
Bayesian models with dominance effects for genomic
evaluation of quantitative traits

ROBIN WELLMANN* AND JÖRN BENNEWITZ
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Summary

Genomic selection refers to the use of dense, genome-wide markers for the prediction of breeding values (BV)
and subsequent selection of breeding individuals. It has become a standard tool in livestock and plant breeding
for accelerating genetic gain. The core of genomic selection is the prediction of a large number of marker effects
from a limited number of observations. Various Bayesian methods that successfully cope with this challenge are
known. Until now, the main research emphasis has been on additive genetic effects. Dominance coefficients of
quantitative trait loci (QTLs), however, can also be large, even if dominance variance and inbreeding depression
are relatively small. Considering dominance might contribute to the accuracy of genomic selection and serve as a
guide for choosing mating pairs with good combining abilities. A general hierarchical Bayesian model for
genomic selection that can realistically account for dominance is introduced. Several submodels are proposed
and compared with respect to their ability to predict genomic BV, dominance deviations and genotypic values
(GV) by stochastic simulation. These submodels differ in the way the dependency between additive and
dominance effects is modelled. Depending on the marker panel, the inclusion of dominance effects increased the
accuracy of GV by about 17% and the accuracy of genomic BV by 2% in the offspring. Furthermore, it slowed
down the decrease of the accuracies in subsequent generations. It was possible to obtain accurate estimates of
GV, which enables mate selection programmes.

1. Introduction

Genomic selection refers to the use of genome wide
and dense markers for the prediction of breeding
values (BV) and subsequent selection of individuals
(Meuwissen et al., 2001). Results from simulations
and from real validation studies revealed that the ac-
curacy of predicted BV of individuals without own
records or without progeny records can be remark-
ably high (Meuwissen et al., 2001; Calus et al., 2008;
Luan et al., 2009; Habier et al., 2010; Hayes et al.,
2009), which offers the opportunity to accurately sel-
ect individuals at an early stage of their life as parents
of the next generation. This technique has become a
standard tool in dairy cattle breeding (Hayes et al.,
2009), and its implementation in other livestock spe-
cies is foreseen, e.g. in poultry breeding (Wolc et al.,

2011), in pig breeding, and also in plant breeding
(Piepho, 2009; Heffner et al., 2009).

The core of genomic selection is the prediction of
BV from massive marker data. Most influential
methods were already proposed by Meuwissen et al.
(2001). These are genomic best linear unbiased pre-
diction (G-BLUP), BayesA and BayesB, which differ
in their assumptions about the distribution of marker
effects. G-BLUP assumes a normal distribution
of marker effects, whereas BayesA assumes a more
heavy tailed Student t-distribution (Gianola et al.,
2009). Since the Student t-distribution approximates
the normal distribution when the degree of freedom
v increases, G-BLUP can be considered as a limiting
case of BayesA. Although these methods perform
well in simulation studies and applications, many
markers are not needed to capture the effects of
quantitative trait loci (QTLs) because they are either
redundant or not in linkage disequilibrium (LD) with
a QTL. This is accounted for by BayesB, which
assumes that marker effects come from a Student
t-distribution with a certain probability and take the
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value 0 otherwise. A marker effect comes from the
Student t-distribution if the marker is needed to cap-
ture a QTL effect. BayesB contains BayesA as the
special case where the prior probability of a marker to
be needed equals one. An alternative is the stochastic
search variable selection (SSVS) model (George &
McCulloch, 1993) that was introduced to QTL map-
ping by Yi et al. (2003) and was applied byMeuwissen
(2009) to genomic selection. It assumes that effects
of single nucleotide polymorphisms (SNPs) come
from a mixture of two normal distributions with dif-
ferent variances, and SNPs with negligible effects
come from the distribution with little variance.
Bayesian SSVS is similar, but assumes prior distribu-
tions for the variances of SNP effects. As a con-
sequence, SNP effects are from a mixture of two
Student t-distributions with different variances.
Bayesian SSVS is also known as BayesC (Verbyla
et al., 2009, 2010). It contains BayesB as the limiting
case, in which the variance of one mixing distribution
approaches zero. Further Bayesian models that have
been proposed are the Bayesian Lasso that assumes
Laplace priors (Park & Casella, 2008; Legarra et al.,
2011), and a Bayesian model that uses identity by
descent (IBD) probabilities (Meuwissen & Goddard,
2004). However, Calus et al. (2008) found that a
marker effect–based model that does not make use of
IBD probabilities provides similar accuracies for
high–density marker panels.

Nearly all published models only include additive
effects (Calus, 2010) and little has been done to gen-
eralize these models for the prediction of genomic
BV to explicitly account for dominance. One reason
is probably that estimated BV or deregressed BV ob-
tained from routine evaluations (Garrick et al., 2009)
are used as observations in most applications of gen-
omic selection, so dominance deviations of individ-
uals are absent in the data. However, if individual
phenotypes are available, the inclusion of dominance
effects could not only increase the accuracy of geno-
mic selection, but predicted dominance effects could
also be used to find mating pairs with good combining
abilities by recovering inbreeding depression and uti-
lizing possible overdominance. Toro & Varona (2010)
demonstrated that the inclusion of dominance into
Bayesian models can indeed increase the accuracy of
genomic selection. They assumed independent addi-
tive and dominance effects which were in accordance
with their simulation protocol. Reproducing kernel
Hilbert space regression (RKHS regression) is pro-
posed as an alternative method for the estimation of
genotypic values (GV), especially if non-additive
effects such as dominance or epistasis are included in
the phenotypes (Gianola et al., 2006). It assumes that
for each pair of genotypes, the covariance of its GV is
defined by a covariance function (de los Campos et al.,
2009). The covariance function is the reproducing

kernel of a Hilbert space. RKHS regression yields an
estimate of the function g that maps genotypes to GV.
This estimate is optimal in a well–defined sense among
all functions that belong to the Hilbert space (Gianola
& van Kaam, 2008). RKHS regression does not make
assumptions about the mechanism that makes GV
random since any symmetric and finitely positive-
semidefinite function K is the reproducing kernel of a
Hilbert Space (Shawe-Taylor & Cristianini, 2004).

The aim of this paper is to introduce Bayesian
linear regression models for genomic evaluation of
quantitative traits that account for dominance
effects of QTLs. These models are generalizations of
Bayesian SSVS that includes only additive effects. The
proposed models differ in the way the dependency
between additive effects, dominance effects and allele
frequencies is modelled. Plausible informative priors
are chosen which are in agreement with the genetic
architectures of quantitative traits suggested in the
literature. We call these generalizations the BayesD
models, where D stands for dominance. The paper is
organized as follows. We start with a brief literature
review on the dependencies between additive effects,
dominance effects and allele frequencies in real popu-
lations and discuss how Bayesian models could ac-
count for these dependencies. Statistical models that
realistically account for these dependencies are de-
fined thereafter. The joint posterior distribution
of unknown model parameters is given and used to
derive a Markov chain for the prediction of these
parameters. Moments of the random effects are de-
rived and are used for the calculation of the hyper-
parameters. We also demonstrate that kernels for
RKHS regression can be derived from the assump-
tions of our models. The resulting RKHS estimate is
the BLUP for the underlying Bayesian model. The
proposed methods are applied to a simulated popu-
lation. The models are compared with respect to their
ability to predict dominance deviations, GV and BV.

2. Theory

(i) Possibilities to model the genetics of dominance

Since the aim of this paper is to account for domi-
nance in genomic evaluations of quantitative traits,
we present different possibilities to model the joint
distribution of additive and dominance effects of the
markers and show how these models are able to ac-
count for the genetic architectures that are suggested
in the literature. The mathematical definitions of
our models are given in the next section. Note that the
proofs of all numbered equations can be found in
the electronic appendix. Table 1 summarizes symbols
used in this paper.

Consider biallelic QTLs with alleles 0 and 1. In this
section, aj and dj denote the additive and dominance
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effect of QTL j. The 1-allele has frequency pj and the
0-allele has frequency qj=1xpj. The three possible
genotypes 00, 01 and 11 have GV 0, aj+dj and 2aj.
Dominance effects can cause inbreeding depression.
Inbreeding depression I of a trait is the expected de-
crease of the phenotypic value when the inbreeding
coefficient increases from 0 to 1. I>0 requires that
the expectation of dominance effects is positive, pro-
vided that allelic effects are assumed to be random
realisations from some distribution. This means that
the effect of the heterozygous genotype is usually
above the average effect of the two homozygous
genotypes. Analogously, for a trait with outbreeding
depression we have I<0 and the expectation of
dominance effects is negative. Dominance effects also
cause dominance variance. Dominance variances of
up to 50% of the additive variance have been re-
ported for traits in dairy cattle (van Tassell et al.,
2000). Substantially larger dominance variances are
unlikely to occur due to the U-shaped distribution of

allele frequencies (Hill et al., 2008). Dominance var-
iances have also been estimated for some traits in beef
cattle (Duangjinda et al., 2001) and pigs (Serenius
et al., 2006). In general, estimates of dominance vari-
ance must be interpreted with caution because they
could be confounded e.g. by maternal effects or
environmental covariance of full sibs. Moreover, an
accurate estimation of dominance variance requires
at least 20 times as much data as the estimation of
additive variance (Misztal, 1997).

Figure 1 gives an overview of different possibilities
to model the joint distribution of additive effects and
dominance effects. The figure shows samples drawn
from the proposed joint prior distribution of additive
and dominance effects of markers with allele fre-
quency qj=pj=0.5 for different scenarios, where ad-
ditive effects are assumed to be Student t-distributed
with v=2.5 degrees of freedom. Note that the models
presented in the next section are more general than
this illustrative example.

The simplest possibility is to assume independence
of additive and dominance effects, where dominance
effects have the same distribution as additive effects.
It can be seen in Fig. 1 that this prior assumes that for
QTL with large dominance effect the additive effect
is likely small in magnitude. This is because the
t-distribution is heavy tailed, so it allows ‘ large’ effects
to occur. But large effects are rare events, so under
independence, the probability is small that for a large
dominance effect, the additive effect is also large.
Thus, dominance is mainly due to overdominant
alleles. But this is out of line with standard genetics
theory (Kacser & Burns, 1981; Charlesworth &Willis,
2009) because theory predicts that recessive deleteri-
ous alleles rather than overdominant alleles are the
primary cause of inbreeding depression. This model is
therefore not further considered.

A second possibility (BayesD1) is to assume that
the joint distribution of additive and dominance
effects is elliptical with Student t-distributed margins.
Roughly speaking, this model assumes that additive
and dominance effects of a QTL are of the same mag-
nitude. Figure 1 shows that overdominance is quite
common under this assumption. The importance of
overdominance cannot yet be accurately quantified
(Charlesworth & Willis, 2009), so this model may be
appropriate for populations in which many over-
dominant QTLs are expected to exist. For most ap-
plications, however, the prior possibly allows for too
much overdominance.

Therefore, we consider as a third possibility
(BayesD2) the case that absolute additive effects and
dominance coefficients are independent. The domi-
nance coefficient dj=

dj
jajj of a QTL is the ratio between

the dominance effect and the absolute additive effect.
If dj>1 or dj<x1 then the QTL is overdominant
(or underdominant). If dj=1 or dj=x1 then the QTL

Table 1. Table of symbols

~aaj, ~ddj Additive effect and dominance effect of
marker j

aj, dj, dj Putative additive effect, dominance effect
and dominance coefficient of marker j
(or additive effect, dominance effect and
dominance coefficient of QTL j)

~hhj Effect of marker j, where ~hhj=(~aaj, ~ddj) or ~hhj=~aaj
hj Putative effect of marker j, where hj=(aj, dj)

or hj=aj
vj vj=1 if the additive effect of marker j is

positive and vj=0 otherwise

cj cj=1 if marker j is needed and cj=0
otherwise

kj Conditional scale of the effect of marker j,
given cj

tj
2 Forces the distribution of the additive effect

to have the desired shape

b Vector of fixed effects

u Vector of normally distributed random
effects with covariance matrix S

s2 Variance of the errors

Posj (dj) Probability that aj is positive, given dj
md (|aj|) Conditional expectation of dj, given |aj|
sd

2(|aj|, tj2) Conditional variance of dj, given |aj| and tj
2

mD(
jaj j
s
) Conditional expectation of the dominance

coefficient, given |aj|
s2
D Conditional variance of the dominance

coefficient, given |aj|
wj The parameter satisfies

1xwj

2
=P(sign(~aaj)=

sign(~ddj))

K(x, ~xx) For RKHS regression, K(x, ~xx) denotes the
kernel

K(x) For BayesD, K(x) denotes the function
defined after equation (3)
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is dominant or recessive. For dj=0, the QTL is com-
pletely additive and a QTL with x1<dj<0 or
0<dj<1 shows incomplete dominance or recessivity.
As demonstrated in Fig. 1, the model is able to make
the prior assumption that the probability is small that
a dominance effect is much larger in magnitude than
the additive effect, so overdominance is a rare but not
negligible event. This is in accordance with Bennewitz
& Meuwissen (2010) who used results from QTL
experiments and found that dominance coefficients
were normally distributed with small but positive
mean. Here, we also assume a normal distribution for
the dominance coefficient.

Caballero&Keightley (1994) showed that the domi-
nance effect depends on the additive effect such that
QTLs with large absolute additive effect likely have
large dominance coefficients. Moreover, they con-
cluded tentatively that mutations of small effect show
highly variable degrees of dominance with an average
dominance coefficient close to zero. Deleterious alleles
with large effect are usually close to recessivity
due to the hyperbolic relationship between enzyme

activity and flux (Kacser & Burns, 1981). The prior
distribution of BayesD2 cannot account for this.
Therefore, we consider as a fourth possibility
(BayesD3) the case that markers with large absolute
additive effects tend to be associated with large
dominance coefficients. That is, for additive effects
of markers that are small in magnitude, the average
dominance coefficient is close to 0, and for additive
effects of markers that are large in magnitude the
average dominance coefficient is close to 1. This is also
in accordance with Garcı́a-Dorado et al. (1999), who
suggested an average dominance coefficient of 0.8 for
non-severe deleterious mutations and of 0.94–0.98
for new lethal mutants.

In addition to the dependency between dominance
effects and absolute additive effects, the dependency
between the allele frequencies and the signs of the
allelic effects could also be considered. They are de-
pendent because selection has likely shifted allele fre-
quencies away from values for which the expected
allele-frequency change per one generation of selec-
tion is high. From this argument, a characterization

Independence of a and d 

a

d
BayesD1

a

d

BayesD2

a

d

BayesD3

a

d

Fig. 1. Samples drawn from the joint prior distribution of additive and dominance effects of markers with allele frequency
qj=pj=0.5, where additive effects are Student t-distributed with v=2.5 degrees of freedom. The distribution specifications
of BayesD1–BayesD3 are given in Section 2(ii).
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of the dependency can be derived as follows: since
selection for (or against) a recessive allele is inefficient
if its frequency is low (Falconer & Mackay, 1996;
Fig. 2.2), recessive alleles likely have low frequencies.
Recessiveness of the 1-allele implies that dj<0 if aj>0
and dj>0 if aj<0. Since pj<0.5 is likely to hold, we
have sign(aj)=xsign((qjxpj)dj) in both cases. Now
consider selection for (or against) a dominant allele. If
the 1-allele is dominant, then the other allele is re-
cessive. From the above argument it follows that the
other allele likely has a low frequency (qj<0.5). It
follows that pj>0.5. Thus, dominant alleles likely
have high frequencies. Dominance of the 1-allele
implies that dj>0 if aj>0 and dj<0 if aj<0.
Since pj>0.5 is likely to hold, we have again
sign(aj)=xsign((qjxpj)dj) with high probability.
The models BayesD2 and BayesD3 account for this.
Alternatively, the equation could be derived from the
contribution 2pjqj(aj+(qjxpj)dj)

2 of the QTL to the
additive variance because it is unlikely that a QTL
has a frequency pj for which the contribution of
the QTL to the additive variance is large. The con-
tribution is small if ajBx(qjxpj)dj. This also shows
that sign(aj)=sign(x(qjxpj)dj) likely holds for the
majority of the alleles. Wellmann & Bennewitz (2011)
obtained plausible estimates for parameters of the
joint distribution of additive effects and dominance
effects for the trait productive life (PL) in dairy cattle
only if the model accounts for this. From this argu-
ment it also follows that alleles with large effect are
not likely to have intermediate frequencies, except for
overdominant alleles (Falconer & Mackay, 1996;
p. 27ff.) and some pleiotropic alleles (e.g. DGAT1 in
Holstein cattle, see Grisart et al., 2004).

(ii) The linear regression model

In this section, the general regression model and
various submodels are defined. The submodels differ
in the joint prior distributions of the additive and
dominance effects of the markers as motivated in the
previous section. We consider a linear model of the
form

y=Xb+ZA~aa+ZD
~dd+Zu+E,

where the vector y consists of n observations, b is a
vector of fixed effects and would usually include the
intercept of the model. The matrix X has full column
rank. The vector uyN p (0, S) is normally distributed
and independent from the marker effects with
covariance matrix S and Z is a known nrp matrix.
The vector ~aa=(~aa1, . . . , ~aaM)

T contains the additive
effects of the markers and ~dd=(~dd1, . . . , ~ddM)

T consists of
the dominance effects of the markers, where M is the
number of markers. The errors E1, …, En are inde-
pendent and normally distributed with variance s2,
i.e. E|s2yN n(0, s

2I).

Additive effects and dominance effects of the
markers are random variables. Randomness of allelic
effects is most easily understood by imagining that the
population is a random sample from all hypothetical
populations to which the method could be applied,
and the trait is randomly chosen among all traits with
similar genetic architecture that could be analysed.
That is, for each hypothetical population the effect of a
marker at a particular position in the genome is a ran-
dom realization from some distribution. We assume
biallelic markers with alleles 0 and 1. Take ~hhj to be the
effect of marker j. We have ~hhj=(~aaj, ~ddj), if dominance
effects are included in the model and ~hhj=~aaj otherwise.
It is assumed that the distribution of ~hhj is a mixture of
two distributions that differ only by a scaling factor e,
so conditionally on a Bernoulli distributed indicator
variable cjyB(1, pLD) we can write

~hhjjcj � cjF+(1xcj)"F ,

where the parameter 0fe�1 is chosen small and the
distribution F is specified below. Thus, if cj=1, then
the marker effect comes from the distribution with
large variance. This occurs with probability pLD=
E(cj). Markers j with cj=1 are those needed to cap-
ture the effects of QTLs. The a priori expected number
of markers that are needed is MpLD.

We can write ~hhj=kjhj, where kj=(1xcj)e+cj and
hjyF is called the ‘putative ’ effect of marker j. In the
remaining part of the paper, (aj,dj)=hj, (or aj=hj)
denote the putative additive effect and the putative
dominance effect of marker j. Thus, if marker j is
needed to capture a QTL effect (cj=1), then ~aaj=aj
and ~ddj=dj. Otherwise, the putative marker effect is re-
gressed towards zero and we have ~aaj="aj and ~ddj="dj.

The distribution of the putative marker effect hj is
specified next. It is the distribution of the effects of
markers needed to capture the effects of QTLs. As
mentioned in the previous section, the sign of the ad-
ditive effect sign(aj), the absolute additive effect |aj|
and the dominance effect dj depend on each other in a
complicated way. The model assumes that the absol-
ute additive effect |aj| has a folded t-distribution, since
conditionally on an inverse chi-square distributed
parameter tj

2 it has a half-normal distribution. The
prior is therefore

t2j jcj � Invxx2(v, s2),

jajkt2j , cj � jN (0, t2j )j:

The putative dominance effect dj may depend on
the absolute additive effect |aj| in order to allow for
a prior for which overdominance is a rare event. It
may also depend on tj

2 in order to account for the fact
that additive and dominance effects are similar in mag-
nitude. Conditionally on |aj| and tj

2, the dominance
effect is normally distributed with mean md (|aj|)=
E(dj||aj|) and variance sd

2 (|aj|,tj2)=Var(dj||aj|,tj2). That
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is, we define the prior distribution of the putative
dominance effects as

djjjajj, t2j , cj � N (md(jajj),s2
d(jajj, t2j )):

The probability posj(dj)=P(aj>0jdj) that the addi-
tive effect aj is positive, given dj, may be different for
each marker and depends on the frequency of the
1-allele and thus on the coding of the marker. Let vj=1
if aj>0 and vj=0 otherwise. Thus, sign(aj)=2vjx1
and vj has the prior

vjjdj, jajj, t2j , cj � B(1, posj(dj)):

As motivated in the previous section, the sign of the
additive effect depends on the dominance effect and
the allele frequency such that

sign(aj)=xsign(qjxpj)sign(dj),

likely holds for the majority of QTL. It is convenient
to assume that this equation also holds with high
probability for the marker effects. Therefore, we as-
sume that the probability that aj is positive, given dj,
equals

P(aj>0jdj)=posj(dj)=
1xwj sign(dj)

2
,

where wjs(x1,1) may depend on the frequency of
marker j. For example, we may choose wj=0, wj=0.9
sign(qjxpj) or wj=qjxpj. This parameter has the
interpretation

wj=1x2P(sign(aj)=sign(dj)): (1)

For the variance of the errors, we use the prior

s2 � Invxx2(v*, s*2) or p(s2) / 1 or p(s2) / 1

s2
:

For the improper uniform prior let v*=x2, s*=0,
and for the improper prior p(s2) / 1

s2 let v*=0.
Random effects are a priori independent, i.e. u, s2,
(~aa1, ~dd1, c1, t

2
1), . . . , (~aaM,

~ddM, cM, t2M) are independent.
We consider the following submodels. The first

submodel (BayesD0) contains only additive effects, so
md (|aj|)=0, sd

2 (|aj|, tj2)=0, and wj=0. Since wj=0, the
putative additive effects aj have a t distribution with
v degrees of freedom, mean 0 and variance var(aj)=
E(t2j )=s2 v

vx2
if v>2. For vf2, the variance does not

exist. If v is large, then the putative additive effects are
approximately normally distributed. Note that
BayesC of Verbyla et al. (2010) appears as the special
case where e>0. Most of the Bayesian models men-
tioned in the introduction are also special cases or
limiting cases of BayesD0.

In model BayesD1, additive effects and dominance
effects are conditionally independent given tj

2 with
wj=0, md(|aj|)=mD and sd

2 (|aj|,tj2)=sD
2 tj

2, where sD>0.
As a consequence, the distribution of the putative
marker effect hj=(aj,dj) is elliptical.

In model BayesD2, absolute additive effects |aj|
and dominance coefficients dj=

dj
jaj j � N (mD,s

2
D) are

independent. Thus, md (|aj|)=|aj|mD and sd
2 (|aj|,tj2)=

aj
2sD

2 .
In model BayesD3, additive effects and dominance

coefficients are dependent such that large additive ef-
fects are associated with large dominance coefficients.
More precisely, we assume djjjajj � N (mD

jajj
s

� �
, s2

D),
where mD(x)=

x
sD+x

with sD>0. Note that the function
mD increases with mD(0)=0 and limx!1mD(x)=1, so
dominance coefficients of marker effects that are small
in magnitude are centred at zero and dominance
coefficients of marker effects that are large in mag-
nitude are centred at one. Thus, md(jajj)=jajjmD

jajj
s

� �
,

and sd
2(|aj|,tj2)=aj

2sD
2 .

(iii) The joint posterior distribution and the
Markov chain

In this section, we present the joint posterior distri-
bution for construction of the Markov chain. Since
the Markov chain cannot be used for e=0, we assume
e>0 in this section. In applications, the parameter e
would usually be chosen as small as possible in order
to approximate a BayesB-type model. Alternatively, it
could be chosen such that the accuracies of predicted
BV and GV are maximized.

Let j=(b, u, s2). We have p(j)/ p(u)p(s2) because
the assumption that b is a fixed effect is equivalent to
the assumption that it has the flat prior p(b) / 1. The
joint posterior distribution is

p(~hh, j, c, t2jy) /p(yj~hh, j)p(u)p(s2)

r
YM
j=1

p(~hhjjt2j , cj)p(t
2
j )p(cj),

where the likelihood function is

p(yj~hh, j) / (s2)xn=2 exp x
ETE_

2s2

� �
,

with E=yxXbxZuxZA~aaxZD
~dd. An explicit rep-

resentation of the conditional prior distribution
p(~hhjjt2j , cj) of the marker effects is needed in order to
derive a Markov chain that uses this parameteriza-
tion. We have

p(~hhjjt2j , cj)=
2gj(~aaj, ~ddj)

kj

ffiffiffiffiffiffiffiffiffiffi
2pt2j

q exp x
~aa 2
j

2k2
j t

2
j

 !
ykj, t

2
j
(~aaj, ~ddj),

(2)

where kj=(1xcj)e+cj,

gj(~aaj, ~ddj)=

1

2
, for BayesD0 x BayesD1,

1xwjsign(~aaj)sign(~ddj)

2
, for BayesD2 x BayesD3,

8>><>>:
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and

ykj , t
2
j
(~aaj, ~ddj)=

1, for BayesD0,

1

kj

ffiffiffiffiffiffiffiffiffiffi
2ps2

d

p exp x

~ddj
kj
xmd

� �2

2s2
d

0B@
1CA, for BayesD1

-BayesD3:

8>>>><>>>>:
Here, we used the abbreviation

s2
d=s2

d

j~aajj
kj

, t2j

� �
, md=md

j~aajj
kj

� �
:

The Markov chain for the prediction of the model
parameters is generated by Gibbs sampling with a
Metropolis–Hastings step. The algorithm is described
in Appendix A. Starting with initial values, the para-
meters are sampled from their full conditional pos-
terior distributions. The lengthy but straightforward
proofs of the full conditional posterior distributions
are given in the electronic appendix.

(iv) Moments of the random effects

Moments of the random effects given in this section
are needed for the calculation of hyper-parameters.
They are also needed for the calculation of the
RKHS-kernel which is defined in the next section.
For the second moment of aj to exist, we assume
v>2. Since the putative marker effect hj and cj
are independent, we have E(~aakj )=E(kk

j )E(a
k
j ) and

E(~dd
k

j )=E(kk
j )E(d

k
j ) for ks{1, 2}. Moreover, we have

E(~aaj ~ddj)=E(k2
j )E(ajdj) and E(j~aajj)=E(kj)E(jajj),

where E(kj
k)=(1xpLD)e

k+pLD. These formulae de-
pend on moments of the putative marker effects. They
can be calculated as

E(aj)=xwjE jajj 1x2w
xmd(jajj)
sd(jajj, t2j )

 ! ! !
, (3)

E(jajj)=l
ffiffiffiffiffiffiffiffiffiffiffi
E(a2

j )
q

,

E(a2
j )=s2

v

vx2
,

E(dj)=E(md(jajj)),

E(d2
j )=E(s2

d(jajj, t2j ))+E(md(jajj)2),

E(ajdj)=xwjE(jajkdjj),

E(jajjjdjj)=E jajjmd(jajj)K
sd(jajj, t2j )
md(jajj)

� �� �
,

where (Psarakis & Panaretos, 1990) :

l=2

ffiffiffiffiffiffiffiffiffiffi
vx2

p

r
C v+1

2

� �
C v

2

� �
(vx1)

,

K(x)=x

ffiffiffi
2

p

r
exp x

1

2x2

� �
+ 1x2w x

1

x

� �� �
,

w is the cumulative distribution function of a standard
normal distribution, and C is the Gamma function.
The formulae can be further simplified for the con-
sidered submodels. Simplified formulae are given in
Table 2, where tytv has a t-distribution with v degrees
of freedom.

(v) Prediction of genotypic values

Take V={0, 1, 2}M to be the set of all possible
multilocus genotypes at the M markers. For xsV, xj
is the number of 1-alleles at a particular marker j.
According to the regressionmodel described above, an
individual with genotype x is assumed to have GV

gGV(x)= g
M

j=1
~aaj+(2xxj)~ddj

� �
xj,

provided that ZA is the gene content matrix with
entries 0, 1, 2 and ZD is the indicator matrix for
heterozygosity. That is, the GV is the sum of all ad-
ditive effects and dominance effects that are carried
by the individual. According to Falconer & Mackay
(1996), the GV can be partitioned into a BV, a domi-
nance deviation, and a contribution to the overall
mean that is equal for all individuals. The BV is

gBV(x)= g
M

j=1
(~aaj+(qjxpj)~ddj)(xjx2pj),

and dominance deviation is

gDV(x)= g
M

j=1
x~ddjxj(xjx1x2pj)x2p2

j
~ddj:

These are the formulae of Falconer & Mackay
(1996, Table 7.3), except that summation is over the
markers rather than over the QTLs.

Different methods are considered for the prediction
of BV, dominance deviations and GV: the Bayesian
methods explained above and an RKHS method. For
the Bayesian methods, additive and dominance effects
of the markers are predicted as posterior means from
the MCMC algorithm. The predicted values are
then inserted into the above equations to get the
estimated genomic genotypic value EGV(x), the esti-
mated genomic breeding value EBV(x) and the esti-
mated genomic dominance deviation EDV(x).

In our paper, an RKHS method is used only for the
prediction of GV. The kernel is derived from the
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assumptions of the regression model. Recall that
the known genotypes are fixed explanatory variables.
Randomness of GV arises from the randomness of
allelic effects, so the function gGV(.) is random. Since
RKHS regression assumes that GV are normally dis-
tributed with mean zero (Gianola & van Kaam, 2008),
but E(gGV(x))=gM

j=1 (E(~aaj)+(2xxj)E(~ddj))xjl0, we
cannot estimate gGV(.) directly. Instead, we estimate
g(x)=gGV(x)xE(gGV(x)) with RKHS regression
from the observations that are diminished by the
expected GV. Then, an estimate of the GV is obtained
as bggGV(x)=bgg(x)+E(gGV(x)). For convenience, g(x) is
also said to be a GV. The model assumptions imply
that the covariance between GV of individuals with
genotypes x and ~xx is

Cov(g(x), g(~xx))= g
M

j=1
xj~xxjVar(~aaj)+ g

M

j=1
xj~xxj(2x~xxj)

r(2xxj)Var(~ddj)+ g
M

j=1
xj~xxj(4xxjx~xxj)Cov(~aaj, ~ddj):

(4)

This equation defines the covariance matrix K for
the GV of the phenotyped and genotyped individuals
in the estimation set. Formulae for the calculation of
the variances and covariances that appear on the
right–hand side of the equation are given in the pre-
vious section. Then, the covariance matrix K can be
calculated and used as a genomic relationship matrix
for BLUP-prediction of GV. The resulting estimates
are RKHS estimates (de los Campos et al., 2009).
Take bgg to be the vector of predicted GV for
individuals in the estimation set. It is used for the
prediction of GV of non-phenotyped individuals as
follows. For an individual with genotype x0, the vec-
tor K0 of covariances between the GV of this individ-
ual and the GV of all individuals in the estimation
set can be calculated from equation (4). The estimated
GV of the new individual is bgg(x0)=KT

0K
x1bgg. Since x0

was arbitrary, this equation defines an estimate bgg of
g. Note that the function K(x, ~xx)=Cov(g(x), g(~xx)) is
symmetric and finitely positive-semidefinite because it
is defined via a covariance function. The name RKHS
regression results from the fact that a Hilbert space H
exists for which the covariance function K(x, ~xx) is a
reproducing kernel. The Hilbert space is defined in

Appendix C. The estimated function bgg belongs to this
Hilbert space and is optimal in a well–defined sense
among all functions that belong to this Hilbert space
(Gianola & van Kaam, 2008).

This RKHS estimate is also the BLUP. Since
all RKHS estimates are linear, it is the best estimate
that can be obtained with RKHS regression, provided
that the model assumptions are satisfied by the data
and that the first two moments of the random effects
are assumed known. In the applications, we calculated
the kernel from the assumptions of BayesD2, so the
RKHS estimate is nothing but the BLUP of BayesD2
(as opposed to the best predictor).

(vi) Calculation of hyper-parameters

For the calculation of the constant hyper-parameters,
we assume whenever possible that additive variance,
dominance variance and inbreeding depression of a
random mating population are completely explained
by the markers. This is not optimal because in fact,
markers from low–density panels are not able to
explain the total dominance variance. Thus, higher
accuracies could be achieved when the parameters
are chosen by a grid search or by cross validation. But
we think that this is the natural way to choose the
parameters. If the contribution of LD to the additive
variance and the dominance variance are neglected,
then expected additive variance VAM, dominance
variance VDM and inbreeding depression IM ex-
plained by markers are

VAM=E g
j2M

hj(~aaj+(qjxpj)~ddj)
2

 !
,

VDM=E g
j2M

h2
j
~dd
2

j

 !
,

IM=E g
j2M

hj ~ddj

 !
,

where hj=2pjqj is the heterozygosity of marker j in the
case of Hardy Weinberg equilibrium. Note that these
formulae assume that the matrix ZA in the model
specification denotes the gene content matrix and
ZD is the indicator matrix for heterozygosity.

Table 2. Model-specific expectations

Model E(dj) E(dj
2) E(ajdj)

BayesD0 0 0 0
BayesD1 mD E(aj

2)sD
2+mD

2 0

BayesD2 mDE(|aj|) E(aj
2)sD

2 +E(aj
2)mD

2 xwjE(a
2
j )mDK

sD

mD

� �
BayesD3 sE(|t|mD(|t|)) E(a2

j )s
2
D+s2E(t2mD(jtj)2) xwjs

2E t2mD(jtj)K sD

mD(jtj)

� �� �
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The expectations can be calculated, which gives

VAM=ME(k2
j )(hoE(a

2
j )x2E(jajjjdjj)~ccM+cME(d

2
j )),

VDM=ME(k2
j )h

2
oE(d

2
j ),

IM=ME(kj) hoE(dj), (5)

where ho is the average heterozygosity, h2
o is the av-

erage squared heterozygosity, cM= 1
M
g

j2M hj(qjxpj)
2

and ~ccM=
1
M
g

j2Mhj(qjxpj)wj.
For the model without dominance effects

(BayesD0), the parameter s2 is obtained from the
condition VAM=VA, which gives

s2=
VA

MhoE(k
2
j )

vx2

v
: (6)

For the calculation of the fixed hyper-parameters
for models that include dominance effects it is as-
sumed that VA,VD and I are known or have been es-
timated. Three parameters are chosen such that the
conditions VAM=VA, VDM=VD and IM=I hold.
These are s2, mD and sD

2 for BayesD1, s2, mD, sD
2 for

BayesD2, and s2, sD, sD
2 for BayesD3. The formulae

for the calculation of these parameters are lengthy
and are given in Appendix B.

3. Application

(i) Simulation

A Fisher–Wright diploid population with population
size N=1000 was simulated by sampling individuals
for breeding with replacement for 5000 generations.
Thereafter, the effective population size decreased
for 400 generations from 1000 to 100 with a fast de-
crease in the most recent generations according to
Ne, tx400=100+9001xe0�005tx2

1xex2 . This formula was chosen
in order to reproduce the LD-pattern that is observed
in cattle (compare with the estimated historic Ne

of cattle breeds, given in Villa-Angulo et al., 2009).
The total population size remained constant. This was
achieved by reducing the number nmt of males and
increasing the number nft of females such that
Ne, t= 4nmtnft

nmt+nft
.

The genome consisted of one chromosome of 1
Morgan with a mutation rate of 5r10x8. We simu-
lated ten populations. For each population, ten traits
with the same characteristics were simulated, so in
total there were 100 replicates. In generation 0, 50
SNP for each trait were randomly selected among
the about 84 000 segregating SNP to become a QTL.
This corresponds to 1500 QTLs in a 30 Morgan
genome. Additive and dominance effect of each QTL
was sampled according to Scenario 3 fitted to PL in
Wellmann & Bennewitz (2011). Thus, the QTL effects
were sampled from the same distribution for all traits.
Alleles with large effect tend to be partially recessive

or dominant with heterozygous effect above the av-
erage effect of the two homozygotes. But alleles of
small effect show highly variable dominance coeffi-
cients. The sign of the additive effect aj was chosen
dependent on the allele frequency such that the con-
tribution of the QTL to the additive variance is
small, i.e. sign(aj)=xsign((qjxpj)dj). After additive
and dominance effects had been sampled, they were
rescaled by the same factor to obtain a heritability
of h2=VA=0.15 for each trait. Realized dominance
variance and inbreeding depression varied consider-
ably between traits because only one chromosome
was simulated. Average dominance variance and in-
breeding depression were VD=0�07 and I=0�6.

Starting with generation 1, the population was
maintained without selection for five generations with
Ne,t=100 but Nt=1000. The markers were identified
in generation 1 based on the minor allele frequency
(MAF) and on the distance to neighbouring markers.
We considered three marker sets with 1500, 3000 and
6000 markers. This corresponds to 45 000, 90 000 and
180 000 markers in a 30 Morgan genome. Markers
with high MAF were favoured. Average r2-values
between adjacent markers were similar for all marker
sets. They ranged from 0.36 to 0.40. The marker ef-
fects were predicted once in generation 1 from 1000
individuals. Expected dominance variance VD=0.072
and inbreeding depression I=0.59 were used as
parameters to predict marker effects. Thus, the same
hyper-parameters were used for all traits. Predicted
marker effects were used to calculate estimated
BV, dominance values and GV in generations 1–5.
According to the scaling argument introduced by
Meuwissen (2009), the results can be extended to a
population with a 30 Morgan genome and 30 000
individuals in the estimation set.

(ii) Analysis of the simulated data sets

We compared the accuracies that are obtained
by the BayesD methods with G-BLUP, BayesA,
BayesC and RKHS regression. Recall that BayesC
does not contain dominance effects, BayesD1 assumes
conditionally independent additive effect and domi-
nance effects, BayesD2 assumes independent absolute
additive effects and dominance coefficients, and
BayesD3 assumes dependent absolute additive effects
and dominance coefficients such that large additive
effects are associated with large dominance coeffi-
cients.

G-BLUP and BayesA assume that all markers have
a non-negligible effect, so pLD=1. For all other
methods, we have chosen the scaling factor e=0.01
and pLD depending on the marker panel. For marker
panel k=1,2,3 with M=750r2k markers, we used
pLD=0.8r0.35k. That is, we expected a priori that on
average pLDM/50=12r0.7k markers are needed to
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capture the effect of one QTL for marker panel k. The
formula for the calculation of pLD was chosen such
that the expected number of required markers ap-
proaches the number of QTL when the size of the
marker panel approaches the total number of SNP in
the genome. For BayesD2 and BayesD3, we used
wj=qjxpj. This parameter determines the probability
that additive effect and dominance effect have the
same sign for marker j. The degrees of freedom also
had to be specified for each method. We used v=100
for G-BLUP, v=2.1 for BayesA, and v=2.5 for all
other methods. The prior for the error variance was
p(s2)/ 1/s2. For simplicity, Xb=1m and Zu=0 were
assumed. For BayesD1, the MCMC chains were run
for 50 000 cycles and for all other methods, they were
run for 10 000 cycles. The first 50% of the cycles were
discarded. We used ten cycles in the Metropolis–
Hastings step to sample the additive effects. Marker
effects were estimated by the posterior means. The
RKHS-regression estimate of the GV was calculated
as described in Section (v). The reproducing kernel is
defined by equation (4) and the underlying regression
model is the same as for BayesD2, so the RKHS
estimate has the property that it is the BLUP of
BayesD2.

(iii) Results

Table 3 shows the accuracies of predicted BV, domi-
nance deviations (DV) and GV for generation 2 and 5,
where 3000 markers per chromosome are used. It also
shows the regressions bBV, bDV and bGV of true BV,
dominance deviations and GV on estimated values.
Among all BayesD methods, BayesD3 yielded the
highest accuracies and the regressions of true on pre-
dicted values are close to one. BayesD2 performed
very similarly and was only slightly worse. In gener-
ation 2, BayesC yielded a 7% higher accuracy of
predicted BV than G-BLUP and BayesD3 resulted
in 10% higher accuracy. The accuracy of G-BLUP
decreased by 10% from generation 2 to generation 5,
whereas the accuracy of BayesD3 decreased only by

5%. As a consequence, BayesC had a 11% higher
accuracy in generation 5, and BayesD3 had a 15%
higher accuracy than G-BLUP. The methods differ
very much in their ability to predict GV. The accuracy
of GV in generation 2 was 15% less than the accuracy
of BV if G-BLUP was used for the prediction, but it
was only 3% less if BayesD3 was used. The accuracy
of GV of BayesD3 exceeded that of G-BLUP by 26%
in generation 2 and by 33% in generation 5. The ac-
curacy of GV obtained from RKHS regression, ex-
ceeded that of G-BLUP by 4% in generation 2 and by
5% in generation 5. The choice of pLD and v did not
affect the RKHS estimate (not shown). The results are
visualized in Fig. 2. The figure shows the accuracies of
predicted BV, dominance deviations and GV in gen-
erations 1–5 for the set with 3000 markers. It can be
seen that the accuracy of the dominance deviation is
below the accuracy of the BV. Interestingly, the ac-
curacy of the dominance deviation decreases only
very little from generation 1 to generation 5. This
suggests that markers that capture the dominance
effect of a QTL must be in high LD and therefore
in close proximity of the QTL.

Table 3 also shows that the BayesD methods
required about twice as much computation time
per cycle as the methods without dominance effects.
This was expected because twice as many effects need
to be predicted. The Metropolis–Hastings step that
was needed to sample the additive effects in methods
BayesD2 and BayesD3 increased the computation
time only slightly. Figure 3 shows the mean accuracy
of predicted GV in generations 1–5 when the sampler
was stopped after 10, 100, 1000 or 10 000 cycles, and
the first 50% of the cycles were discarded. GV were
predicted from 3000 markers per chromosome. It can
be seen that BayesA, BayesC, BayesD2 and BayesD3
approximately reached convergence after 1000
iterations, whereas BayesD1 may not have reached
convergence, even after 10 000 iterations. The same
applies for BV and dominance deviations.

Figure 4 shows the mean accuracy of predicted BV,
dominance deviations and GV in generations 1–5 for

Table 3. Accuracies of predicted BV, dominance deviations (DV) and GV in generations 2 and 5, regressions bBV,
bDV and bGV and of true on predicted values, and computation times per cycle relative to BayesA

Generation

Accuracy BV Accuracy DV Accuracy GV
bBV bDV bGV

Time2 5 2 5 2 5 2 2 2

G-BLUP 0.735 0.665 – – 0.621 0.564 0.999 – 0.994 (1.0)
RKHS – – – – 0.648 0.593 – – 0.954 –
BayesA 0.783 0.730 – – 0.661 0.618 1.110 – 1.106 1.0
BayesC 0.790 0.740 – – 0.667 0.626 1.028 – 1.024 1.0
BayesD1 0.798 0.753 0.615 0.604 0.762 0.725 1.017 0.824 0.979 2.3
BayesD2 0.805 0.764 0.662 0.654 0.777 0.744 1.022 0.884 0.993 2.5
BayesD3 0.807 0.767 0.678 0.670 0.782 0.750 1.028 0.932 1.005 2.5
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the different marker panels. Markers from high–
density panels had a smaller MAF on average than
markers from low–density panels, so they were less
informative. This explains why the accuracies of
G-BLUP, BayesA and BayesC increase only slightly
for high–density panels. It can be seen that for an
accurate prediction of dominance deviations and GV,
high–density marker panels are needed. The likely

reason for the increased accuracy of dominance de-
viations for high–density marker panels is, that the
QTLs are on average in higher LD with a marker. For
each QTL, we calculated the maximum r2-value be-
tween the QTL and a marker. The average maximum
r2-values were 0.49, 0.64, and 0.80 for the different
marker panels.

4. Discussion

New Bayesian models for the prediction of genomic
BV, dominance deviations and GV have been intro-
duced. The BayesD models outperformed BayesA
and BayesC for the simulated data. BayesD3 and
BayesD2, which both assume dependent additive and
dominance effects, performed best. We showed that
these methods not only enable an accurate prediction
of BV, dominance deviations and GV, but they also
lead to a smaller decrease of the accuracy of genomic
BV in subsequent generations. Accuracies of genomic
BV of BayesD methods were larger than the accu-
racies of methods that do not account for dominance.
However, for an accurate prediction of dominance
deviations and GV, high–density marker panels are
needed. Computation time per predicted random ef-
fect was similar to BayesA. Interestingly, BayesD1
produced rather high accuracies even though the
assumptions of this model were violated in the simu-
lated data. For example, it did not take into account
that dominance effects decreased rather than in-
creased the additive variance of the population.
However, it yielded smaller accuracies than the other
BayesD methods and it showed a slower convergence
of the Markov chain.

G-BLUP showed the strongest decrease of the ac-
curacies in subsequent generations. This was expected
because G-BLUP assumes normally distributed ad-
ditive marker effects. This distribution is not heavy
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Fig. 2. Accuracy of predicted BV (a), dominance
deviations (b) and GV (c) for generations 1–5 and 3000
markers per chromosome.
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Fig. 3. Mean accuracy of predicted GV in generations 1–5
calculated from 10x iterations of the sampler for 3000
markers per chromosome.
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tailed. Therefore, more markers would be needed to
capture the effect of one large QTL. These additional
markers partly have a greater distance to the QTL, so
recombinations can cause a greater drop in accuracy.
BayesD3 showed the smallest decrease. Moreover, for

the BayesD methods, the accuracy of the dominance
deviations decreased only very little in subsequent
generations. This suggests that a marker must be
in strong LD with a QTL in order to capture the
dominance effect of the QTL because otherwise, re-
combinations are likely to cause a faster decrease of
the accuracies. As additive and dominance effects are
dependent, and since both of them affect the BV of an
individual, this could explain why the inclusion of
dominance effects also slows the decrease in accuracy
of genomic BV in subsequent generations, as shown
in Fig. 2).

Since the BayesD2 estimate and the RKHS esti-
mate (which is the BLUP of BayesD2) were derived
from the same statistical model, it was expected that
both methods provide similar accuracies. However,
the increase in accuracies of GV over G-BLUP was
much smaller for RKHS regression than for the
Bayesian models. The reason is probably that RKHS
regression could provide the best predictor if the GV
are normally distributed, but this assumption was
violated even though a relatively large number of
QTLs was simulated. For RKHS regression, the in-
crease in accuracy over G-BLUP was larger than the
increases reported by other authors. Ober et al. (2011)
found that the accuracy in the validation set obtained
with universal kriging was 0.013 larger than the ac-
curacy of a genomic BLUP method. These authors
chose the kernel from the family of Matérn covari-
ance functions and additive variance and dominance
variance were equal in the simulation. In our study,
RKHS regression yielded a 0.027 higher accuracy
than G-BLUP, although the dominance variance was
only about half as large as the additive variance in our
simulation. This suggests that a model-based defi-
nition of the kernel can increase the accuracies of
RKHS regression estimates. A kernel that accounts
for non-additive effects and uses SNP information
was also proposed by Gianola & de los Campos
(2008) in analogy to the model of Henderson (1985)
which relies on the assumptions of Cockerham (1954)
and Kempthorne (1954). In contrast to our model
that assumes that the known genotypes are fixed and
randomness of GV is due to randomness of the allelic
effects, Cockerham and Kempthorne assumed im-
plicitly that randomness of GV arises from random-
ness of the genotypes, and the function g that maps
genotypes to GV is unknown and fixed. The joint
distribution of the genotypes induces a covariance
between GV that depends on the genetic architecture
of the trait, i.e. on the unknown function g. Although
it is often stated in the literature that g can be arbi-
trary, from these arguments it follows that RKHS
regression makes strong assumptions about the
genetic architecture of the trait because GV are in-
ferred from the covariance structure of the GV, and
the covariance structure depends on the genetic
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Fig. 4. Accuracy of predicted BV (a), dominance
deviations (b), and GV (c) for marker panels with 1500,
3000 and 6000 markers per chromosome. The average
maximum r2 values of a QTL with a marker are shown on
the x-axis for the different panels.
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architecture. Gianola & de los Campos (2008) stated
that the choice of the kernel is indeed absolutely
critical for attaining good predictions in RKHS re-
gression.

If the number of markers is large and the prior
probability pLD of a marker for being needed to
capture a QTL effect is small, then the cumulative
effect of all SNP drawn from the distribution with
small variance can explain a considerable part of
the variance even if e=0.01. But it is desirable that
the model assumes only a small polygenic com-
ponent if the marker density is large, so e should be
small in this case. However, a small e�0.01 con-
siderably slows convergence of the Markov chain, so
one has to compromise. Alternatively, a BayesB-type
algorithm that allows for e=0 may be used for this
model.

The conditional variances tj
2 were introduced only

in order to obtain a hierarchical model that facilitates
estimation of the marker effects with an MCMC al-
gorithm. As noted by Gianola et al. (2009) for
BayesA, these parameters cannot be estimated pre-
cisely from the data because the model does not allow
Bayesian learning on these parameters. However,
since they have no biological interpretation, estimates
of these parameters are not needed.

There are several possibilities to further generalize
our model. For example, the parameter s2 could be
different for each marker. That is, each marker could
have its own variance. This could make sense in order
to account for prior knowledge about a QTL that is in
LD with the marker, or in order to account for the
joint distribution of additive effects, dominance
effects and allele frequencies. In the latter case, sj

2

would depend on the allele frequency of marker j.
We assumed a folded t-distribution for the absolute
values of the putative additive effects. As a conse-
quence, we had to choose v>2 because otherwise the
additive effects would have infinite variance. Since
the degree of freedom v controls the thickness of the
tails of a t-distribution, the choice of v could have
a large effect on the accuracies. In this paper, this
parameter was chosen by a grid search using cross
validation. Alternatively, v could be treated as ran-
dom and sampled with a Metropolis–Hastings step.
Priors are proposed that assign a small probability
to large values of v, but exclude v<2 (e.g. p(v) / 1

v2
,

see Rosa et al., 2004). The t-distribution could be
modified to become a generalized hyperbolic distri-
bution in order to force the variance of the additive
effects to exist even for v<2.

Different models may be appropriate for appli-
cation depending on the objective of a study. If the
aim of a study is the exploration of the genetic archi-
tecture of a quantitative trait then allelic effects may
be predicted with different models and the assump-
tions of the model with the best predictive ability are

likely to give a good description of the genetic archi-
tecture. However, it is unknown as to how epistasis
would affect the predictive ability of the models,
so inclusion of epistasis would be the logical next
step. Alternatively, the genetic architecture could be
explored by evaluation of the posterior distribution.
In this case, BayesD1 may be the method of choice
because it makes weak prior assumptions. Xu (2003)
demonstrated that improper priors with heavy tails
for additive and dominance effects produce clearer
signals of QTL than the normal distribution.
Therefore, small values of v and pLD could be prefer-
able for QTL detection because this results in a more
heavy–tailed distribution. If the aim of a study is the
prediction of genomic BV or GV, then the model with
best predictive ability should be chosen, provided
that the computation time is acceptable. This is likely
to be BayesD2 or BayesD3 because these models
give the best fit to the genetic architectures that are
suggested in the literature. Our simulation study
confirms the superiority of BayesD2 and BayesD3.
Similar joint distributions of additive effects and
dominance effects were assumed for the simulation
protocol and for BayesD3. If, contrary to our
assumptions, the true joint distribution is very differ-
ent for a trait (e.g. a trait with many overdominant
alleles), then of course BayesD2 and BayesD3 would
be not superior.

New methods have been introduced that enable
computationally feasible, simultaneous and accurate
prediction of BV, dominance deviations and GV for
high–density marker sets. The number of females
genotyped with a low–density marker set in dairy
cattle breeds is increasing rapidly. High density mar-
ker genotypes or even whole genome sequences of
sires and grandsires are becoming available for im-
putation. That is, high–density marker sets can be
used for the prediction of BV and GV even though
most individuals are only genotyped with a low–
density marker set (Meuwissen & Goddard, 2010a,
2010b). Thus, the data needed to estimate dominance
effects are becoming available. The conclusions drawn
in this study are based on simulation experiments.
The simulation protocol was designed to realistically
model the dependencies between additive and domi-
nance effects of QTLs for quantitative traits following
the suggestions of Wellmann & Bennewitz (2011).
Once real genomic data from traits with precise in-
formation on the genetic architecture including
dominance effects become available, it should be used
to validate the proposed models in the spirit of Hayes
et al. (2010).
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Appendix A: The Markov Chain

In this section, the Markov chain used for the
prediction of the model parameters is described. In
each cycle, the fixed effect b, the random effect u, the
marker effects ~hh1, . . . , ~hhM, the indicator variables
c1, …, cM, the conditional variances t21, . . . , t

2
M, and

the error variance s2 are sampled (in this order).
Details are described below.

A.1. Sampling of the fixed effect b

The full conditional posterior distribution of b is

bj~hh, u,s2, c, t2, y � N (bbb, s2(XTX)x1), (7)

wherebbb=(XTX)x1XT(yxZuxZA~aaxZD
~dd):

In the special case where b=m contains only the
intercept, i.e. Xb=1m, the full conditional posterior
simplifies to

mj~hh, u, s2, c, t2, y �

N 1

n
1T(yxZuxZA~aaxZD

~dd),
s2

n

� �
:

A.2. Sampling of the random effect u

The full conditional posterior distribution of u is

uj~hh, b,s2, c, t2, y � N p(ū, s
2(ZTZ+s2Sx1)x1), (8)

where

ū=(ZTZ+s2Sx1)x1ZT(yxXbxZA~aaxZD
~dd):

A.3. Sampling of the marker effects ~hh1 , . . . , ~hhM

We have

p( ~aaj j ~aaxj , ~dd, j, c, t
2, y) / f( ~aaj )gj( ~aaj , ~ddj )y( ~aaj ), (9)

where

y( ~aaj )=ykj, t
2
j
( ~aaj , ~ddj)

/

1 for BayesD0

� BayesD1,

1
j ~aaj j exp x

~ddj xj ~aaj jmDð Þ2
2s2

D
~aa2j

� �
for BayesD2,

1
j ~aaj j exp x

~ddj xj ~aaj jmD
j ~aaj j
kjs

� �� �2

2s2
D
~aa2j

0@ 1A for BayesD3,

8>>>>>>>>>><>>>>>>>>>>:
and f (~aaj)=fN (mf , s

2
f
)(~aaj) is the density of a normal dis-

tribution with mean and variance

mf=
ykTZA(j)

ZT
A(j)

ZA(j)
+s2=(k2

j t
2
j )
,

s2
f=

s2

ZT
A(j)

ZA(j)
+s2=(k2

j t
2
j )
,

where

yk=yxXbxZuxZA(xj) ~aaxj xZD
~dd:

Since gj( ~aaj , ~ddj )= posj (
~ddj) if ~aaj >0 and gj( ~aaj , ~ddj )=

1x posj (
~ddj) if ~aaj <0, a distribution with density pro-

portional to h(~aaj)=f (~aaj)gj(~aaj, ~ddj) is a mixture of two
truncated normal distributions. Random numbers
~aacand from h are needed as candidate values for the
Metropolis–Hastings step that samples ~aaj. The prob-
ability ppos that a random variable with this distri-
bution is positive equals

ppos=
gj(1, ~ddj )

R1
0 f(~aaj)d ~aaj

gj(1, ~ddj)
R1
0 f(~aaj)d~aaj+gj(x1, ~ddj )

R 0
x1 f (~aaj)d~aaj

=
gj(1, ~ddj )(1xF(0))

gj(1, ~ddj )(1xF(0))+gj(x1, ~ddj )F(0)
,

where F is the cumulative distribution function with
density f. Sampling of ~aacand from h proceeds as fol-
lows:

Sample Ipos from B(1, ppos).
If Ipos=0 then sample U from U[0,F(0)] , else sample U

from U[F(0), 1] .
Return ~aacand =Fx1(U) .

Here, U[a, b] denotes the uniform distribution on the
interval [a, b]. The Metropolis–Hastings algorithm
can be used to sample ~aaj from the full conditional
posterior as follows (Chib & Greenberg, 1995) :

Sample ~aaj from h
For(i in 1:maxIt){

Sample ~aacand from h

Let a=min y( ~aacand )
y( ~aaj )

, 1
� �

With probability a let ~aaj = ~aacand
}

Return ~aaj

Note that the Metropolis–Hastings step is not needed
if y( ~aaj ) / 1.

It remains to be shown how ~ddj is sampled for
models that include dominance effects. The full con-
ditional posterior distribution of ~ddj is

p (~ddjj~aa, ~ddxj , j, c, t
2, y) / ~ff (~ddj)gj(~aaj, ~ddj), (10)

where ~ff (~ddj)=fN (m~ff, s
2
~ff
)(~ddj) is the density of a normal

distribution with mean and variance

m~ff=
ykT ZD(j)

+s2md=(s
2
dkj)

ZT
D(j)

ZD(j)
+s2=(s2

dk
2
j )

,

s2
~ff
=

s2

ZT
D(j)

ZD(j)
+s2=(s2

dk
2
j )
,

where

yk=yxXbxZuxZA~aaxZD(xj)
~ddxj :
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Since gj(~aaj, ~ddj)=(1xwjsign(~aaj))=2 if ~ddj>0 and gj(~aaj,
~ddj)=(1+wjsign(~aaj))=2 if ~ddj<0, the full conditional
posterior distribution of ~ddj is a mixture of two trunc-
ated normal distributions. We have

~pppos=P(~ddj>0jELSE)

=
gj (~aaj, 1)(1x ~FF(0))

gj(~aaj, 1)(1x ~FF(0))+gj(~aaj,x1) ~FF(0)
,

where ~FF is the cumulative distribution function with
density ~ff. Sampling of ~ddj proceeds as follows:

Sample Ipos from B(1, ~pppos).
If Ipos=0 then sample U from U[0, ~FF(0)], else sample U
from U[ ~FF(0), 1] .
Return ~ddj = ~FF

x1
(U) .

A.4. Sampling of c1, …, cM

The full conditional posterior distribution of cj is

cjj~hh, j, cxj, t
2, y � B 1,

v1pLD
v1pLD+v0(1xpLD)

� �
, (11)

where

v0=
1

"
exp x

~aaj
2

2"2t2j

 !
y", t2

j
(~aaj, ~ddj),

v1=exp x
~aaj

2

2t2j

 !
y1, t2

j
(~aaj, ~ddj):

Updating of c1, …, cM is only needed if pLD<1.
After sampling of cj, kj needs to be updated.

A.5. Sampling of t21, . . . , t
2
M

For BayesD1, the full conditional posterior distri-
bution of t2j is

t2j j~hh, j,c, t2xj, y �

Invxx2 v+2,

~aa2j
k2
j

+

~ddj
kj
xmD

sD

0@ 1A2

+vs2

v+2

0BBBBBB@

1CCCCCCA:
(12)

Otherwise, the full conditional posterior distribution
of t2j is

t2j j~hh, j, c, t2xj, y � Invxx2 v+1,

~aa2j
k2
j

+vs2

v+1

0@ 1A: (13)

A.6. Sampling of the error variance s2

The full conditional posterior distribution of s2 is

s2j~hh, b, u, c, t2, y �

Invxx2 n+v*,ETE+v*s*2

n+v*

� �
, (14)

where E=yxXbxZuxZA~aaxZD
~dd.

Appendix B: Calculation of hyper-parameters

For BayesD1 with conditionally independent additive
effect and dominance effects the parameters s2, mD and
sD need to be specified. We have

mD=
I

Mh̄�E(kj)
,

s2=
VAx

cM
h2�
VD

Mh̄�E(k
2
j )

vx2

v
,

s2D=

VD

Mh2�E(k
2
j
)
xm2

D

s2
vx2

v
:

(15)

For BayesD2 with independent absolute additive
effect and dominance coefficients the parameters s2,
mD and s2

D are obtained as follows. Since

s2
D

m2
D

=
VD

I 2

Mh̄
2
�E(kj)

2l2

h2
�E(k

2
j )

x1, (16)

we can calculate K(sD=mD). We have

mD=
xbt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2x4ac

p

2a
, (17)

where

a=VAx
cMVD

h2
�

,

b=
2E(k2

j )I 2K sD

mD

� �
~ccM

l2Mh̄
2
�E(kj)

2
,

c=
xI 2E(k2

j )

l2Mh̄�E(kj)
2 :

Then s2
D=m2

D

s2
D

m2
D

can be calculated. Finally, s2 is ob-
tained from

s2=
VD

(s2
D+m2

D)Mh2
�E(k

2
j )

vx2

v
:

For BayesD3 with dependent absolute additive
effect and dominance coefficients, the parameters s2,
sD and s2

D are calculated as follows. At first, the par-
ameter sD is determined such that the following
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equation holds :

h̄�
v

vx2
=

VAh2
�xVDcM

I 2

E(kj)
2 h̄

2
�

E(k2
j ) h

2
�
ME(jtjmD(jtj))2

+2 ~ccM E t2mD(jtj)K
sD

mD(jtj)

� �� �
, (18)

where

s2
D=

VD

I 2

E(kj)
2 h̄

2
�

E(k2
j )h

2
�
ME(jtjmD(jtj))2xE t2mD (jtj)

2� � !

r
vx2

v
:

This was done by a grid search, where the expecta-
tions were estimated from simulated random vari-
ables tytv. Then sD

2 can be calculated and s2 is
obtained from

s2=
I 2

M2E(kj)
2 h̄

2
�E(jtjmD(jtj))2

:

Appendix C: Hilbert space for RKHS regression

This section defines the Hilbert space H for which a
symmetric and positive semidefinite kernel K is re-
producing. Consider the linear space S that consists of
all linear combinations of functions K(x, � ):V ! R

with xsV. Each function fsS can be written as f=
gN

j=1ajK(xj, � ) with NsN, pairwise different
x1, …, xNsV and asR

N. For two functions
g1=gN1

j=1ajK(xj, � ), g2=gN2

k=1bkK( ~xxk , � ), the inner
product is defined as

g1, g2h i= g
N1

j=1
g
N2

k=1

ajbkK(xj, ~xxk ):

S is a pre-Hilbert space with inner product n., .m.
The closure of S under the inner product n., .m is a
Hilbert space H. It is called the native space of the
kernel K. Note that H can be larger than S because it
also includes all limiting functions of Cauchy se-
quences. The kernel K is a reproducing kernel of H.
For proofs see the literature on Hilbert spaces, e.g.
Shawe-Taylor & Cristianini (2004).
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