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Abstract

There was a gap in the proof of Theorem 4·1 of [1]. In this corrigendum, we correct the
error.

1. Introduction

Set-up 1·1. Let Q be a Noetherian ring of finite Krull dimension. Let f = f1, . . . , fc be a
Q-regular sequence. Set A := Q/(f). Suppose M and N are finitely generated A-modules,
where projdim Q(M) is finite. Let I be an ideal of A.

In [1, theorem 3·1], we proved that
⋃

n,i�0 Ass A

(
Ext i

A(M, N/I n N )
)

is a finite set. Com-
plementing this finiteness result, in [1, theorem 4·1], we showed the following asymptotic
stability: There exist n0, i0 � 0 such that for all n � n0 and i � i0,

Ass A

(
Ext 2i

A (M, N/I n N )
) = Ass A

(
Ext 2i0

A (M, N/I n0 N )
)
,

Ass A

(
Ext 2i+1

A (M, N/I n N )
) = Ass A

(
Ext 2i0+1

A (M, N/I n0 N )
)
.

1·2. Our strategy to prove [1, theorem 4·1] is as follows:
(i) choose p ∈ ⋃

n,i�0 Ass A

(
Ext i

A(M, N/I n N )
)
;

(ii) for every fixed l = 0, 1, show that there exist nl, il � 0 such that

either p ∈ Ass A

(
Ext 2i+l

A (M, N/I n N )
)

for all n � nl and i � il;
or p � Ass A

(
Ext 2i+l

A (M, N/I n N )
)

for all n � nl and i � il .

Localising at p, and replacing Ap by A and pAp by m, we may assume that A is a
local ring with maximal ideal m and residue field k. In [1, lemma 4·2], we proved that
the lengths λ

(
Hom A

(
k, Ext 2i

A (M, N/I n N )
))

and λ
(
Hom A

(
k, Ext 2i+1

A (M, N/I n N )
))

are
given by polynomials in n, i with rational coefficients for all sufficiently large n, i . Using
this, we erroneously concluded the fact 1·2(ii). Our assertion would have been correct if⊕

n,i�0 Hom A

(
k, Ext i

A(M, N/I n N )
)

is a finitely generated module over some appropriate
Noetherian bigraded ring. However, we believe that this module is practically never finitely
generated over the ring S = R(I )[t1, . . . , tc] we worked with (see [1, section 2]). In this
corrigendum, we correct our oversight. We prove the following:

https://doi.org/10.1017/S0305004117000524 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004117000524


382 DIPANKAR GHOSH AND TONY J. PUTHENPURAKAL

LEMMA 1·3. Along with Set-up 1·1, further assume that Q is a local ring with the residue
field k. Then, for every fixed l = 0, 1, we have that:

either Hom A

(
k, Ext 2i+l

A (M, N/I n N )
)
� 0 for all n, i � 0;

or Hom A

(
k, Ext 2i+l

A (M, N/I n N )
) = 0 for all n, i � 0.

Using Lemma 1·3, one can easily prove the fact 1·2(ii), and hence [1, theorem 4·1].

2. Proof of Lemma 1·3
With Set-up 1·1, further assume that N = ⊕

n�0 Nn is a graded module over the Rees ring
R(I ) := ⊕

n�0 I n Xn . Then E (N ) := ⊕
n,i�0 Ext i

A(M, Nn) turns into a bigraded module
over S := R(I )[t1, . . . , tc], where t j : Ext i

A(M, Nn) → Ext i+2
A (M, Nn), i � 0, are the

Eisenbud operators, and we set deg(t j ) = (0, 2) for all 1 � j � c and deg(u Xs) = (s, 0)

for all u ∈ I s , s � 0; see [1, section 2·3]. Since L := ⊕
n�0(I n N/I n+1 N ) and L′ :=⊕

n�0(N/I n N ) are graded R(I )-modules, we obtain that

U =
⊕
n,i�0

U(n,i) := E (L) =
⊕
n,i�0

Ext i
A

(
M, I n N/I n+1 N

)
, (2·1a)

V =
⊕
n,i�0

V(n,i) := E (L′) =
⊕
n,i�0

Ext i
A(M, N/I n N ) (2·1b)

are bigraded modules over S = R(I )[t1, . . . , tc]. To prove Lemma 1·3, we use:

LEMMA 2·1. Let A be a Noetherian ring and I an ideal of A. Let R(I ) be the Rees
ring of I . Set S := R(I )[t1, . . . , tc], where deg(t j ) = (0, 2) for all 1 � j � c and
deg(I s) = (s, 0) for all s � 0. Suppose L = ⊕

(n,i)∈N2 L (n,i) is a finitely generated bigraded
S -module. Then, for every fixed l = 0, 1, we have that either L (n,2i+l) � 0 for all n, i � 0;
or L (n,2i+l) = 0 for all n, i � 0.

Proof. By virtue of [3, proposition 5·1], there is (n0, i0) ∈ N2 such that

Ass A

(
L (n,2i)

) = Ass A

(
L (n0,2i0)

)
for all (n, i) � (n0, i0);

Ass A

(
L (n,2i+1)

) = Ass A

(
L (n0,2i0+1)

)
for all (n, i) � (n0, i0).

The result now follows from the well-known fact: for an A-module M , Ass A(M) is non-
empty if and only if M � 0.

We now give:

Proof of Lemma 1·3. We prove the lemma for l = 0 only. For l = 1, the proof is sim-
ilar. Set f (n, i) := λ

(
Hom A

(
k, Ext 2i

A (M, N/I n N )
))

for all n, i � 0. By virtue of [1,
lemma 4·2], f (n, i) is given by a polynomial in n, i with rational coefficients for all n, i � 0.
If f (n, i) = 0 for all n, i � 0, then there is nothing to prove. Suppose this is not the case.
Then we claim that Hom A

(
k, Ext 2i

A (M, N/I n N )
)
� 0 for all n, i � 0.

For every n � 0, the exact sequence 0 → I n N/I n+1 N → N/I n+1 N → N/I n N → 0
yields an exact sequence of A-modules (for each i):

Ext i
A

(
M, I n N/I n+1 N

) −→ Ext i
A

(
M, N/I n+1 N

) −→ Ext i
A (M, N/I n N )

−→ Ext i+1
A

(
M, I n N/I n+1 N

)
.
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Taking direct sum over n, i , and using the naturality of the Eisenbud operators t j , we have

an exact sequence U
�−→ V (1, 0)

�−→ V
�−→ U (0, 1) of bigraded modules over S =

R(I )[t1, . . . , tc], where U and V are as in (2·1a) and (2·1b) respectively. Hence, setting
X := Image (�), Y := Image (�) and Z := Image (�), we obtain the short exact sequences:
0 → X → V (1, 0) → Y → 0 and 0 → Y → V → Z → 0. Applying Hom A(k, −) to
these short exact sequences, we get the following exact sequences:

0 −→ Hom A(k, X) −→ Hom A

(
k, V (1, 0)

) −→ Hom A(k, Y ) −→ C −→ 0, (2·2a)

0 −→ Hom A(k, Y ) −→ Hom A(k, V ) −→ D −→ 0, (2·2b)

where C := Image
(
Hom A(k, Y ) → Ext 1

A(k, X)
)

and D := Image
(

Hom A(k, V ) →
Hom A(k, Z)

)
. By virtue of [2, theorem 1·1], U is a finitely generated bigraded S -module,

and hence X and Z are so. This implies that Hom A(k, X), Ext 1
A(k, X) and Hom A(k, Z) are

finitely generated bigraded S -modules. Therefore C and D are finitely generated bigraded
S = R(I )[t1, . . . , tc]-modules. Hence, by Lemma 2·1, we get:{

either Hom A

(
k, X(n,2i)

)
� 0 for all n, i � 0,

or Hom A

(
k, X(n,2i)

) = 0 for all n, i � 0;
}

(2·3)

{
either C(n,2i) � 0 for all n, i � 0,

or C(n,2i) = 0 for all n, i � 0;
} {

either D(n,2i) � 0 for all n, i � 0,

or D(n,2i) = 0 for all n, i � 0.

}

For n, i � 0, the (n, 2i)th components of (2·2a) and (2·2b) yield the exact sequences:

0−→Hom A

(
k, X(n,2i)

) −→ Hom A

(
k, V(n+1,2i)

) −→ Hom A

(
k, Y(n,2i)

) −→ C(n,2i) −→ 0,

(2·4a)

0 −→ Hom A

(
k, Y(n,2i)

) −→ Hom A

(
k, V(n,2i)

) −→ D(n,2i) −→ 0. (2·4b)

Now we are in a position to prove our claim that Hom A

(
k, V(n,2i)

)
� 0 for all n, i � 0. We

consider the following four cases:
Case 1. Assume that Hom A

(
k, X(n,2i)

)
� 0 for all n, i � 0. Then, in view of (2·4a), we

get that Hom A

(
k, V(n,2i)

)
� 0 for all n, i � 0. So, in this case, we are done.

Case 2. Assume that C(n,2i) � 0 for all n, i � 0. So again, in view of (2·4a), we have that
Hom A

(
k, Y(n,2i)

)
� 0 for all n, i � 0. Hence (2·4b) yields that Hom A

(
k, V(n,2i)

)
� 0 for

all n, i � 0. Thus, in this case also, we are done.
Case 3. Assume that D(n,2i) � 0 for all n, i � 0. In this case, (2·4b) gives that

Hom A

(
k, V(n,2i)

)
� 0 for all n, i � 0, and hence we are done.

In view of (2·3), if none of the above three cases holds, then we have the following:
Case 4. Assume that Hom A

(
k, X(n,2i)

) = 0 for all n, i � 0, C(n,2i) = 0 for all n, i � 0,
and D(n,2i) = 0 for all n, i � 0. Hence the exact sequences (2·4a) and (2·4b) yield the
isomorphisms: Hom A

(
k, V(n+1,2i)

)
�Hom A

(
k, Y(n,2i)

)
�Hom A

(
k, V(n,2i)

)
for all n, i � 0.

These isomorphisms provide the following equalities:

f (n + 1, i) = f (n, i) for all n, i � 0. (2·5)

We may write the polynomial expression of f (n, i) in the following way:

f (n, i) = h0(i)n
a + h1(i)n

a−1 + · · · + ha−1(i)n + ha(i) for all n, i � 0, (2·6)

where h j (i), 0 � j � a, are polynomials in i over Q. We may assume without loss of
generality that h0 is a non-zero polynomial. Therefore h0 may have only finitely many roots.
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Let i ′ � 0 be such that h0(i) � 0 for all i � i ′. In view of (2·5) and (2·6), there exist some
n0 (� 0) and i0 (� i ′, say) such that for all n � n0 and i � i0, we have

f (n + 1, i) = f (n, i) and f (n, i) = h0(i)n
a + h1(i)n

a−1 + · · · + ha−1(i)n + ha(i).

These equalities imply that a must be equal to 0, and hence f (n, i) = h0(i) for all n � n0

and i � i0. Thus f (n, i)� 0 for all n � n0 and i � i0, and hence Hom A

(
k, V(n,2i)

)
� 0 for

all n � n0 and i � i0, which completes the proof of Lemma 1·3.

Acknowledgments. We thank Prof. Vijaylaxmi Trivedi for showing us the gap in our
paper.
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