ON THE ALGEBRA OF MULTIPLIERS

ROSHDI KHALIL

A commutative Banach algebra is called symmetric if, regarded as a function algebra on its maximal ideal space, it is closed under complex conjugation. Varopoulos, [5], proved the asymmetry of the tensor algebra $C(T) \hat{\otimes} \mathrm{C}(T)$, where T is the unit circle. It is the object of this paper to prove the asymmetry of the Schur multipliers of the space $L^{2}(T, m) \hat{\otimes} L^{2}(T, m)$, where m is the Lebesgue measure. In the second part of the paper we study the Hankel multipliers of the space $l^{2}(Z) \hat{\otimes}$ $l^{2}(Z)$ and give an application to it.

1. The asymmetry of $M\left(L^{2}(T) \hat{\otimes} L^{2}(T)\right)$. Let $C(T)$ denote the space of continuous functions on T and $A(T)$ be the space of those functions in $C(T)$ that have absolutely convergent Fourier series. Consider the mapping $F: C(T) \rightarrow C(T \times T)$ defined by $F(f)(x, y)=f(x+y)$. If $\left\|\|_{m}\right.$ denotes the multiplier norm in $M\left(L^{2}(T) \hat{\otimes} L^{2}(T)\right)$, then we have

Theorem 1.1. The following are equivalent:
(i) $f \in A(T)$
(ii) $F(f) \in C(T) \hat{\otimes} C(T)$.

Further $\|f\|_{A(T)}=\|F(f)\|_{m}$.
Proof. For the equivalence of (i) and (ii) one can consult [7]. To prove the isometric property of F on $A(T)$, let $f \in A(T)$, so

$$
f(t)=\sum_{r=-\infty}^{\infty} a_{r} e^{i \tau t} \text { and } \sum_{r=-\infty}^{\infty}\left|a_{r}\right|<\infty .
$$

Hence

$$
F(f)(x, y)=\sum_{r=-\infty}^{\infty} a_{e} e^{i r x} \cdot e^{i r y} .
$$

Since $\left\|e^{i r x}\right\|_{\infty}=1$ for all r, it follows that $\|F(f)\|_{m} \leqq\|f\|_{A(T)}$.
To show the other inequality define a mapping

$$
P: C(T \times T) \rightarrow \mathrm{C}(T)
$$

such that $P(\varphi)(x)=\int_{r} \varphi(x-y, y) d y$. Clearly $P \circ F: C(T) \rightarrow C(T)$ is just the identity mapping. Let $F(f) \in C(T) \hat{\otimes} \mathrm{C}(T)$ and $\Sigma_{i=1}^{\infty} \mathscr{U}_{i} \otimes \mathscr{V}_{i}$

Received January 23, 1979. The author would like to thank Professor S. Drury for stimulating discussions and support during the preparation of this work.
be any representation of $F(f)$. Then

$$
P(F(f))=\sum_{i=1}^{\infty} \mathscr{U}_{i}^{*} \mathscr{V}_{i} .
$$

It follows that

$$
\left.\|\mathrm{P}(F(f))\|_{A(T)} \leqq \| F(f)\right) \|_{r r} .
$$

However the function $1 \otimes 1 \in L^{2}(T) \hat{\otimes} L^{2}(T)$, so we have

$$
\begin{aligned}
\|F(f)\|_{r r} & =\|F(f) \cdot 1 \otimes 1\|_{r r} \\
& \leqq\|F(f)\|_{\mathcal{M}} \cdot\|1 \otimes 1\|_{r r} \\
& =\|F(f)\|_{\mathcal{M}} .
\end{aligned}
$$

Hence $\|P(F(f))\|_{A(T)} \leqq\|F(f)\|_{\mathcal{M}}$. This completes the proof.
Now, we need the following technical lemma.
Lemma 1.2. Let ϕ_{1} and ϕ_{2} be any two elements in the unit ball of $\mathscr{M}\left(L^{2} \hat{\otimes} L^{2}\right)$. Assume, further, that $\sup \phi_{1} \subseteq \Omega_{1}=X_{1} \times Y_{1}, \quad \sup \phi_{2}$ $\subseteq \Omega_{2}=X_{2} \times Y_{2}$, where $X_{1} \cap X_{2}=Y_{1} \cap Y_{2}=\emptyset$, the empty set. Then there exists a function $\phi \in \mathscr{M}\left(L^{2} \hat{\otimes} L^{2}\right)$ such that

$$
\left.\phi\right|_{\Omega_{i}}=\phi_{i}, i=1,2 \quad \text { and } \quad\|\boldsymbol{\phi}\|_{\mathcal{M}}=\max _{i=1,2}\left\|\boldsymbol{\phi}_{i}\right\|_{\mathcal{M}} .
$$

Proof. Define the following function ϕ on $T \times T$

$$
\phi(x, y)= \begin{cases}\phi_{1} & \text { if }(x, y) \in \Omega_{1} \\ \phi_{2} & \text { if }(x, y) \in \Omega_{2}\end{cases}
$$

and $\phi \equiv 0$ on the complement of $\Omega_{1} \cup \Omega_{2}$. We claim that the function ϕ is the required function. First, since $\phi=\phi_{1}+\phi_{2}$, it follows that $\phi \in \mathscr{M}\left(L^{2} \hat{\otimes} L^{2}\right)$. It remains to estimate the multiplier-norm of ϕ. To do so, let $f \otimes g$ be any atom in the unit ball of $L^{2} \hat{\otimes} L^{2}$. Since

$$
f \otimes g=\frac{f}{\|f\|_{2}}\left(\|f\|_{2} \cdot\|g\|_{2}\right)^{1 / 2} \cdot \frac{g}{\|g\|_{2}}\left(\|f\|_{2} \cdot\|g\|_{2}\right)^{1 / 2},
$$

we can assume that $\|f\|_{2}=\|g\|_{2} \leqq 1$. Further since the support of ϕ is contained in $\Omega_{1} \cup \Omega_{2}$, we let $\operatorname{supp}(f) \subset X_{1} \cup X_{2}$ and $\operatorname{supp}(g) \subset Y_{1} \cup Y_{2}$. Set $f_{i}=\left.f\right|_{X_{i}}$ and $g_{i}=\left.g\right|_{Y_{i}}, i=1,2$. Then $f=f_{1}+f_{2}$ and $g=g_{1}+g_{2}$.

Further $\|f\|_{2^{2}}=\left\|f_{1}\right\|_{2}{ }^{2}+\left\|f_{2}\right\|_{2^{2}}$ and $\|g\|_{2^{2}}=\left\|g_{1}\right\|_{2}{ }^{2}+\left\|g_{2}\right\|_{2}{ }^{2}$, since

$$
\bigcap_{i=1}^{2} X_{i}=\bigcap_{i=1}^{2} Y_{i}=\emptyset .
$$

Now, consider

$$
\phi \cdot f \otimes g=\phi_{1} \cdot f_{1} \otimes g_{1}+\phi_{2} \cdot f_{2} \otimes g_{2}
$$

Since $\left\|\phi_{i}\right\|_{\mathcal{M}} \leqq 1, i=1,2$, we deduce

$$
\begin{aligned}
& \phi_{i} \cdot f_{i} \otimes g_{i}=\sum_{j=1}^{\infty} u_{j}^{(i)} \otimes v_{j}^{(i)} \\
& \sum_{j=1}^{\infty}\left\|u_{j}^{(i)}\right\|_{2} \cdot\left\|v_{j}^{(i)}\right\|_{2} \leqq\left\|f_{i}\right\|_{2} \cdot\left\|g_{i}\right\|_{2}
\end{aligned}
$$

Again, as above, we can assume that $\left\|f_{i}\right\|_{2}=\left\|g_{i}\right\|_{2}$ and $\left\|u_{j}{ }^{(i)}\right\|_{2}=\left\|v_{j}{ }^{(i)}\right\|_{2}$ for $i=1,2$ and $j \geqq 1$. It follows that

$$
\begin{aligned}
& \sum_{j=1}^{\infty}\left\|u_{j}{ }^{(i)}\right\|_{2}^{2} \leqq\left\|f_{i}\right\|_{2}^{2} \\
& \sum_{j=1}^{\infty}\left\|v_{j}^{(i)}\right\|_{2}^{2} \leqq\left\|g_{i}\right\|_{2}^{2}, \quad i=1,2
\end{aligned}
$$

Now define the following functions

$$
\begin{aligned}
& z_{j}=u_{j}^{(1)}+u_{j}^{(2)} \\
& w_{j}=v_{j}^{(1)}+v_{j}^{(2)}
\end{aligned}
$$

for all $j \geqq 1$. Then

$$
\phi \cdot f \otimes g=\sum_{j=1}^{\infty}\left(z_{j} \otimes w_{j}\right) \cdot 1_{\left(X_{1} \times Y_{1}\right) \cup\left(X_{2} \cup Y_{2}\right)},
$$

where 1_{E} denotes the characteristic function of the set E. But since

$$
\begin{aligned}
& \left\|z_{j}\right\|_{2}^{2}=\left\|u_{j}^{(1)}\right\|_{2}^{2}+\left\|u_{j}^{(2)}\right\|_{2}^{2} \\
& \left\|w_{j}\right\|_{2}{ }^{2}=\left\|v_{j}^{(1)}\right\|_{2}{ }^{2}+\left\|v_{j}^{(2)}\right\|_{2}^{2}
\end{aligned}
$$

it follows that

$$
\begin{aligned}
&\|\phi \cdot f \otimes g\|_{\tau r} \leqq \sum_{j=1}^{\infty}\left\|z_{j}\right\|_{2}\left\|w_{j}\right\|_{2} \\
& \leqq \sum_{j=1}^{\infty}\left(\left\|u_{j}^{(1)}\right\|_{2}^{2}+\left\|u_{j}^{(2)}\right\|_{2}^{2}\right)^{1 / 2} \cdot\left(\left\|v_{j}^{(1)}\right\|_{2}^{2}\right. \\
&\left.+\left\|v_{j}^{(2)}\right\|_{2}^{2}\right)^{1 / 2} \\
& \leqq\left(\sum_{j=1}^{\infty}\left(\left\|u_{j}^{(1)}\right\|_{2}^{2}+\left\|u_{j}^{(2)}\right\|_{2}^{2}\right)\right)^{1 / 2} \\
& \cdot\left(\sum_{j=1}^{\infty}\left(\left\|v_{j}^{(1)}\right\|_{2}^{2}+\left\|v_{j}^{(2)}\right\|_{2}^{2}\right)\right)^{1 / 2} \\
& \leqq\left(\left\|f_{1}\right\|_{2}^{2}+\left\|f_{2}\right\|_{2}^{2}\right)^{1 / 2} \cdot\left(\left\|g_{1}\right\|_{2}^{2}+\left\|g_{2}\right\|_{2}^{2}\right)^{1 / 2} \\
& \leqq\|f\|_{2} \cdot\|g\|_{2} \leqq 1
\end{aligned}
$$

Since $f \otimes g$ was an arbitrary atom in the unit ball of $L^{2} \hat{\otimes} L^{2}$, it follows that $\|\phi\|_{\mathcal{M}} \leqq 1$. This completes the proof of the lemma.

Now we prove

Theorem 1.2. The space $\mathscr{M}\left(L^{2} \hat{\otimes} L^{2}\right)$ is not symmetric.
Proof. To prove the asymmetry of a space it is enough to produce an element in such a space which has independent powers, [7].

Let P be a Cantor independent set which is not Helson in T. The existence of P is illustrated in [4]. Take ν to be a non-negative measure concentrated on $\mathrm{P} \cup(-P)$. Then ν has mutually singular convolution powers, and if we choose $\|\nu\|_{M(T)}=1$, we obtain

$$
\left\|\sum_{r=1}^{n} \lambda_{r} \nu^{\tau}\right\|_{M(T)}=\sum_{r=1}^{n}\left|\lambda_{r}\right|,
$$

for all $\lambda_{r} \in C$ and $n \in \mathbf{N}$. Since discrete measures on T are dense in $M(T)$ in the weak-* topology [1], then we can find a sequence $\left(\nu_{n}\right)_{n=1}^{\infty}$ of finitely supported discrete measures (the support of each ν_{n} is a finite subgroup of T) such that

$$
\hat{\nu}_{n}(j) \rightarrow \hat{\nu}(j)
$$

for all $j \in Z$. That P is not Helson enables us to choose ν such that $\|\hat{\nu}\|_{\infty}$ is as small as we like and $\hat{\nu}$ to be real. If E_{n} denotes the support of ν_{n}, then we can find a sequence $\left(f_{n}\right)_{n=1}^{\infty}$ of real functions on T such that

$$
\begin{aligned}
& \left\|f_{n}\right\|_{A\left(E_{n}\right)} \leqq 1 \quad(n \geqq 1) \\
& \left\|f_{n}\right\|_{\infty} \rightarrow 0 \text { as } n \rightarrow \infty \\
& \sup _{n}\left\|\sum_{\tau=1}^{s} \lambda_{r} f_{n}^{r}\right\|_{A\left(E_{n}\right)}=\sum_{\tau=1}^{s}\left|\lambda_{\tau}\right|,
\end{aligned}
$$

for all $s \in \mathbf{N}$ and $\lambda_{r} \in C$.
Now, let $\left(X_{n}{ }^{(i)}\right)_{n=1}^{\infty} \quad i=1,2$, be two sequences of sets in T such that $X_{n}{ }^{(i)} \cap X_{m}{ }^{(i)}=\emptyset$ for $n \neq m, i=1,2$ and $X_{n}{ }^{(i)}$ has the same cardinality as E_{n}. Identify, then, $X_{n}{ }^{(i)}$ with E_{n} for every $n \geqq 1$, and $i=1,2$. If $F: C(T) \rightarrow \mathrm{C}(T \times T)$ is the function defined in Theorem 1.1 , then set $\phi_{n}=\mathrm{F}\left(f_{n}\right), n \geqq 1$. A simple application of Lemma 1.1 implies that $\phi_{n} \in \mathscr{M}\left(L^{2} \hat{\otimes} L^{2}\right)$ and

$$
\begin{aligned}
& \left\|\phi_{n}\right\|_{\mathcal{M}} \leqq 1 \quad(n \geqq 1) \\
& \|\phi\|_{\infty} \rightarrow 0 \text { as } n \rightarrow \infty \\
& \sup _{n}\left\|\sum_{\tau=0}^{s} \lambda_{\tau} \phi_{n}{ }^{r}\right\|_{\mathcal{M}}=\sum_{r=0}^{s}\left|\lambda_{\tau}\right|
\end{aligned}
$$

for all $s \in N$ and $\lambda_{r} \in C$. Using Lemma 1.2 repeatedly we construct a sequence of real functions $\left(\psi_{n}\right)_{n=1}^{\infty}$ in $\mathscr{M}\left(L^{2} \hat{\otimes} L^{2}\right)$ such that

$$
\begin{aligned}
& \left\|\psi_{n}\right\|_{\mathcal{M}} \leqq 1 \quad(n \geqq 1) \\
& \operatorname{supp} \psi_{n}=\bigcup_{j=1}^{n} X_{j}^{(1)} \times X_{j}^{(2)} ; \\
& \left.\psi_{n}\right|_{X_{n}} ^{(1)} \times X_{n}{ }^{(2)}=\phi_{n}, \\
& \left\|\psi_{n}\right\|_{\infty} \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Clearly, the sequence $\left(\psi_{n}\right)_{n=1}^{\infty}$ converges uniformly to a function $\psi \in \mathscr{M}\left(L^{2} \hat{\otimes} L^{2}\right)$. Furthermore

$$
\|\mathcal{\psi}\|_{\mu}=\sup _{n}\left\|\psi_{n}\right\|_{\mathcal{M}} .
$$

Hence

$$
\left\|\sum_{T=0}^{s} \lambda_{T} \psi^{t}\right\|_{\mathcal{M}}=\sum_{T=0}^{s}\left|\lambda_{T}\right| .
$$

This completes the proof of the theorem.
As a corollary of the previous theorem we have
Theorem 1.3. The space $\mathscr{M}\left(L^{2} \hat{\otimes} L^{2}\right)$ is not separable.
Proof. The functions $\left(\psi_{n}\right)_{n=1}{ }^{\infty}$ in Theorem 1.2 have the property that

$$
\left\|\psi_{n}-\psi_{m}\right\|_{\mathcal{M}} \geqq \alpha>0 \text { for } n \neq m \text {. }
$$

This proves the claim.
2. The Hankel multipliers of $l^{2}(Z) \hat{\otimes} l^{2}(Z)$. Let $f \in l^{\infty}(Z)$ and ϕ be a function on $Z \times Z$ defined by $\phi(r, s)=f(r+s)$. If $\phi \in \mathscr{M}\left(l^{2}(Z) \hat{\otimes}\right.$ $\left.l^{2}(Z)\right)$, then ϕ will be called a Hankel multiplier of $l^{2}(Z) \hat{\otimes} l^{2}(Z)$. It is the purpose of this section to characterize the Hankel multipliers of $l^{2}(Z) \hat{\otimes} l^{2}(Z)$.

Let $M(T)$ denote the space of all complex valued regular bounded Borel measures on T. Set $B(Z)$ to be the set of functions $f \in l^{\circ}(Z)$ such that $f=\hat{\nu}$ for some $\nu \in M(T)$.

Theorem 2.1. Let $\phi \in l^{\infty}(Z \times Z)$ be defined by: $\phi(r, s)=f(r+s)$ for some $f \in l^{\infty}(Z)$ then the following are equivalent:
(i) $\phi \in \mathscr{M}\left(l^{2}(Z) \hat{\otimes} l^{2}(Z)\right)$.
(ii) $f \in B(Z)$.

Furthermore, $\|f\|_{B(Z)}=\|\boldsymbol{\phi}\|_{\mu}$.
Proof. (ii) $\Rightarrow(i)$. Let ν be any element in $M(T)$. It is well known, [1], that there exists a sequence of discrete measures in $M(T)$ such that:

$$
\hat{\nu}_{n}(j) \rightarrow \hat{\nu}(j) \text { for all } j \text {, and }\left\|\nu_{n}\right\|_{M(T)} \leqq\|\nu\|_{M(T)} \text {. }
$$

For any discrete measure ν, we have

$$
\begin{aligned}
& \nu=\sum_{j=1}^{\infty} \alpha_{j} \delta_{l_{j}}, \quad \hat{\nu}(r)=\sum_{j=1}^{\infty} \alpha_{j} e^{-i \tau t_{j}}, \quad \text { and } \\
& \|\hat{\nu}\|_{B(Z)}=\sum_{j=1}^{\infty}\left|\alpha_{j}\right|<\infty,
\end{aligned}
$$

where $\delta_{t_{j}}$ is the unit mass at the point t_{j}. Now, let

$$
\phi(r, s)=\hat{\nu}(r+s)=f(r+s) .
$$

Then

$$
\begin{aligned}
\phi(r, s) & =\sum_{j=1}^{\infty} \alpha_{j} e^{-i(r+s) t_{j}} \\
& =\sum_{j=1}^{\infty} \alpha_{j} e^{-i r t} e^{-i s t_{j}}
\end{aligned}
$$

Setting $f_{j}(r)=\alpha_{j} e^{-i r t_{j}}$ and $g_{j}(s)=e^{-i s t_{j}}$, we see that $\phi \in l^{\infty}(Z) \hat{\otimes} l^{\infty}(Z)$. Further

$$
\|\phi\|_{\mathcal{M}} \leqq\|\phi\|_{\tilde{V}(Z)} \leqq \sum_{j=1}^{\infty}\left|\alpha_{j}\right|=\|f\|_{B(Z)} .
$$

For $\phi(r, s)=f(r+s)$, where f is any function in $B(Z)$, we have

$$
\phi(r, s)=\lim _{n} f_{n}(r+s)
$$

where $f_{n}(r+s)=\hat{\nu}_{n}(r+s)$ for some discrete measure ν_{n} and $\left\|f_{n}\right\|_{B(Z)} \leqq$ $\|f\|_{B(z)}$. Hence the function ϕ is the pointwise limit of a uniformly bounded sequence of elements in $l^{\infty} \hat{\otimes} l^{\infty}$. It follows, [5],

$$
\varphi \in \widetilde{V}(Z)=l^{1}(Z) \check{\otimes} l^{1}(Z)^{*} \quad \text { and } \quad\|\phi\|_{\tilde{V}(Z)} \leqq\|f\|_{B(Z)} .
$$

Hence, [3], $\phi \in \mathscr{M}\left(l^{2}(Z) \hat{\otimes} l^{2}(Z)\right)$. Further

$$
\|\phi\|_{\mathcal{M}} \leqq\|\phi\|_{\tilde{v}(Z)} \leqq\|f\|_{B(Z)} .
$$

Conversely $(i) \Rightarrow(i i)$. Let $F: l^{\infty}(Z) \rightarrow l^{\infty}(Z \times Z)$ be the mapping $f(u)(r, s)=u(r+s)$, and E be the set of functions ϕ in $\mathscr{M}\left(l^{2}(Z) \hat{\otimes}\right.$ $l^{2}(Z)$) such that $\phi=F(u)$ for some u in $l^{\infty}(Z)$. It follows, [3], that $E \subseteq \widetilde{V}(Z)$. Hence if $\left.\phi_{n} \mp \phi\right|_{Z_{n} \times Z_{n}}$, then

$$
\phi_{n} \in l^{\infty}\left(Z_{n}\right) \hat{\otimes} l^{\infty}\left(Z_{n}\right) .
$$

Let $\sum_{i=1}^{k} f_{i} \otimes g_{i}$ be a representation of ϕ_{n} in $l^{\infty}\left(Z_{n}\right) \hat{\otimes} l^{\infty}\left(Z_{n}\right)$. Then

$$
\begin{align*}
\phi_{n}(r, s) & =(F(u))_{n}(r, s) \\
& =\sum_{i=1}^{k} f_{i}(r) \cdot g_{i}(s) \\
& =\sum_{i=1}^{k} f_{i}(\alpha) \cdot g_{i}(\beta) \tag{}
\end{align*}
$$

for all α and β in Z such that $\alpha+\beta=r+s$. For each $n \in \mathbf{N}$, define a mapping P_{n} on E as follows:

$$
\begin{aligned}
& P_{n}: E \rightarrow l^{\infty}(Z), \\
& P_{n}(\phi)=\frac{1}{2 n+1} \sum_{i=1}^{k} f_{i} * g_{i} .
\end{aligned}
$$

The function $P_{n}(\phi)$ is independent of the representation of ϕ_{n}, for

$$
\begin{aligned}
P_{n}(\phi)(k) & =\frac{1}{2 n+1} \sum_{i=1}^{k}\left(f_{i} * g_{i}\right)(k) \\
& =\frac{1}{2 n+1} \sum_{j=-n}^{n}\left(\sum_{i=1}^{k} f_{i}(k-j) v_{i}(j)\right) \\
& =\frac{1}{2 n+1} \sum_{j=-n}^{n} \phi_{n}(k-j, j) .
\end{aligned}
$$

Let $A(Z)$ be the space $l^{2}(Z)^{*} l^{2}(Z)$ which is, by the Plancherel theorem, the same space as $F L^{1}(T)$, the Fourier transforms of $L^{1}(T)$. Then $P_{n}(\phi) \in A(Z) \subseteq(B Z)$. Further, if $\left\|\|_{\tau r}\right.$ denotes the norm in $l^{2}\left(Z_{n}\right) \hat{\otimes}$ $l^{2}\left(Z_{n}\right)$ and $1_{Z_{n}}$ is the characteristic function of Z_{n}, then

$$
\begin{aligned}
\left\|P_{n}(\phi)\right\|_{A(Z)} & \leqq(2 n+1)^{-1} \cdot\left\|\phi_{n}\right\|_{\tau r} \\
& \leqq(2 n+1)^{-1} \cdot\left\|\phi_{n} \cdot 1_{Z_{n}} \otimes 1_{Z_{n}}\right\|_{\tau r} \\
& \leqq(2 n+1)^{-1} \cdot\left\|\phi_{n}\right\|_{\mathcal{M}} \cdot\left\|1_{Z_{n}} \otimes 1_{Z_{n}}\right\|_{\tau r} \\
& \leqq\left\|\phi_{n}\right\|_{\mathscr{M}} \\
& \leqq\|\phi\|_{\mathscr{M}}(* *) .
\end{aligned}
$$

On the other hand, since $\phi=F(u)$,

$$
\begin{aligned}
P_{n}()(k) & =P_{n}(F(u))(k) \\
& =\frac{1}{2 n+1} \sum_{j=-n}^{n} \phi_{n}(k-j, j) \\
& =\frac{1}{2 n+1} \sum_{j=-n}^{n} u(k) \\
& =u(k) .
\end{aligned}
$$

Hence $P_{n}(F(u)) \rightarrow u$ pointwise. Since $\left(P_{n}(F(u))_{n=1}^{\infty}\right.$ is a uniformly bounded sequence in $A(Z)$ which converges pointwise to u, we obtain that $u \in B(Z)$. Furthermore, relation ($* *$) implies that

$$
\|u\|_{B(Z)} \leqq\|\phi\|_{\mathcal{M}}
$$

This completes the proof of the theorem.
A similar result was proved by Varopoulus [5], where he proved the isometry of $B(Z)$ and its image under F in the tensor algebra norm.

As an application of Theorem 2.1, we estimate the multiplier norm of the matrix ψ, as an element in $\mathscr{M}\left(l^{2}(Z) \hat{\otimes} l^{2}(Z)\right)$, where

$$
\psi(i, j)= \begin{cases}1 & \text { if } 0<i+j \leqq n \\ 0 & \text { otherwise }\end{cases}
$$

Lemma 2.3.1. $\|\boldsymbol{\psi}\|_{\mathcal{M}} \sim C \cdot \log n$, where C is a constant independent of n.

Proof. Let f be a function defined on Z as follows:

$$
f(i)= \begin{cases}1 & \text { if } 0<i \leqq n \\ 0 & \text { otherwise }\end{cases}
$$

Clearly $\psi(i, j)=f(i+j)$. Since f has a finite support in Z, then $f \in B(Z)$. Let $f=\hat{v}$ for some $\nu \in M(T)$. By the Riesz-representation theorem, there exists a continuous linear functional $S: C(T) \rightarrow \mathbf{C}$ such that $S(h)=\int_{T} h d \nu$ and $\|S\|=\|\nu\|_{M(T)}$, where

$$
\|S\|=\sup _{h} \frac{|S(h)|}{\|h\|}, \quad h \in C(T)
$$

It follows from Theorem 2.1 that

$$
\|\psi\|_{m}=\|f\|_{B(Z)}=\|\nu\|_{M(T)}=\|S\| .
$$

Hence it is enough to estimate the norm of S. Further, since the trigonometric polynomials are dense in $C(T)$ under the supremum norm, it is enough to take h, in the definition of $\|S\|$, to be a trigonometric polynomial. Setting

$$
\hat{\nu}(r)=\int_{T} e^{i r t} d \nu(t)=f(r),
$$

we see that

$$
S\left(e^{i r t}\right)= \begin{cases}1 & \text { if } 0<r \leqq n \\ 0 & \text { otherwise }\end{cases}
$$

Thus if $h(t)=\sum_{j=-k}^{k} \alpha_{j} e^{i j t}$, then

$$
S(h)= \begin{cases}\sum_{1}^{n} \alpha_{j} & \text { if } k>n \\ \sum_{1}^{k} \alpha_{j} & \text { if } k<n\end{cases}
$$

Consider the following function in $C(T)$:

$$
\begin{aligned}
\widetilde{D}_{n}(t) & =\sum_{r=1}^{n} e^{i r t} \\
& =\sum_{r=1}^{n} \cos r t+i \sum_{r=1}^{n} \sin r t \\
& =\left(D_{n}-\frac{1}{2}\right)(t)+\bar{D}_{n}(t)
\end{aligned}
$$

where D_{n} is the Dirichlet kernel and \bar{D}_{n} is the conjugate kernel to D_{n}. A classical result in harmonic analysis, [2], asserts that $\left\|D_{n}\right\|_{1} \approx \alpha \log n$ and $\left\|\bar{D}_{n}\right\|_{1} \approx \log n$, where $\left\|\|_{1}\right.$ denotes the norm in $L^{1}(T)$. Hence
$\left\|\widetilde{D}_{n}\right\|_{1} \approx c \log n$ for some constant c independent of n. Next we observe that

$$
\sum_{j=1}^{n} \alpha_{j}=\left(\widetilde{D}_{n} * h\right)(0),
$$

from which we conclude

$$
\begin{aligned}
|S(h)| & =\left|\sum_{j=1}^{n} \alpha_{j}\right| \\
& =\left|\left(\widetilde{D}_{n} * h\right)(0)\right| \\
& \leqq\left\|\widetilde{D}_{n}\right\|_{1} \cdot\|h\|_{\infty} \\
& \leqq c \log n \cdot\|h\|_{\infty} .
\end{aligned}
$$

Hence

$$
\|S\|=\sup _{h} \frac{|S(h)|}{\|h\|_{\infty}} \leqq c \log n .
$$

This completes the proof of the lemma.

References

1. C. S. Herz, Spectral synthesis for the cantor set, Proc. Natl. Acad. Sci. US 42 (1956), 42-43.
2. Y. Katznelson, An introduction to harmonic analysis, N.Y. (1968).
3. R. Khalil, Ph.D. Thesis (1978).
4. W. Rudin, Fourier-Stieltjes transforms on independent sets, Bull. Amer. Math. Soc. 66 (1960), 199-202.
5. N. Th. Varapoulos, On a problem of A. Bearling, J. Fun. Anal. 2 (1968), 24-30.
6. - Tensor algebra over discrete spaces, J. Fun. Anal. \mathcal{B} (1968), 321-335.
7. J. H. Williamson, A theorem on algebras of measures on topological groups, Proc. Edinburgh Math. Soc. 11 (1959), 195-206.

Kuwait University, Kuwait

