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ON THE ALGEBRA OF MULTIPLIERS 

ROSHDI KHALIL 

A commutative Banach algebra is called symmetric if, regarded as a 
function algebra on its maximal ideal space, it is closed under complex 
conjugation. Varopoulos, [5], proved the asymmetry of the tensor 
algebra C(T) <§) C(T)> where T is the unit circle. It is the object of this 
paper to prove the asymmetry of the Schur multipliers of the space 
L2(T, m) <8> L2{T,rn), where m is the Lebesgue measure. In the second 
part of the paper we study the Hankel multipliers of the space l2(Z) ® 
l2(Z) and give an application to it. 

1. The asymmetry of M(L2(T) <g> L\T)). Let C{T) denote the space 
of continuous functions on T and A(T) be the space of those functions 
in C{T) that have absolutely convergent Fourier series. Consider the 
mapping F: C(T) -> C(T X T) defined by F(f)(xy y) = f (x + y). If 
|| ||m denotes the multiplier norm in M(L2(T) (§) L2(T)), then we have 

THEOREM 1.1. The following are equivalent: 

(i)f£A(T) 
(ii)F(f) € C(T)® C(T). 

Further \\f\\MT) = | | F ( / ) | | m . 

Proof. For the equivalence of (i) and (ii) one can consult [7]. To prove 
the isometric property of F on A (T), l e t / £ A (T), so 

co oo 

f(t) = ^ areirt and X) WA < °o • 
r=—co r=—<x> 

Hence 

F(f)(*,y)= £ aTeiT\elT\ 
r=—co 

Since \\eirx\}œ = 1 for all r, it follows that \\F(f)\\m ^ | | / |U( r ) . 
To show the other inequality define a mapping 

P: C(T X T) - > C ( r ) 

such that P(<p)(x) = JT9?(^ — y, y)dy. Clearly P o F: C{T) -* C(T) is 
just the identity mapping. Let F(f) G C( r ) ® C(T) and S^i0 0^^ O ^ , 
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be any representation of F(f). Then 

CO 

p(F(f)) = E wrr* 
It follows that 

| |PW)) IUr)^ \\F(f))\\„. 

However the function 1 ® 1 Ç L2(T) (8) L 2 ( r ) , so we have 

I W ) H r r = | l ^ ( / ) - l ® l | | r r 

= | |F( / ) |U- | |1® l||rr 

= \\Hf)hr 
Hence \\P(F(f))\\MT) = \\F(f ) \ \ M . This completes the proof. 

Now, we need the following technical lemma. 

LEMMA 1.2. Let fa and fa be any two elements in the unit ball of 
^{L2 ® L2). Assume, further, that sup^i C fij = Xi X Fi, sup<£2 

C 122 = X2 X F2, zej/̂ re Xi P\ J ^ = Fi H F2 = 0, ^ e empty set. Then 
there exists a function <t> £ *Jt{L2 ® L2) such that 

4>\ni = 4>i,i = 1,2 and ||tf>||̂  = maxz-=i>2||4>z|L. 

Proof. Define the following function <j> on J1 X 7" 

<£i if (x, ;y) G Œi 

and <t> = 0 on the complement of 12i W 122. We claim that the function <j> 
is the required function. First, since </> = fa + #2, it follows that 
0 G ^(L2 ® £2) . It remains to estimate the multiplier-norm of </>. To 
do so, l e t / (g) g be any atom in the unit ball of L2 0 L2. Since 

/®g=^fr2(ll/l |2-|k||2)1 /2-|^j ;(| |/ |k||g||2)1 /2 , 

we can assume that || / ||2 = ||g||2 S 1. Further since the support of <t> is 
contained in 121 KJ 122, we let supp( / ) C ^ i ^ ^ 2 and supp(g) C Fi U F2. 
Se t / i = / \xi and g< = g\Yi, i = 1, 2. T h e n / = / i + / 2 and g = gl + g2. 

Further | | / | | 2
2 = H/^,2 + ||/2||2

2 and ||g||2
2 = | | ^ | ] 2

2 + |]g2||2
2, since 

2 2 

n x, = n F, = 0. 

Now, consider 

4>mf ® g = fa-fi® gi + fa -h ® #2. 
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Since \\<t>i\\j( ^ 1, i = 1, 2, we deduce 

CO 

CO 

E l^ lh- I I^ IMIWh- IWk 
Again, as above, we can assume that | | / i | | 2 = ||g*||2 and ||w/°||2 = |l»;(i)l|2 
for i = 1, 2 and j ^ 1. It follows that 

CO 

£ H^ll,1* 11/41/ 
CO 

E l l ( i) I I 2 ^ I I I I 2 • -, o 

M»/ ||2 ^ ||gi||2 , t = 1,2. 
Now define the following functions 

<y y /̂ - j I LV j 

for all j ^ 1. Then 

CO 

<t>'f®g = X) fe® Wj) • l(XiXFi)U(X2UF2), 

where 1# denotes the characteristic function of the set E. But since 

N | 2 2 = lk- ( 1 ) | |22+ | |^ ( 2 ) | |22 

IW|2
2 = ||^ (1 ) | |22+ |K-(2)||22, 

it follows that 

CO 

\\<t>'f ® g\\rr ^ ] £ IWI2IKH2 
3=1 

z t ( l k ( 1 ) l | 2
2 + l k < 2 ) l h 2 ) l / 2 - ( l k a ) l | 2

2 

+ lh ( 2 , l | / ) 1 / 2 

* ( g ( IK ( 1 ) l | 2
2 +l l« / 2 , lh 2 ) ) 1 / 2 

• ( £ ( l k ( 1 , l | 2
2 + l k ( 2 ) l | 2

2 ) ) 1 / 2 

^ ( | | / 1 | | 2
2 + HM|2

2)1 / 2-(lbl |2
2 + lbl |2

2)1 / 2 

Since/ ® g was an arbitrary atom in the unit ball of L2 ® L2, it follows 
that | |0 | |^ ^ 1. This completes the proof of the lemma. 

Now we prove 
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THEOREM 1.2. The space ^ ( L 2 ® L2) is not symmetric. 

Proof. To prove the asymmetry of a space it is enough to produce an 
element in such a space which has independent powers, [7]. 

Let P be a Cantor independent set which is not Helson in T. The 
existence of P is illustrated in [4]. Take v to be a non-negative measure 
concentrated on P U ( — P). Then v has mutually singular convolution 
powers, and if we choose HHIMCD = 1 > w e obtain 

È A,/ = t, IU 
r=l \\M(T) r = l 

for all Xr £ C and n f N . Since discrete measures on T are dense in M{T) 
in the weak-* topology [1], then we can find a sequence (vn)n=iœ of finitely 
supported discrete measures (the support of each vn is a finite subgroup 
of T) such that 

h(j) -> p(i) 
for all j Ç Z. That P is not Helson enables us to choose v such that 
||P||œ is as small as we like and v to be real. If En denotes the support of 
vn, then we can find a sequence (/M)n==1°° of real functions on T such that 

\\fn\UEn) Û 1 ( » è 1), 

I All 0 as w -> oo . 

SUP E ^r/nl = Z) |Xr|, 
w l l r = l Il4(i&n) /"=1 

for all 5 G N and Xr G C. 
Now, let (X n

0 ) ) „ = r Î' = 1,2, be two sequences of sets in T such 
that X^v C\ Xjv = 0 for n 7̂  w, i = 1, 2 and X„(î) has the same 
cardinality as i v Identify, then, Xn

( î ) with En for every n ^ l , and 
* = 1,2. If F: C(T) —> C(T X T) is the function defined in Theorem 
1.1, then set <j>n = F ( / n ) , n ^ 1. A simple application of Lemma 1.1 
implies that 4>n 6 <Jé(L2 ® L2) and 

W ^ ^ 1 (ne 1); 
11*11 

sup 

• 0 as w —> oo 

Z.J ^r<t>nT = E IM 
for all s £ JV and Xr Ç C. Using Lemma 1.2 repeatedly we construct a 
sequence of real functions (^w)n==1

œ in ^{L2 ® L2) such that 

W u r ^ l ( » è l ) ; 

supp ^n = U Xy 

HlUo 

(1) XXj ( 2 ) . 

• 0 a s n- oo. 
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Clearly, the sequence WOn-i" converges uniformly to a function 
\p £ ^£(L2 ® L2). Furthermore 

U\\jl = SUpJ&JI^. 

Hence 

E ^ r 
= S IXrl-

1^ r=0 

This completes the proof of the theorem. 

As a corollary of the previous theorem we have 

THEOREM 1.3. The space ^é{L2 ® L2) is not separable. 

Proof. The functions (\l/n)n=i° in Theorem 1.2 have the property that 

Hn ~ K\\M è « > 0 for « ^ w. 

This proves the claim. 

2. The Hankel mul t ip l i e r s of /2(Z) <g> /2 (Z). L e t / e /°°(Z) and <*> be 
a function on Z X Z defined by </>(r, 5) = / ( r + s). If </> £ ~^(/2(Z) ® 
/2(Z)), then </> will be called a Hankel multiplier of /2(Z) (g> /2(Z). It is the 
purpose of this section to characterize the Hankel multipliers of 
/2(Z) <g> /2(Z). 

Let M(T) denote the space of all complex valued regular bounded 
Borel measures on T. Set B(Z) to be the set of functions/ G /°°(Z) such 
t h a t / = ? for some v Ç M"(T). 

THEOREM 2.1. Letf 0 G /°°(Z X Z) be defined by: 4>(r, s) = f(r + s) for 
some f £ /°°(Z) then the following are equivalent: 

(i) <f> £ ^ ( / 2 ( Z ) <g> /2(Z)). 
(ii)ftB(Z). 

Furthermore, | | / | | B ( Z ) = II^IL-

Proof, (ii) => (i). Let v be any element in M(T). It is well known, 
[1], that there exists a sequence of discrete measures in M(T) such that: 

K(j) -*v(j)for a11 i> a n d ll^lU(r) ^ IIHU(7> 

For any discrete measure v, we have 

00 00 

v = Yl afitj, v(r) = X «^~ ir°'i a n d 

00 

IWIBCZ) = Z) W < °°> 

where <5,y is the unit mass at the point tj. Now, let 

0(r, s) = v{r + 5) = f(r + s). 
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Then 

<t>(r,s) = £ aje-
Ur+s),i 

oo 
V ^ „—irt—istj 

= 2^ aJe e 

j=l 

S e t t i n g / » = c ^ - z r ^and gj(s) = e~uti, we see that <t> G lœ(Z) ® F°(Z). 
Further 

oo 

| |0 |U = ll^llnz) ^ Z) k;| = H/||B(Z). 

For </>(r, 5) = f(r + 5), where / is any function in B(Z), we have 

</>0, 5) = limn/n(r + 5), 

where/n(r + 5) = Pn(r + s) for some discrete measure vn and || /J|#(z) ^ 
||/IU(z)- Hence the function </> is the pointwise limit of a uniformly 
bounded sequence of elements in lœ ® f°. It follows, [5], 

<P e V(Z) = HZ) ® /*(£)* and | |«| |? (z ) ^ | | / |U ( Z ) . 

Hence, [3], 0 Ê ~#(/2(Z) ® /2(^)) . Further 

Conversely (i) => (w). Let F: /°°(Z) —>/°°(Z X Z) be the mapping 
f(u)(r, s) = u(r + s), and £ be the set of functions <j> in ^(l2(Z) ® 
l2(Z)) such that 0 = F(«) for some w in Z°°(Z). It follows, [3], that 
E C V{Z). Hence if 4>n =F (/>UnXz„, then 

0n ç r{zn) ® r(zn). 

Let S i = i / ï ® gi be a representation of </>„ in lœ(Zn) ® lœ(Zn). Then 

</>n0, s) = (F(u))n(r, s) 

= t,Mr).gi(s) 

= è /,(«)• git?) (*) 

for all a and 0 in Z such that a + /3 = r + 5. For each w G N, define a 
mapping P n on £ as follows: 

P n : E - r ( Z ) , 
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The function Pn(4>) is independent of the representation of <t>„, for 

= ^iri£(i:i/^-iK(i)) 

Let A(Z) be the space l2(Z)*l2(Z) which is, by the Plancherel theorem, 
the same space as FLl(T), the Fourier transforms of Ll(T). Then 
Pn(<t>) Ç A(Z) C (£Z). Further, if || ||Tr denotes the norm in l2(Zn) <§> 
l2(Zn) and lZ n is the characteristic function of Znt then 

| | P n ( « ) I U ( Z ) ^ ( 2 n + l ) - 1 ' | k | | r r 

^ ( 2 t t + I ) " 1 ' l l ^ - l z , ® l z j l r r 

S ( 2 n + l ) - 1 - | | 0 w | U - | | l Z n ® l z J | r r 

^ ll̂ nlU 
^ ll*IU (**). 

On the other hand, since </> = F(u), 

Pn{ )(*) =P, . (F(«))(*) 

Hence Pn(F(u))—> u pointwise. Since (Pn(F(u))n==iœ is a uniformly 
bounded sequence in A (Z) which converges pointwise to u, we obtain 
that u £ B(Z). Furthermore, relation (* *) implies that 

This completes the proof of the theorem. 

A similar result was proved by Varopoulus [5], where he proved the 
isometry of B(Z) and its image under F in the tensor algebra norm. 

As an application of Theorem 2.1, we estimate the multiplier norm of 
the matrix \[/, as an element in ^(12{Z) ® l2(Z)), where 

i r .v il HO <i+j ^n 
* ( ^ ) = l 0 otherwise. 

LEMMA 2.3.1. | |^||^ '—' C * log n, where C is a constant independent of n. 

https://doi.org/10.4153/CJM-1981-060-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-060-8


ALGEBRA OF MULTIPLIERS 793 

Proof. L e t / be a function defined on Z as follows: 

^t} \ o otherwise. 

Clearly \p (i, j) = f(i + j). Since/ has a finite support in Z, then/ G B (Z). 
Let / = v for some y G M(T). By the Riesz-representation theorem, 
there exists a continuous linear functional 5 : C(T) —» C such that 
5(A) = fThdv and ||5|| = H^HMCD, where 

| | 5 | | = s u p ^ ^ , AG C(T). 
n \\h\\ 

It follows from Theorem 2.1 that 

IWL = II/IIB(Z) = HHI^m = ||5||. 

Hence it is enough to estimate the norm of 5. Further, since the trigono
metric polynomials are dense in C(T) under the supremum norm, it is 
enough to take A, in the definition of ||5||, to be a trigonometric poly
nomial. Setting 

P(r) = f eirtdv(t) = / ( r ) , 

irt. j 1 if 0 < r ^ n 

we see that 

S(eirt) — 
(0 otherwise. 

Thus if h(t) = £*=-* afiin, then 

l ^ a i if & > « 
5(A) = < \ 

V^oij if k < n. 

Consider the following function in C(T): 

Dn{t) = £ *"« 
7 - = l 

= XI cos ̂  + ^ 22 sin rt 
r=l T=1 

where Dn is the Dirichlet kernel and Dn is the conjugate kernel to Dn. A 
classical result in harmonic analysis, [2], asserts that ||Aj|i œ a log n 
and ||Z)w||i œ log #, where || ||i denotes the norm in Ll(T). Hence 
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IIAJIi œ c log n for some constant c independent of n. Next we observe 
that 

£ «, = (A,*A)(0), 

from which we conclude 

|S(ft)| = 
n 

3=1 

= |0,*A)(O)| 

^ llA.Hi-11*11» 

VII ; log w • 11*11-
Hence 

IISII 
|5(*)| < , 

This completes the proof of the lemma. 
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