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Let R be an associative ring, J an infinite index set, and R, the ring of all Jx J row-finite
matrices over R. The Jacobson radical of R will be denoted by I'(R).
In [5] a diagonalized matrix is defined as follows:

DEFINITION. A row-finite matrix 4 over R is diagonalized provided that, if {a,,;,, a,,;,,
;. -+ } is a sequence of entries of A4 such that {jy,, /s, ...} contains infinitely many
distinct elements, then there exists a positive integer p such that a;,; a,;,...a;,;, = 0.

It is shown in [5] that, if R is a commutative ring and 4 is a row-finite matrix over R,
then A is in I'(R)) if and only if 4 is in [['(R)], and A is diagonalized. Utilizing the recent
results of N. E. Sexauer and J. E. Warnock, we can now show that it is not necessary to
assume that R is commutative.

THEOREM. Let A be an element of R;. Then A is in I'(R;) if and only if A is in [[(R)],
and each element of the left ideal of R, generated by A is diagonalized.

Proof. Suppose that AeT'(R,). E. M. Patterson has shown in [2] that I'(R;) < [['(R)],.
Let B be an element of the left ideal of R, generated by 4. Let {b,,;,, bi,;,, bi,js> .-} be a set
of entries of B such that {j,,,, /s, ...} contains infinitely many distinct elements. Let
k(1) = 1. Suppose that ¢ is an integer greater than 1 and that k(s) has been defined for each
positive integer s less than ¢. Let k(f) be a positive integer such that jy, # jis) for each
positive integer s less than ¢. For each positive integer s,
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the left ideal of R generated by the elements of the ji(4yth column of B. Since BeI(R)),

by the main theorem of [4] there exists a positive integer p such that b, ;, b;,;,...b; ;, = 0.
Conversely, suppose that 4 is an element of [['(R)], that is not contained in I'(R;). By

{4, Main Theorem and Proposition 3], there exists a sequence {b;,;,, b;,j,, bi,j,, - .. } such that,

Sk
for each positive integer k, by ;, = Y. Xu dy;, Where s, is a positive integer, each x, R,
h=1
each K’ is a positive integer which depends upon 4, each gy, is in the jith column of 4, j; # ji,
if k # m, and b ; b;,;,... b, ;, # 0 for each positive integer n. Thus
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for each positive integer #. Since there are only finitely many integers A such that 1 £ h < s,
there exists a positive integer h, < 5, such that x, , @, b;,;,... b, ;, # 0 for infinitely many
integers n greater than 1. Suppose that, for some positive integer k, there exist integers
hy, hyy ... hsuchthatl S h, £s;forl S i< kand x, a4, Xnk e iy jar v+ Dingy # 0
for infinitely many integers n greater than k. If 4 is a positive integer not greater than s,.,.,
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and 7 is an integer greater than k, let fi, = Xp 1 @y j, - Xk Ohrju Xni4 1 O w1 Dicwatinz » » » Dtng
Sk+1

Then ;.fo'"' = Xp,1 Ohyjs -+ Xk D i Dty s Dicwafien  +« Ding # O for infinitely many integers

n greater than k. Thus there exists a positive integer 4, .. ;, not greater than s, ,, such that
Jiesn # 0 for infinitely many integers n greater than k-+1. Therefore there exists a sequence
{Xh11@hyjy> Xng2 Qnyjys -+ 3 SUCh that X, 3 @y X420 @pypejy e Xy 0@y, £ 0 for each positive
integer n. Well-order J. Let Y =(y,;) be the element of R, defined in the following way.
For each positive integer m, if k,, is the mth element of J, let y; , . = x,_,. Lety;;=0 for
all other members of JxJ. Let Z = YA. Then Zis an element in the left ideal of R, generated
by 4 and, if m is a positive integer and k,, is the mth element of J, then x,, .4, is the
(ks jm)th entry of Z. Since xy,y @y, j, Xp,2 Bhyj; - - - Xnon O,j, 7 0 fOr €ach positive integer 7,
Z is not diagonalized.
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