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Let R be an associative ring, J an infinite index set, and Rj the ring of all Jx J row-finite
matrices over R. The Jacobson radical of R will be denoted by T{R).

In [5] a diagonalized matrix is defined as follows:

DEFINITION. A row-finite matrix A over R is diagonalized provided that, if {altil, a,2J1,
ahji,...} is a sequence of entries of A such that {j\,J2>J3> •••} contains infinitely many
distinct elements, then there exists a positive integer p such that ahh ailh... alpJp = 0.

It is shown in [5] that, if R is a commutative ring and A is a row-finite matrix over R,
then A is in F(Rj) if and only if A is in [F(R)]j and A is diagonalized. Utilizing the recent
results of N. E. Sexauer and J. E. Warnock, we can now show that it is not necessary to
assume that R is commutative.

THEOREM. Let A be an element of R}. Then A is in F(Rj) if and only if A is in [r(R)]j
and each element of the left ideal of Rj generated by A is diagonalized.

Proof. Suppose that AeF(Rj). E. M. Patterson has shown in [2] that F(Rj) £ [r(R)]j.
Let B be an element of the left ideal of Rj generated by A. Let {bhJt, bhh, biih,...} be a set
of entries of B such that {j\,j2,J3, •••} contains infinitely many distinct elements. Let
k(l) = 1. Suppose that t is an integer greater than 1 and that k{s) has been defined for each
positive integer s less than /. Let k{t) be a positive integer such that jk(t) ¥=j^s) for each
positive integer s less than t. For each positive integer s,

'*(») + 1 Jk(s) + 1 "l'k(s) + 2ij'k(») + 2 ' ' ' Ol'k(s+l).Jk(«+1) Jk(»+1)'

the left ideal of R generated by the elements of theyk(s+1)th column of B. Since BeF(Rj),
by the main theorem of [4] there exists a positive integer p such that bllJt bh]l... bipJp = 0.

Conversely, suppose that A is an element of [r(/?)]7 that is not contained in T{Rj). By
[4, Main Theorem and Proposition 3], there exists a sequence {bllh, bilh, bhh,...} such that,

Sfc

for each positive integer k, bikjk= £ xhkah.jk, where sk is a positive integer, each xhkeR,
h ~ 1

each h' is a positive integer which depends upon h, each ah.ik is in theyfcth column o(A,jk jtjm

if k 56 m, and biljl 6,-2;-2... binJn =£ 0 for each positive integer n. Thus

E xhl ah.h bhh... binJn = bhh bhh... binJn ? 0
h ~- 1

for each positive integer n. Since there are only finitely many integers h such that 1 ^ h ^ su

there exists a positive integer ht ^ j j such that xhllahl-Jl bilh... binJn ¥= 0 for infinitely many
integers n greater than 1. Suppose that, for some positive integer k, there exist integers
K hi hk such that 1 ̂  ht ^ s, for 1 ̂  i;£ k and xhlx a^.^... xhkkahklk biki.lJk+l... birJn * 0
for infinitely many integers n greater than k. If h is a positive integer not greater than sk+i

https://doi.org/10.1017/S0017089500001427 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500001427


A NOTE ON THE RADICAL OF ROW-FINITE MATRICES 81

and n is an integer greater than k, letfhn = xhllahl.Jl... xhlckahk.jkxhfk+1ah.jk+lbik+2jki.2... bUn.
Sk+l

Then £ / t a = x,,,a»lVl . . .xhkkahk.Jkb,k+iJk+lbik+2 jk+2 . . .blnJn * 0 for infinitely many integers

n greater than k. Thus there exists a positive integer hk+1, not greater than sk+l, such that
fhk+m T4 0 for infinitely many integers n greater than k+\. Therefore there exists a sequence
{x*,ia*,7i>**22a»,72>--} such that xhliahl.hxh22ahl.j2...xhnnahn.Jn^0 for each positive
integer n. Well-order J. Let Y = (yy) be the element of Rj defined in the following way.
For each positive integer m, if km is the wth element of / , let ykmhm- = xhmm. Let yi} = 0 for
all other members ofJxJ. Let Z = YA. Then Z is an element in the left ideal of Rj generated
by A and, if m is a positive integer and km is the mth element of / , then xhmm ahm-im is the
(*Wm)tli entry of Z. Since xhl t afclVl xh22 ahl.h... xhnn aK.JH / 0 for each positive integer n,
Z is not diagonalized.
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