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Abstract

In this paper we present counter-intuitive examples for the multiclass queueing network,
where each station may serve more than one job class with differentiated service priority
and each job may require service sequentially by more than one service station. In our
examples, the network performance is improved even when more jobs are admitted for
service.

Keywords: Multiclass queueing network; admission control; stability analysis; perfor-
mance analysis; fluid approximation

2000 Mathematics Subject Classification: Primary 60K25
Secondary 60J25

1. Introduction

The queueing network model is an important tool for studying the service system, the
manufacturing system, and the communication system. In many applications, the model is
useful in identifying bottleneck resources so that better decisions can be made on designing
and controlling the network. Such decisions may include, for example, selecting the system
service capacity (e.g. the maximum service rates of work stations), adjusting system workload
(e.g. the job arrival rate and pattern), and routeing jobs to service stations if jobs can be served
by more than one station.

In practice, it is commonly believed that the performance for a queueing network system,
say in terms of the average total number or the average delay of jobs in the system, would
be improved if the service capacity (system workload, routeing alternatives, respectively) is
increased (decreased, increased, respectively). Such an understanding is sound when studying
the queueing system with single or parallel service stations and the product-form queueing
network (cf. Chen and Yao (2001, Chapters 1-4) and references therein). However, one must
be cautious in applying such intuition to complex queueing systems. In fact, from the study
of the stability condition of a three-station multiclass queueing network in Dumas (1997), it
is evident that with increased service capacity, the network (Dumas network) for certain work
stations performs worse. The paradox concerning the (distributed) routeing in the queueing
network is also discussed in Cohen and Kelly (1990), which is based on the well-known Braess
paradox (Braess (1968)). In addition to these paradoxes on the service capacity and routeing,
we provide paradoxical network examples of the admission control. These counter-intuitive
examples show that the network performance could be degraded even when the arrival rate of
jobs decreases.
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We describe the multiclass queueing network model and present counter-intuitive results in
Section 2. In Section 3, we introduce the fluid model approach developed in recent years and
then use this approach to prove our main results. We present our conclusions in Section 4.

2. Counter-examples and main results

The multiclass queueing network consists of J stations indexed by j € § = {1,..., J},
and K job classes indexed by k € K = {1, ..., K}. Assume that the arrival process of class k
jobs (or customers) is a Poisson process with arrival rate o (> 0), and the service time
for each class k job is exponentially distributed with mean service time my (> 0). Denote
o= (ag,... ,ou)—r andm = (mq, ..., mK)T. We also assume that all the interarrival times
and service times are independent. A class k job is served at station o (k) (c(-): KX — ),
and after its service completion it may become a class £ job with probability py, and leave the
network with probability 1 — Zle pke- Let P = (pre). Let C = (cjx) be a J x K matrix
whose (j, k)th component

1 if j =o(k),

cjk = .
/ 0 otherwise.

While each station may serve more than one class of jobs, each job is served at one specific
station (determined by the many-to-one mapping o (-)). We study the preemptive priority
service discipline specified by a one-to-one mapping & : J — J. For any given ¢ and &, if
m(¢) < (k) and o (£) = o (k), then a class k job cannot be served at station o (k) unless there
is no class £ job. In short, we say that a class £ job has a higher priority than a class k job. For
convenience, the mapping = is often expressed as a permutation of JC, which can be written as
= (i1,...,ig) if (k) = ir and k € K. In addition, we only consider work-conserving (or
nonidling) service disciplines, which specifies that a work station cannot be idle unless there
is no job waiting for service in that station. For convenience, we denote the queueing network
described above as (§, K,a,m,C, P, ).

We study open multiclass queueing networks, assuming that P is transient, i.e. 1+P +
P2 4 ... is convergent. Let

Ar=01-P) a, B=Mx and p=CB=CMA\.

(Here, M = diag(m) is a K-dimensional diagonal matrix whose kth diagonal element is m.)
Call A a nominal total arrival rate (vector), By (the kth component of f) a traffic intensity for
classk,k € X, and p; (the jth component of p) a traffic intensity for station j, j € g. Usually,
the vector p = (p;) is simply called the traffic intensity of the queueing network. In fact, A is
the unique solution to the fraffic equation, A = a + P’A (where P’ denotes the transpose of P),
and includes both external arrivals and internal transitions.

The dynamics of the network can be described using a K -dimensional queue length process
0@ = (Qk@), k € X) (t = 0), where Q(¢) indicates the number of class k jobs in the
network at time . Assume for simplicity that queues are initially empty, i.e. Qx(0) = 0 for
all k € K. Q(¢) is a continuous time Markov chain under the Poisson arrival and exponential
service assumptions. It is known that the Markov chain Q(¢) is positive recurrent, or stable,
only if the traffic intensity for each station is less than one, that is if p < e. (Here, e is a
J-dimensional column vector with all components being 1s.) The performance index of interest

in this paper is given by
* . 13
0" = tlggoE[ > Qk(t):|,

ke X

https://doi.org/10.1239/jap/1183667404 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1183667404

A paradox for admission control 323

o] mi m3
_— - —
A \Y
-———_———f—— e — le——
ngq m3 a3
St. 1 St. 2

FIGURE 1: KRSS network.
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FIGURE 2: Modified KRSS network.

which is the expected stationary total queue length when it is finite. The expected queue length
Q™ is finite if and only if the queue length process Q(t) is positive recurrent.

As an example, the Kumar-Rybko—Seidman—Stolyar (KRSS) network is illustrated in
Figure 1. This network, widely known as the Kumar—Seidman network or the Rybko—Stolyar
network in queueing network literature, was first studied independently by Kumar and Seidman
(1990) and Rybko and Stolyar (1992). The KRSS network consists of two stations and
four job classes. Among the four job classes, only class 1 and 3 have external job arrivals,
ie. ap = aq4 = 0. A class 1 (class 3) job becomes a class 2 (class 4) job after its service
completion at station 1 (station 2), while a class 2 (class 4) job leaves the system after its
service completion at station 2 (station 1). A class 4 (class 2) job has a higher priority than a
class 1 (class 3) job at station 1 (station 2). For this network, the parameters (matrices) C and
P can be written down easily from Figure 1, and r is specified as ¥ = (4, 1, 2, 3). With a little
thought, it is straightforward to see that the traffic intensity is simply

p=(p1.p2)" = (imi + azma, cymy + azm3) .
It is well known (e.g. Chen and Zhang 2000) that the KRSS network is stable if and only if
p<e and oymy+azmg < 1.

The counterexample that presents a paradox in the admission control of open multiclass
queueing networks is a variation of the KRSS network. This network is illustrated in Figure 2,
and we will refer to it as the modified KRSS network throughout this paper. Compared with
the original KRSS network, there are two additional stations, namely station 3 and 4, and four
additional job classes, namely class 5, 6, 7, and 8. A class 7 (class 8) job has a higher priority
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than a class 5 (class 6) at station 3 (station 4). The details of the specific network parameters
(4, K,a,m,C, P, ) for this network should be obvious from Figure 2. For the modified
KRSS network, we have the following result.

Theorem 2.1. Suppose in the modified KRSS network, p < e and
oaymy + ozmyg > 1. 2.1

(1) If ms/(1 — aym7) > my and me/(1 — agmg) > my, then the queue length process Q(t) is
positive recurrent, and Q* < o0.

) If ms/(1 —aym7) < my and mg/(1 — agmg) < m3, then the queue length process Q(t) is
transient, and Q* = oc.

This theorem presents a phenomenon in which reducing the arrival rates of some job
classes leads to worse performance of the queueing network. To see this, fix all the parameters
of the modified KRSS network except o7 and «g. In statement (1) of Theorem 2.1, we have
that

(I —ms/ma) (1 —me/my4)
7> ——— and og> ——
m7 mg

) 2.2

and that the expected stationary total queue length Q* is finite. However, when we reduce a7
and ag to

1 —ms5/m 1 —me/m
- ( s5/m1) and g < ( 6/ 3)’ 2.3)
m7 mg

o7

the queue length process Q () becomes transient and thus Q* becomes infinite. We will see in
Section 3 that ) ", _ 4 Qk(f) — oo almost surely.

To gain better intuition of the paradoxical phenomenon, we examine the dynamics of the
original KRSS network with no initial job (note that the initial condition has no impact on
the long term network behavior). When a class 4 job is being served, class 1 jobs cannot
move to class 2 for further service, and vice versa. From this observation, it is not difficult
to infer that classes 2 and 4 will never be served at the same time and in effect form a virtual
station (Dai and Vande Vate (1996)). Therefore, the total nominal traffic intensity for these
two classes together, i.e. the virtual station, should not exceed one for the network to be stable.
A similar argument establishes that the KRSS network is unstable when the nominal traffic
intensity for the virtual station exceeds one, i.e. (2.1) holds. Now consider the modified KRSS
network. The additional classes 5 and 6 act as regulators that regulate the traffic to classes 2
and 4 respectively so as to stabilize the network. (Readers are referred to Humes (1994) for
futher discussion on the application of regulators to stabilize queueing networks.) When the
workloads for classes 7 and 8 are light such that (2.3) holds, much of the service capacity
for stations 3 and 4 is left to classes 5 and 6 respectively and hence, classes 5 and 6 do not
hold back the traffic to avoid building up job queues at classes 2 and 4 respectively. Thus, the
virtual station effect prevails and the network is still unstable under (2.1) (cf. Theorem 2.1(2)).
However, when the workloads for classes 7 and 8 are heavy enough such that (2.2) holds, the
service for lower priority classes 5 and 6 is in effect slowed down and the traffic to classes 2
and 4 is held back. Consequently, there would not be large buildup of queues at classes 2 and 4,
and these two classes would not mutually block their services. Finally, the virtual station effect
is avoided and the modified KRSS network is thus stabilized (cf. Theorem 2.1(1)). The above
argument will be made rigorous in the proof of Theorem 2.1 in Section 3.
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FIGURE 3: Simulation results for the modified KRSS network.
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FIGURE 4: LK network.

Concerning the above paradoxical phenomenon, a subtle question to ask is whether this
counter-intuitive phenomenon is due just to pathological jumps in the network performance. To
address this question in more detail, we take, for the moment, thata; = a3 = 1,07 = ag = o/,
my =m3 = 0.2,my = my = 0.6, ms = mg = 0.1, and m7 = mg = 1. Then, let &’ vary, say,
from g down to %, and thus ms/(1 — aym7) and mg/(1 — agmg) both vary from 0.9 (which
is greater than m3 and mg) to 0.15 (which is less than m3 and mg). Based on Theorem 2.1,

the expected stationary total queue length Q* is finite when o’ is %, but it becomes worse,

i.e. O* = oo, when o is reduced to % Now, the subtle questions are as follows. Is this
performance degradation upon reducing arrival rate o’ simply due to a jump from a stable to
an unstable network at a critical point of o’ when it varies from g to %? Is the performance Q*
still an increasing function of the arrival rate ’ within any interval of o’ where the network
is stable and its expected total queue length Q* is finite? It is not obvious how to eliminate
this possible pathological situation theoretically. However, our simulation results illustrated in
Figure 2 indicate that the average total queue length Q* is a decreasing function of o’ within
some intervals of o’ (i.e. the interval [0.84, 0.89] in our simulation) where Q(t) is stable. The
network performance is improved continuously when more jobs are admitted to the system
within a certain range of job arrival rates.
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FIGURE 5: A modified LK network.

Another counterexample that provides a different perspective on the paradox in admission
control is related to the Lu—Kumar (LK) network, which was first studied by Lu and Kumar
(1991) and is illustrated in Figure 4. We omit a detailed description of this network, which
should be clear from its comparison with the KRSS network. This counterexample is a variation
of the LK network, called the modified LK network in this paper, and is illustrated in Figure 5.
For the modified LK network, we study some special instances (for convenience) and summarize
the counter-intuitive phenomenon in the following theorem.

Theorem 2.2. Consider the modified LK network with m = (0.1, 0.6, 0.1, 0.6, 0.7, 0.027)T.
(1) If ag = 1.37, then the queue length process Q(t) is positive recurrent, and Q* < oo.
(2) If ag = 1, then the queue length process Q(t) is transient, and Q* = oo.

This theorem presents a situation in which, when the arrival rate o drops from 1.37 to 1, the
performance becomes worse. Similar to the simulation for the modified KRSS network, our
simulation result also supports the conclusion that the average total queue length Q* for the
modified LK network would be a decreasing function of «g within some intervals of ag where
Q(1) is stable. In contrast to the modified KRSS network, a special feature of the modified
LK network is that there is only one external arrival and this arrival is controllable. On the
other hand, if we fix the rate o of the unique external arrival and vary the service times my,
k = 1,...,6, in proportion, then we recover an example for the paradox on service control.
Thatis, increasing the service capacity may also worsen the system performance, since reducing
the service times my, in proportion (i.e. increasing the service capacity) is equivalent to reducing
the external arrival og in the modified LK network by changing the time scale suitably.

3. Multiclass fluid network model and proof of Theorem 2.1

In this section, we provide a proof of Theorem 2.1, but we omit a proof of Theorem 2.2 as
it follows similarly to the proof of Theorem 2.1. We employ the fluid model approach in the
proof. The development of this approach was inspired by the studies of some counterexamples
in Kumar and Seidman (1990), Rybko and Stolyar (1992), Bramson (1994), etc., where the
multiclass queueing networks are not stable even when the traffic intensity of each station in
the network is less than one. An elegant result of the fluid model approach which states that a
queueing network is stable if its corresponding fluid network model is stable, was first proposed
in Rybko and Stolyar (1992) and then generalized and refined by Dai (1995), Chen (1995), Dai
and Meyn (1995), Stolyar (1995) and Bramson (1998). Partial converse to this result is also
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given in Meyn (1995), Dai (1996) and Puhalskii and Rybko (2000). In Subsection 3.1 we
present a multiclass fluid network corresponding to the multiclass queueing network described
in Section 2, and then quote the results mentioned above that will be used in the proof of
Theorem 2.1.

3.1. A multiclass fluid network model

Parallel to the queueing network model (¢, X, o, m, C, P, i), a corresponding fluid net-
work model which is also characterized by the same set of parameters, is obtained intuitively
by replacing the discrete jobs in the queueing network with continuous fluids. Specifically, a
class k fluid may flow exogenously into the network at the rate o, then be served at the station
o (k), and after being served, a fraction py, of fluid turns into a class £ fluid and the remaining
fraction, 1 — Zle Pre, flows out of the network. When station o (k) devotes its full capacity
to serving class k fluid (assuming that it is available to be served), it generates an outflow of
class k fluid at rate ug. Among classes, fluid follows a priority service discipline, which is
again described by the one-to-one mapping 7.

Define the fluid level process O(t) = {Ok(t), k € K}, where Oy (¢) denotes the fluid level
of class k at time #; the time allocation process T(1) = {Ti(t), k € X}}, where Ty (¢) denotes
the total amount of time that station o (k) has devoted to serving class k fluid during the time
interval [0, ¢]; and the unused capacity process Y () = {?k (t), k € X}}, where Y (r) denotes
the (cumulative) unused capacity of station o (k) during the time interval [0, ] after serving all
classes at station o (k) which have a priority no less than class k (including class k). Let

Hiy={t:0(0) =a(k), m(t) < nm(k)},

be the set of indices for all classes that are served at the same station as class k and have a
priority no less than that of class k. Note that k € Hy by definition. Thus, the dynamics of the
fluid network model can be described as follows: fork € KX and ¢t > O,

K
Ok (1) = 0k (0) + oxt + Y pepreTe(t) — i Ti (1) > 0, 3.1
=1
Ty (-) is nondecreasing with Ty (0) = 0, (3.2)
V() =1 — Z Ty (1) is nondecreasing, (3.3)
LeHy
/0 O (1) dYy (1) = 0. (3.4)

Equation (3.1) is the flow balance relation. Equation (3.3) describes the equivalent relation
between the time allocation process T (¢) and the unused capacity process Y(1). Equation (3.4)
specifies both the work-conserving condition and the priority discipline, that is, for each k,
(3.4) implies that at any time ¢ there could exist some positive remaining capacity (rate) for
serving those classes at station o (k) that have a strictly lower priority than class k, provided
the fluid levels of all classes in Hj (having a priority no less than k) are zero. Particularly, for
each lowest fluid class k at station j = o (k), (3.4) specifies the work-conserving condition for
station j, which implies that station j cannot be idle if the total fluid level (3 _,. o (O)=] 0.())
in station j is positive at any time ¢ > 0.

We shall refer to this network as the fluid network (¢, X, o, m, C, P, ). A pair (Q, T)
(or equivalently (Q, Y)) is said to be a fluid solution if they jointly satisfy (3.1)—(3.4). For
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convenience, we also call Q a fluid solution if there is a 7 such that the pair (Q, T') is a fluid
solution. The fluid network is said to be stable if there is a time 7 > 0 such that Q(z +-) =0
for any fluid solution @ with ||Q(0)|| = 1, and it is said to be weakly stable if Q(-) = 0 for
any fluid solution Q with Q(0) = 0. A well-known property we will use later in this paper is
that the processes Q, Y, and T are Lipschitz continuous and hence, are differentiable almost
everywhere on [0, 0c0). We summarize some known stability results on the relation between
the queueing network model and its corresponding fluid network model, which are used in the
proof of Theorem 2.1.

Theorem 3.1. Consider the queueing network (§, X,o,m,C, P, x).

(1) If the corresponding fluid network (§, X, o, m, C, P, ) is stable, then the queue length
process Q is positive recurrent.

(2) If the corresponding fluid network (3, K,oa,m,C, P, ) is not weakly stable, then the
queue length process Q is transient.

Readers are referred to works of Chen and Yao (2001) and Dai (1996) for elementary proofs
of the two conclusions, respectively.

3.2. Proof of Theorem 2.1
Proof of Theorem 2.1(1). According to Theorem 3.1(1), it is sufficient to show that the fluid
network model corresponding to the modified KRSS queueing network, called the modified
KRSS fluid network below, is stable. As an instance of the fluid network model described in
(3.1)-(3.4), the dynamics of the modified KRSS fluid network can be detailed as follows.
Ok(1) = Qk(0) + gt — i Te(1) 20, k=1,3,7,8,
Ok(1) = 0k(0) + e Te (1) — i Ti(1) 2 0, (k, €) = (5,1),(2,5), (6,3), 4,6),
Ty (-) is nondecreasing with T} (0) = 0, k=1,...,8,
Yi(0) =1 — Ti(2) is nondecreasing, k=4,2,7,8,
Yi(t) =t — Ty (t) — Ty (2) is nondecreasing, k,0) =(1,4), 3,2),(5,7),(6,8), (3.5

oo
/ Q) dYr(t) =0, k=1,...,8.
0
First, we note that there exists a time t; > 0, such that
07(1) = Qg(t) =0 foranys > 1y, (3.6)
as classes 7 and 8 have priority and hence, their fluids will drain within a finite time and then

remain empty.
Next, we prove that there exists a time 7o > 77, such that

Q4(t) = 02(t) =0 foranyt > 1. 3.7)
Under (3.6), we have é7(t) = ég([) = 0, and then TL7(t) = aym7 and fg(t) = agmg for all
time ¢t > 71. (Here, we use a dot to denote the derivative of a process with respect to time ¢.)

Combined with (3.5), this yields

Yot) =1 —Tg(t) — Tg(t) >0 and Te(t) < 1—Ty(t) = 1| —agmg fors > 1.
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Then, we have

0u(t) = 116T6(1) — uaTu(t) < po(1 — cgmg) — pg < 0,

forany ¢t > 71, where the last inequality is implied using the assumption that me /(1 — agmg) >
my. Let 7} = 04(11) /(14 — ue(1 — agmg)). Then, we have

Q4(t) =0, foranyt > 1j. (3.8)

Similarly, we have

0:(11)

0>(t) =0, foranyr> 1) = )
w2 — pus(l —agmy)

(3.9)

Let

14+ A1 1+ At )

5] :max( ,
4 — pe(l —agmg) w2 — us(l — azmy)

with A being the Lipschitz constant for the fluid level process Q(r). Then, we have that
) > max(t}, tj), noting that || Q(t1)|| < [|Q(t)I| + Mti < 1+ Mt;. Now, (3.8) and (3.9)
imply (3.7).

Finally, we prove that there exists a time T > 12(> 0), such that

0w(t) =0, fork=1,3,56and?t > T, (3.10)
which together with equations (3.6) and (3.7) implies that Q(t) =0fort > 7. Let
Wi(t) := m101(t) + ma(03(t) + Q6 (1)) = (rmy + azma)t — (T1 (1) + Ta(1)),
Wa(t) == m3Q3(t) +ma(Q1(t) + Os(1) = (a1ma + azm3)t — (Tr(t) + T3(1)),

W3(t) := ms(Q1(t) + Qs(t)) = aymst — Ts(1),
Wa(t) := me(Q3(t) + Q6(t)) = azmet — To(1),

fort > 1. Here, W; () (@ =1, 2,3, 4,) represents the immediate workload for station i implied
in the system at time 7. Define

fi@) = meWi (1), H@) = msWa(t),
f3(t) == maWs(1), fa(t) = maWa(t).

Then, it is straightforward to verify that, for t > 1,
fi(t) <0 if Qi(t) >0, fori=1,2,3,4,
and

fil) < fa) £ 01(0) =0,  folt) < f5(t) if 03(1) =0,
f3(t) < @) if Os(t) =0, fa(t) < fa(t) if Qe(t) = 0.

Now applying the piecewise linear Lyapunov function approach for the multiclass fluid network
model described in Theorem 3.1 of Chen and Ye (2002), we obtain (3.10).
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Proof of Theorem 2.1(2). According to Theorem 3.1(2), we need to show that the modified
KRSS fluid network is not weakly stable. Similar to the above proof of Theorem 2.1(1), it is
not difficult to show that there exists a time 7; > 0, such that

07(t) = Qs(t) =0, foranyt > 1y,

as classes 7 and 8 fluids have higher priorities at stations 7 and 8 respectively and thus, that
there exists a time 7o > 71, such that

Os(t) = Q¢(t) =0, foranyt > 1,

as the remaining service capacity for classes 5 and 6 fluids is greater than that for class 1
and 3 fluids. Thus, the modified KRSS fluid network is reduced to the well-known KRSS fluid
network, which is not weakly stable under the condition (2.1).

4. Discussion and concluding remark

In this paper we have presented a paradox for the admission control of a multiclass queueing
network with differentiated service. This paradox is, to our knowledge, the first one of its kind,
which is complementary to the existing ones on the service rate control and the routeing control.

The models, as well as the admission control and the differentiated service, studied in
this paper are simplified and idealized models of practical systems. Take the semiconductor
production as an example. The production line may consist of tens of processing stations
(machines), and parts may require tens or even hundreds of stages of processing by the stations.
The admission control may model the central control on whether to accept external orders,
while the differentiated priority for jobs at each station could be due to the local control on
scheduling jobs. It would not be surprising for the paradox to exist in such a complex system.
It is known that there exist approaches like the max-weight type policy (e.g. Stolyar 2004) for
stabilizing the network. However, these approaches may not be feasible to implement in all
cases, and so simple stabilization techniques, such as artificially reducing service capacities
and increasing workload, are still of interest. Therefore, the detection of and the remedy to
such a paradoxical phenomenon are interesting future research topics.
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