, let h = x(x"*x)~i
Note that

We have

h+ = x*(x-'x*)"i = x*(x-*x)* = x*x"*x(x"*x)"i = x(x-*x)~i = h.

Lemma 2.1. Let G be a periodic group acted on by a finite 2-group A. Suppose that
CG(A) contains no 2-element. Then G is a 2'-group.

Proof. We will use induction on \A\. Suppose first that A is of order two and let
<j> be the involution in A. If G contains elements of even order there exists an involution
T € G. If T • T* is of even order then the involution from (T • T*> is contained in CG(A),
a contradiction. Assume that the order of x • T* is odd. Then (T* • ty • x is an involution
contained in CG(A).

Let now \A\ > 4 and 0 an involution in Z(A). Set H = CG(0). By the preceding
paragraph, if G contains elements of even order then so does H. Obviously, H is A-
invariant and A induces a group of automorphisms of H whose order is strictly less
than that of A. Now the induction hypothesis yields that CH(A) contains elements of
even order. The lemma follows. •

Lemma 2.2. Let G be a periodic 2'-group acted on by a finite 2-group A. Suppose that
N is a normal A-invariant subgroup of G. Then

CG(A)N/N = CG/N(A).

Proof. Let \A\ — 2". Using induction on n we will show that
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CG(A)N/N > CG/N(A).

Suppose first that n = 1 and let <$> be the involution in A. Let x e G and
xN e CC/N(A). Then x~*x e N. Since

x = and x(x"*x)~i 6 CG(4>),

we obtain that xN e CG(A)N/N.
Let now n be arbitrary and <f> an involution in Z(/4). Set H — Cc(</>). Let again

x e G and xN e CG/N(A). Then (x~*xp e N. As above we have

x = x(x-*xr*(x-*x)* and y = x(x-*x)^ e H.

It is easy to see that

y(HnN)eCH/HnN(A).

Since the automorphism group of H induced by A has order strictly less than \A\, we are
in a position to apply the induction hypothesis. This yields that y — ht, where h e CH(A),
teHHN. Recall that x = ><x"*x)i It follows that xN e CG(A)N/N.

Thus, we showed that CG/N(A) < CG(A)N/N. The reverse inclusion is obvious. •

Let now G be any group and p a prime. For i > 1 set

where yy(G) stands for the ;-th term of the lower central series of G and for any
subgroup H < G the symbol H1* denotes the subgroup of H generated by the set
{W* \he H). It follows that yt(G) < D, for all i > 1 and that (Dj(G)),>, is a descending
series of characteristic subgroups of G. This series is called the Lazard p-series of G.

Lemma 2.3 [9, p. 250]. For any group G and all i, j > 1 we have

The above lemma shows that the Lazard p-series (£>,(G))I2l is a strongly central series
of G in the sense of [9].

Given a group G and a prime p we shall associate the Lie algebra LP(G) to G.
Consider the series

G = Dl(G)>D2(G)> . . . .

https://doi.org/10.1017/S0013091500019726 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019726


388 N. R. ROCCO AND P. SHUMYATSKY

For all i > 1 the factor group D,-(G)/D,+|(G) can be viewed as a vector space over the
field with p elements Fp. Let Ufi) denote their direct sum,

To avoid overloading the notation, we write £), for £>,(G). For arbitrary cosets
aDi+1 e D,/Di+l and bDj+l e Dj/Dj+] we define a bracket product

[aDi+t;bDj+l] = [a,b]Di+j+]. (2.4)i+t;bDj+l]

where [a, b] denotes the group commutator a'^b^ab. Lemma 2.3 implies that the
product above is well defined in the sense that the right-hand side of 2.4 does not
depend on the coset representatives a, b. Extending now the product 2.4 linearly to the
whole Ufi), we give L{G) the structure of a Lie algebra over the field Fp. The
subalgebra of Ufi) generated by Z>i/D2 will be denoted by LP(G).

If G is a finitely-generated residually-finite p-group such that LP{G) satisfies a non-trivial
polynomial identity, then by a deep result of Zelmanov G is finite [15, Theorem 1.6].

Proposition B. Let G be a periodic residually-nilpotent group admitting a fixed-
point-free automorphism <p of order 2". Then G is locally finite.

Proof. We may assume that G is a finitely-generated p-group. Obviously (f> induces
an automorphism of the Lie algebra LP(G). By Lemma 2.1 p is odd, so Lemma 2.2
guarantees that (j> induces a fixed-point-free automorphism of every quotient
£),(G)/D1+i; j = 1,2, This yields that the induced automorphism of LP(G) has no
non-zero fixed element. A theorem of Kreknin [11] now tells us that LP(G) is solvable.
Hence by Zelmanov's Theorem cited above [15] G must be finite. •

3. Proof of Theorem A

Let G be an arbitrary periodic group. We denote by |x| the order of element x e G.
Set 7j(G) = G, and for i = 1, 2 , . . . define

Tw = ([x,y];x,yeT,(G),(\x\,\y\) = l ) .

Obviously we have

7i(G) >

Lemma 3.1. Let G be a periodic group, N a normal subgroup of G. Then for any
positive integer k we have
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Tk(G/N) = Tk(G)N/N.

Proof. Since Tk+l(G) = T2(Tk(G)), it suffices to prove the lemma only for k = 2.
Certainly, if x and y have relatively prime orders in G, then xN and yN have

relatively prime orders in G/N. Therefore the inclusion T2(G/N) > T2(G)N/N is
obvious.

To prove that T2(G/N) < T2(G)N/N let us take xJV, yN e G/N of relatively prime
orders in G/N and show that [x, y] e T2(G)N.

Let 7t, be the set of prime divisors of |xiV| and n2 the set of prime divisors of \yN\.
By assumption 71,0712 = 0. Let |x| = m,,n,, |y| = m2n2, where n, is the maximal
71,-divisor of |x| and n2 is the maximal 7i2-divisor of |y|. Then (xm'N> = (xN) and
(ym2N) = {yN). Therefore there exist integers ij such that x e xim'N, and ye y}m2N.
The orders of x""1 and y*1"2 are relatively prime. Therefore

[x,y]e[xim',yJm2]NeT2(G)N,

as required. •

Given a periodic group G, let t(G) denote the minimal number i (possibly 00) such
that Ti+l(G) - 1. Recall that if G is a finite solvable group, then the Fitting height h(G)
of G is defined as follows. Let F(G) denote the Fitting subgroup of G, i.e., the subgroup
generated by all normal nilpotent subgroups of G. Set

F0(G) = 1, Fi+l(G)/f;.(G) = F(G/F,(G)), i = 1, 2 , . . . .

Then h(G) is the minimal number h such that Fh(G) = G.

Lemma 3.2. Let G be a finite solvable group. Then t{G) — h{G).

Proof. Let N be the minimal normal subgroup of G such that G/N is nilpotent.
Then, obviously, T2(G) — N. Now use induction on t(G) along with the equalities

- \ and h(N) = h(G)-\. •

Lemma 3.3. Let G be a periodic residually-finite group admitting a fixed-point-free
automorphism <p or order 2". Then t(G) < n.

Proof. Suppose that t(G) > n+ 1, i.e., Tn+2 / 1. Since G is residually-finite, there
exists a (/j-invariant normal subgroup N of finite index in G such that
Tn+2(G)£N. By Lemma 3.1 Tn+2(G/N)^ 1. We remark that by 2.1 and 2.2 G/N is
a finite group of odd order on which </3 acts without non-trivial fixed points. By
a result of Th. Berger [3] h(G/N) < n. Now the previous lemma yields t(G/N) < n,
a contradiction. •
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Proof of Theorem A. Given an almost regular element of order 2" in a periodic
residually-finite group G, let <p denote the inner automorphism of G induced by this
element. Of course, without any loss of generality we may assume that G is finitely-
generated. Since CG((f>) is finite and G is residually-finite, there exists a normal
(^-invariant subgroup H of G such that \G : H\ < oo and HC\ Cc(0) = 1. By Lemma 2.1
H is a 2'-group. Applying Lemma 3.3 with H in place of G, we conclude that
t — t(H) < n. Suppose first that t = 1. In this case H is a direct product of maximal
p-subgroups. Proposition B yields that each ^-invariant p-subgroup of H is locally
finite and, therefore, so is H. Since H is of finite index in G, it follows that G is locally
finite and we are done.

Thus, without loss of any generality we may assume that t > 2 and use induction
on t. By the induction hypothesis assume that T2(H) is locally finite. Set N = T2(H).
Then H/N is a direct product of its maximal p-subgroups. By Lemma 2.2 this group
admits a fixed-point-free 2-automorphism. To use Proposition B now we need to know
that H/N is residually-finite: but this can be false. So, let Ho be the intersection of all
normal subgroups of finite index in H which contain N. Then H/Ho is a direct product
of its maximal p-subgroups (because N < Ho) and is residually-finite (by the definition
of Ho). Lemma 2.2 shows that H/Ho admits a fixed-point-free automorphism whose
order divides 2". Now Proposition B implies that H/Ho is locally finite. Since H is a
subgroup of finite index of a finitely-generated group, H/Ho also is finitely-generated.
Thus, we derive that H/Ho is finite. In particular each subgroup of Ho having finite
index in Ho has also finite index in H. Now the definition of Ho implies that for any
subgroup K of finite index in Ho we have NK — Ho. It follows that each finite quotient
of Ho is isomorphic to a finite quotient of N. Since N = T2(H), it follows that
t(N) = t — 1. We conclude now that for any finite quotient H of Ho we have
t(H) < t - 1. Since Ho is residually-finite, Lemma 3.1 yields now that t(tf0) < r - 1. By
the induction hypothesis we derive now that Ho is locally finite. Due to the fact that
Ho has finite index in G it follows that G is locally finite. The proof is complete. •
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