Corrigendum to "Asymptotic prime divisors over complete intersection rings" [Math. Proc. Camb. Phil. Soc. 160 (3) (2016) 423-436]

By DIPANKAR GHOSH and TONY J. PUTHENPURAKAL
Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
e-mails: dipankar@math.iitb.ac.in; tputhen@math.iitb.ac.in

(Received 4 January 2017; Revised 24 May 2017)

Abstract

There was a gap in the proof of Theorem 4.1 of [1]. In this corrigendum, we correct the error.

1. Introduction

Set-up 1.1. Let Q be a Noetherian ring of finite Krull dimension. Let $\mathbf{f}=f_{1}, \ldots, f_{c}$ be a Q-regular sequence. Set $A:=Q /(\mathbf{f})$. Suppose M and N are finitely generated A-modules, where $\operatorname{projdim}_{Q}(M)$ is finite. Let I be an ideal of A.

In [1, theorem 3•1], we proved that $\bigcup_{n, i \geqslant 0} \operatorname{Ass}_{A}\left(\operatorname{Ext}_{A}^{i}\left(M, N / I^{n} N\right)\right)$ is a finite set. Complementing this finiteness result, in [1, theorem 4•1], we showed the following asymptotic stability: There exist $n_{0}, i_{0} \geqslant 0$ such that for all $n \geqslant n_{0}$ and $i \geqslant i_{0}$,

$$
\begin{aligned}
\operatorname{Ass}_{A}\left(\operatorname{Ext}_{A}^{2 i}\left(M, N / I^{n} N\right)\right) & =\operatorname{Ass}_{A}\left(\operatorname{Ext}_{A}^{2 i_{0}}\left(M, N / I^{n_{0}} N\right)\right) \\
\operatorname{Ass}_{A}\left(\operatorname{Ext}_{A}^{2 i+1}\left(M, N / I^{n} N\right)\right) & =\operatorname{Ass}_{A}\left(\operatorname{Ext}_{A}^{2_{0}+1}\left(M, N / I^{n_{0}} N\right)\right)
\end{aligned}
$$

$1 \cdot 2$. Our strategy to prove [1, theorem 4•1] is as follows:
(i) choose $\mathfrak{p} \in \bigcup_{n, i \geqslant 0} \operatorname{Ass}_{A}\left(\operatorname{Ext}_{A}^{i}\left(M, N / I^{n} N\right)\right)$;
(ii) for every fixed $l=0,1$, show that there exist $n_{l}, i_{l} \geqslant 0$ such that

$$
\begin{array}{rll}
\text { either } & \mathfrak{p} \in \operatorname{Ass}_{A}\left(\operatorname{Ext}_{A}^{2 i+l}\left(M, N / I^{n} N\right)\right) & \text { for all } n \geqslant n_{l} \text { and } i \geqslant i_{l} ; \\
\quad \text { or } & \mathfrak{p} \notin \operatorname{Ass}_{A}\left(\operatorname{Ext}_{A}^{2 i+l}\left(M, N / I^{n} N\right)\right) & \text { for all } n \geqslant n_{l} \text { and } i \geqslant i_{l} .
\end{array}
$$

Localising at \mathfrak{p}, and replacing $A_{\mathfrak{p}}$ by A and $\mathfrak{p} A_{\mathfrak{p}}$ by \mathfrak{m}, we may assume that A is a local ring with maximal ideal \mathfrak{m} and residue field k. In [1, lemma 4.2], we proved that the lengths $\lambda\left(\operatorname{Hom}_{A}\left(k, \operatorname{Ext}_{A}^{2 i}\left(M, N / I^{n} N\right)\right)\right)$ and $\lambda\left(\operatorname{Hom}_{A}\left(k, \operatorname{Ext}_{A}^{2 i+1}\left(M, N / I^{n} N\right)\right)\right)$ are given by polynomials in n, i with rational coefficients for all sufficiently large n, i. Using this, we erroneously concluded the fact $1 \cdot 2$ (ii). Our assertion would have been correct if $\bigoplus_{n, i \geqslant 0} \operatorname{Hom}_{A}\left(k, \operatorname{Ext}_{A}^{i}\left(M, N / I^{n} N\right)\right)$ is a finitely generated module over some appropriate Noetherian bigraded ring. However, we believe that this module is practically never finitely generated over the ring $\mathscr{S}=\mathscr{R}(I)\left[t_{1}, \ldots, t_{c}\right]$ we worked with (see [1, section 2]). In this corrigendum, we correct our oversight. We prove the following:

Lemma 1•3. Along with Set-up $1 \cdot 1$, further assume that Q is a local ring with the residue field k. Then, for every fixed $l=0,1$, we have that:

$$
\begin{aligned}
\text { either } & \operatorname{Hom}_{A}\left(k, \operatorname{Ext}_{A}^{2 i+l}\left(M, N / I^{n} N\right)\right) \neq 0 \quad \text { for all } n, i \gg 0 \\
\text { or } & \operatorname{Hom}_{A}\left(k, \operatorname{Ext}_{A}^{2 i+l}\left(M, N / I^{n} N\right)\right)=0 \quad \text { for all } n, i \gg 0
\end{aligned}
$$

Using Lemma $1 \cdot 3$, one can easily prove the fact $1 \cdot 2$ (ii), and hence [1, theorem $4 \cdot 1$].

2. Proof of Lemma $1 \cdot 3$

With Set-up $1 \cdot 1$, further assume that $\mathcal{N}=\bigoplus_{n \geqslant 0} N_{n}$ is a graded module over the Rees ring $\mathscr{R}(I):=\bigoplus_{n \geqslant 0} I^{n} X^{n}$. Then $\mathscr{E}(\mathcal{N}):=\bigoplus_{n, i \geqslant 0} \operatorname{Ext}_{A}^{i}\left(M, N_{n}\right)$ turns into a bigraded module over $\mathscr{S}:=\mathscr{R}(I)\left[t_{1}, \ldots, t_{c}\right]$, where $t_{j}: \operatorname{Ext}_{A}^{i}\left(M, N_{n}\right) \rightarrow \operatorname{Ext}_{A}^{i+2}\left(M, N_{n}\right), i \geqslant 0$, are the Eisenbud operators, and we set $\operatorname{deg}\left(t_{j}\right)=(0,2)$ for all $1 \leqslant j \leqslant c$ and $\operatorname{deg}\left(u X^{s}\right)=(s, 0)$ for all $u \in I^{s}, s \geqslant 0$; see [1, section 2•3]. Since $\mathcal{L}:=\bigoplus_{n \geqslant 0}\left(I^{n} N / I^{n+1} N\right)$ and $\mathcal{L}^{\prime}:=$ $\bigoplus_{n \geqslant 0}\left(N / I^{n} N\right)$ are graded $\mathscr{R}(I)$-modules, we obtain that

$$
\begin{align*}
& U=\bigoplus_{n, i \geqslant 0} U_{(n, i)}:=\mathscr{E}(\mathcal{L})=\bigoplus_{n, i \geqslant 0} \operatorname{Ext}_{A}^{i}\left(M, I^{n} N / I^{n+1} N\right), \\
& V=\bigoplus_{n, i \geqslant 0} V_{(n, i)}:=\mathscr{E}\left(\mathcal{L}^{\prime}\right)=\bigoplus_{n, i \geqslant 0} \operatorname{Ext}_{A}^{i}\left(M, N / I^{n} N\right)
\end{align*}
$$

are bigraded modules over $\mathscr{S}=\mathscr{R}(I)\left[t_{1}, \ldots, t_{c}\right]$. To prove Lemma 1•3, we use:
Lemma 2•1. Let A be a Noetherian ring and I an ideal of A. Let $\mathscr{R}(I)$ be the Rees ring of I. Set $\mathscr{S}:=\mathscr{R}(I)\left[t_{1}, \ldots, t_{c}\right]$, where $\operatorname{deg}\left(t_{j}\right)=(0,2)$ for all $1 \leqslant j \leqslant c$ and $\operatorname{deg}\left(I^{s}\right)=(s, 0)$ for all $s \geqslant 0$. Suppose $L=\bigoplus_{(n, i) \in \mathbb{N}^{2}} L_{(n, i)}$ is a finitely generated bigraded \mathscr{S}-module. Then, for every fixed $l=0$, 1 , we have that either $L_{(n, 2 i+l)} \neq 0$ for all $n, i \gg 0$; or $L_{(n, 2 i+l)}=0$ for all $n, i \gg 0$.

Proof. By virtue of [3, proposition 5•1], there is $\left(n_{0}, i_{0}\right) \in \mathbb{N}^{2}$ such that

$$
\begin{aligned}
\operatorname{Ass}_{A}\left(L_{(n, 2 i)}\right) & =\operatorname{Ass}_{A}\left(L_{\left(n_{0}, 2 i_{0}\right)}\right) \quad \text { for all }(n, i) \geqslant\left(n_{0}, i_{0}\right) \\
\operatorname{Ass}_{A}\left(L_{(n, 2 i+1)}\right) & =\operatorname{Ass}_{A}\left(L_{\left(n_{0}, 2 i_{0}+1\right)}\right) \quad \text { for all }(n, i) \geqslant\left(n_{0}, i_{0}\right) .
\end{aligned}
$$

The result now follows from the well-known fact: for an A-module M, $\operatorname{Ass}_{A}(M)$ is nonempty if and only if $M \neq 0$.

We now give:
Proof of Lemma 1•3. We prove the lemma for $l=0$ only. For $l=1$, the proof is similar. Set $f(n, i):=\lambda\left(\operatorname{Hom}_{A}\left(k, \operatorname{Ext}_{A}^{2 i}\left(M, N / I^{n} N\right)\right)\right.$ for all $n, i \geqslant 0$. By virtue of [1, lemma 4•2], $f(n, i)$ is given by a polynomial in n, i with rational coefficients for all $n, i \gg 0$. If $f(n, i)=0$ for all $n, i \gg 0$, then there is nothing to prove. Suppose this is not the case. Then we claim that $\operatorname{Hom}_{A}\left(k, \operatorname{Ext}_{A}^{2 i}\left(M, N / I^{n} N\right)\right) \neq 0$ for all $n, i \gg 0$.

For every $n \geqslant 0$, the exact sequence $0 \rightarrow I^{n} N / I^{n+1} N \rightarrow N / I^{n+1} N \rightarrow N / I^{n} N \rightarrow 0$ yields an exact sequence of A-modules (for each i):

$$
\begin{aligned}
& \operatorname{Ext}_{A}^{i}\left(M, I^{n} N / I^{n+1} N\right) \longrightarrow \operatorname{Ext}_{A}^{i}\left(M, N / I^{n+1} N\right) \longrightarrow \operatorname{Ext}_{A}^{i}\left(M, N / I^{n} N\right) \\
& \longrightarrow \operatorname{Ext}_{A}^{i+1}\left(M, I^{n} N / I^{n+1} N\right) .
\end{aligned}
$$

Taking direct sum over n, i, and using the naturality of the Eisenbud operators t_{j}, we have an exact sequence $U \xrightarrow{\Phi} V(1,0) \xrightarrow{\Xi} V \xrightarrow{\Psi} U(0,1)$ of bigraded modules over $\mathscr{S}=$ $\mathscr{R}(I)\left[t_{1}, \ldots, t_{c}\right]$, where U and V are as in $(2 \cdot 1 a)$ and $(2 \cdot 1 b)$ respectively. Hence, setting $X:=\operatorname{Image}(\Phi), Y:=\operatorname{Image}(\Xi)$ and $Z:=\operatorname{Image}(\Psi)$, we obtain the short exact sequences: $0 \rightarrow X \rightarrow V(1,0) \rightarrow Y \rightarrow 0$ and $0 \rightarrow Y \rightarrow V \rightarrow Z \rightarrow 0$. Applying $\operatorname{Hom}_{A}(k,-)$ to these short exact sequences, we get the following exact sequences:

$$
\begin{gather*}
0 \longrightarrow \operatorname{Hom}_{A}(k, X) \longrightarrow \operatorname{Hom}_{A}(k, V(1,0)) \longrightarrow \operatorname{Hom}_{A}(k, Y) \longrightarrow C \longrightarrow 0 \\
0 \longrightarrow \operatorname{Hom}_{A}(k, Y) \longrightarrow \operatorname{Hom}_{A}(k, V) \longrightarrow D \longrightarrow 0
\end{gather*}
$$

where $C:=\operatorname{Image}\left(\operatorname{Hom}_{A}(k, Y) \rightarrow \operatorname{Ext}_{A}^{1}(k, X)\right)$ and $D:=\operatorname{Image}\left(\operatorname{Hom}_{A}(k, V) \rightarrow\right.$ $\operatorname{Hom}_{A}(k, Z)$). By virtue of [2, theorem 1•1], U is a finitely generated bigraded \mathscr{S}-module, and hence X and Z are so. This implies that $\operatorname{Hom}_{A}(k, X), \operatorname{Ext}_{A}^{1}(k, X)$ and $\operatorname{Hom}_{A}(k, Z)$ are finitely generated bigraded \mathscr{S}-modules. Therefore C and D are finitely generated bigraded $\mathscr{S}=\mathscr{R}(I)\left[t_{1}, \ldots, t_{c}\right]$-modules. Hence, by Lemma 2•1, we get:

$$
\left\{\begin{array}{rc}
\text { either } & \operatorname{Hom}_{A}\left(k, X_{(n, 2 i)}\right) \neq 0 \text { for all } n, i \gg 0 \\
\text { or } & \operatorname{Hom}_{A}\left(k, X_{(n, 2 i)}\right)=0 \text { for all } n, i \gtrdot 0 ;
\end{array}\right\}
$$

$$
\left\{\begin{aligned}
\text { either } & C_{(n, 2 i)} \neq 0 \text { for all } n, i \gtrdot 0, \\
\text { or } & C_{(n, 2 i)}=0 \text { for all } n, i \gg 0 ;
\end{aligned}\right\}\left\{\begin{aligned}
\text { either } & D_{(n, 2 i)} \neq 0 \text { for all } n, i \gg 0, \\
\text { or } & D_{(n, 2 i)}=0 \text { for all } n, i \gg 0 .
\end{aligned}\right\}
$$

For $n, i \geqslant 0$, the $(n, 2 i)$ th components of $(2 \cdot 2 a)$ and $(2 \cdot 2 b)$ yield the exact sequences:
$0 \longrightarrow \operatorname{Hom}_{A}\left(k, X_{(n, 2 i)}\right) \longrightarrow \operatorname{Hom}_{A}\left(k, V_{(n+1,2 i)}\right) \longrightarrow \operatorname{Hom}_{A}\left(k, Y_{(n, 2 i)}\right) \longrightarrow C_{(n, 2 i)} \longrightarrow 0$,

$$
\begin{equation*}
0 \longrightarrow \operatorname{Hom}_{A}\left(k, Y_{(n, 2 i)}\right) \longrightarrow \operatorname{Hom}_{A}\left(k, V_{(n, 2 i)}\right) \longrightarrow D_{(n, 2 i)} \longrightarrow 0 \tag{2.4a}
\end{equation*}
$$

Now we are in a position to prove our claim that $\operatorname{Hom}_{A}\left(k, V_{(n, 2 i)}\right) \neq 0$ for all $n, i \gg 0$. We consider the following four cases:

Case 1. Assume that $\operatorname{Hom}_{A}\left(k, X_{(n, 2 i)}\right) \neq 0$ for all $n, i \gg 0$. Then, in view of $(2 \cdot 4 a)$, we get that $\operatorname{Hom}_{A}\left(k, V_{(n, 2 i)}\right) \neq 0$ for all $n, i \gg 0$. So, in this case, we are done.

Case 2. Assume that $C_{(n, 2 i)} \neq 0$ for all $n, i \gg 0$. So again, in view of ($2 \cdot 4 a$), we have that $\operatorname{Hom}_{A}\left(k, Y_{(n, 2 i)}\right) \neq 0$ for all $n, i \gg 0$. Hence $(2.4 b)$ yields that $\operatorname{Hom}_{A}\left(k, V_{(n, 2 i)}\right) \neq 0$ for all $n, i \gg 0$. Thus, in this case also, we are done.

Case 3. Assume that $D_{(n, 2 i)} \neq 0$ for all $n, i \gg 0$. In this case, $(2 \cdot 4 b)$ gives that $\operatorname{Hom}_{A}\left(k, V_{(n, 2 i)}\right) \neq 0$ for all $n, i \gg 0$, and hence we are done.

In view of (2•3), if none of the above three cases holds, then we have the following:
Case 4. Assume that $\operatorname{Hom}_{A}\left(k, X_{(n, 2 i)}\right)=0$ for all $n, i \gg 0, C_{(n, 2 i)}=0$ for all $n, i \gg 0$, and $D_{(n, 2 i)}=0$ for all $n, i \gg 0$. Hence the exact sequences $(2 \cdot 4 a)$ and $(2 \cdot 4 b)$ yield the isomorphisms: $\operatorname{Hom}_{A}\left(k, V_{(n+1,2 i)}\right) \cong \operatorname{Hom}_{A}\left(k, Y_{(n, 2 i)}\right) \cong \operatorname{Hom}_{A}\left(k, V_{(n, 2 i)}\right)$ for all $n, i \gg 0$. These isomorphisms provide the following equalities:

$$
\begin{equation*}
f(n+1, i)=f(n, i) \quad \text { for all } n, i \gtrdot 0 . \tag{2.5}
\end{equation*}
$$

We may write the polynomial expression of $f(n, i)$ in the following way:

$$
\begin{equation*}
f(n, i)=h_{0}(i) n^{a}+h_{1}(i) n^{a-1}+\cdots+h_{a-1}(i) n+h_{a}(i) \quad \text { for all } n, i \gg 0, \tag{2.6}
\end{equation*}
$$

where $h_{j}(i), 0 \leqslant j \leqslant a$, are polynomials in i over \mathbb{Q}. We may assume without loss of generality that h_{0} is a non-zero polynomial. Therefore h_{0} may have only finitely many roots.

Let $i^{\prime} \geqslant 0$ be such that $h_{0}(i) \neq 0$ for all $i \geqslant i^{\prime}$. In view of (2•5) and (2•6), there exist some $n_{0}(\geqslant 0)$ and $i_{0}\left(\geqslant i^{\prime}\right.$, say) such that for all $n \geqslant n_{0}$ and $i \geqslant i_{0}$, we have

$$
f(n+1, i)=f(n, i) \quad \text { and } \quad f(n, i)=h_{0}(i) n^{a}+h_{1}(i) n^{a-1}+\cdots+h_{a-1}(i) n+h_{a}(i) .
$$

These equalities imply that a must be equal to 0 , and hence $f(n, i)=h_{0}(i)$ for all $n \geqslant n_{0}$ and $i \geqslant i_{0}$. Thus $f(n, i) \neq 0$ for all $n \geqslant n_{0}$ and $i \geqslant i_{0}$, and hence $\operatorname{Hom}_{A}\left(k, V_{(n, 2 i)}\right) \neq 0$ for all $n \geqslant n_{0}$ and $i \geqslant i_{0}$, which completes the proof of Lemma 1•3.

Acknowledgments. We thank Prof. Vijaylaxmi Trivedi for showing us the gap in our paper.

REFERENCES

[1] D. Ghosh and Tony J. Puthenpurakal. Asymptotic prime divisors over complete intersection rings. Math. Proc. Camb. Phil. Soc. 160 (2016), 423-436.
[2] Tony J. Puthenpurakal. On the finite generation of a family of Ext modules. Pacific J. Math. 266 (2013), 367-389.
[3] E. West. Primes associated to multigraded modules. J. Algebra 271 (2004), 427-453.

