THE DENSITY OF ZEROS OF DIRICHLET'S L-FUNCTIONS

D. R. HEATH-BROWN

1. Introduction. Let $L(s, \chi)$ be a Dirichlet L-function and let $N(\sigma, T, \chi)$ denote the number of zeros ρ of $L(s, \chi)$, counted according to multiplicity, in the rectangle $\sigma \leqq \operatorname{Re}(\rho) \leqq 1,|\operatorname{Im}(\rho)| \leqq T,(T \geqq 1)$. In this paper we shall prove several new estimates for the sum

$$
\sum(Q)=\sum_{q \leq Q} \sum_{\chi(\bmod q)} * N(\sigma, T, \chi)
$$

where \sum^{*} denotes summation over primitive characters only. These estimates will all be of the type
(1) $\quad \sum(Q) \ll\left(Q^{2} T^{a}\right)^{A(\sigma)(1-\sigma)+\epsilon}$,
where ϵ denotes any fixed positive quantity.
Extending the well-known density hypothesis for the Riemann Zeta-function, which is given by the case $Q=1$, it is generally conjectured that (1) holds with $a=1$ and $A(\sigma)=2$ for the interval $1 / 2 \leqq \sigma \leqq 1$. At present the widest interval on which the conjecture is known to hold is $21 / 26 \leqq \sigma \leqq 1$, due to Jutila [6]. In this paper we shall extend the range of admissible values to $11 / 14 \leqq \sigma \leqq 1$. Note that $21 / 26=0.807 \ldots$, whereas $11 / 14=0.785 \ldots$.

Theorem 1. The estimate (1) holds with $a=1, A(\sigma)=2$ and $11 / 14 \leqq \sigma \leqq 1$, uniformly in σ, Q and T.

In the case $Q=1$, (that is, for the Riemann Zeta-function) the theorem gives

$$
N(\sigma, T) \ll T^{2-2 \sigma+\epsilon}, \quad(11 / 14 \leqq \sigma \leqq 1),
$$

in the usual notation; this is in fact the same as Jutila's estimate [6], which is the best result to date in connection with the ordinary density hypothesis. Jutila's work improved upon several earlier theorems, in particular Montgomery $[\mathbf{7}]$ and Huxley [1] obtained the first unconditional results in this context, with $\sigma \geqq 9 / 10$ and $\sigma \geqq 5 / 6$ respectively, and it has long been known, from the classical work of Ingham [4], that if the Lindelöf hypothesis

$$
\zeta(1 / 2+i t) \ll t^{\epsilon},
$$

is true, then so also is the density hypothesis. It is easy to verify that a result of the latter kind holds more generally for arbitrary Q.

[^0]Huxley [3] has shown that the bounds for $A(\sigma)$ in (1) may be improved if c is allowed to take the value 2 . This gives estimates that are sharper with respect to Q but weaker with respect to T. Huxley showed, in particular, that (1) holds with $a=2, A(\sigma)=20 / 9$ for the range $1 / 2 \leqq \sigma \leqq 1$. We shall prove the following sharpening of Huxley's results.

Theorem 2. The estimate (1) holds uniformly in σ, Q and T for $1 / 2 \leqq \sigma \leqq 1$ and

$$
\begin{align*}
& a=6 / 5, A(\sigma)=5 /(3-\sigma), \quad \text { or } \tag{2}\\
& a=6 / 5, A(\sigma)=20 / 9 \tag{3}
\end{align*}
$$

The estimates (2) and (3) should be compared with the corresponding results of Huxley [3], which have the same value of $A(\sigma)$, but have $a=2$. We have thus reduced the exponent of T, while leaving the exponent of Q unchanged.

Huxley [3] also showed that (1) is valid with $a=2, A(\sigma)=2$ for the range $11 / 14 \leqq \sigma \leqq 1$. This is now superseded by Theorem 1. However Jutila [6] showed that one may take $a=2, A(\sigma)=2$ in (1), for the wider range $7 / 9 \leqq \sigma \leqq 1$. We shall improve this result further, to $129 / 167 \leqq \sigma \leqq 1$. Note that $7 / 9=0.7777 \ldots$ and $129 / 167=0.7724 \ldots$.

Theorem 3. The estimate (1) holds, with $a=2, A(\sigma)=2$ for $129 / 167 \leqq$ $\sigma \leqq 1$, uniformly in Q, T and σ.

Our proofs are based on the use of Dirichlet polynomials as in Montgomery [7], with the developments of Huxley [1], [2], [3] and Jutila [5], [6].

We adopt the following convention in the use of ϵ to denote a small positive quantity, namely that at certain points, which we shall not specify, we shall change ϵ by a constant factor. Thus, for example, we may write $x^{\epsilon} \log x \ll x^{\epsilon}$, for $x \geqq 2$.
2. The Estimates of Huxley and Jutila. We shall not repeat the details of the zero detection method, which are given in Huxley [3]. We summarize the results as follows:

Define $l=\log (Q T)$ and

$$
Y=(Q T)^{1 / 2+4 \epsilon /(2 \sigma-1)}
$$

For convenience in writing we shall let

$$
\alpha=1 / 2+4 \epsilon /(2 \sigma-1)
$$

There exists an integer n such that

$$
(Q T)^{\epsilon} \leqq 2^{n} Y \leqq l^{2} Y
$$

and

$$
\sum(Q) \ll\left(1+R_{n}\right) l^{4} .
$$

Here $R_{n}=R$ is the number of zeros ρ, counted by $\sum(Q)$, for which

$$
\begin{equation*}
\left|\sum_{2^{n-1}} \sum_{Y<m \leqq 2 n Y} b(m) \chi(m) m^{-\rho}\right| \geqq 1 /(12 l) . \tag{4}
\end{equation*}
$$

The coefficients $b(m)$ depend on Q, T, ϵ and σ but not on χ or ρ; they satisfy
(5) $|b(m)| \leqq d(m)$.

We now take $U \leqq(Q T)^{4}$ and suppose that

$$
\left(l^{2} Y\right)^{a} \leqq U<\left(l^{2} Y\right)^{a+1}
$$

for some positive integer a. We then raise the sum on the left of (4) to the power b, where b is the integer for which

$$
\left(2^{n} Y\right)^{b} \leqq U<\left(2^{n} Y\right)^{b+1}
$$

Thus

$$
\left|\sum_{K W<m \leqq W} c(m) \chi(m) m^{-\rho}\right| \geqq V
$$

where $W=\left(2^{n} Y\right)^{b}, K=2^{-b}, V=(12 l)^{-b}$ and, by (5), $|c(m)| \leqq(d(m))^{2 b}$. Since $2^{n} Y \leqq l^{2} Y$ we have $b \leqq a$. Also, since $2^{n} Y \geqq(Q T)^{\epsilon}$, we have $b \ll \epsilon^{-1} \ll 1$. Thus $K \gg 1, V \gg(Q T)^{-\epsilon}$ and $c(m) \ll(Q T)^{\epsilon}$. Moreover
(6) $\quad U^{a /(a+1)} \leqq U^{b /(b+1)}<\left(2^{n} Y\right)^{b}=W \leqq U$.

To bound R we may use either a mean value estimate, or some form of the Halász method. The mean value estimate, Theorem 7.5 of Montgomery [7], with $\delta=1$ yields

$$
\begin{equation*}
R \ll G V^{-2}\left(W+Q^{2} T\right)(Q T)^{\epsilon} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
G=\sum_{K W<m \leqq W}|c(m)|^{2} m^{-2 \sigma} \ll W^{1-2 \sigma}(Q T)^{\epsilon} . \tag{8}
\end{equation*}
$$

This suffices for the proof of (2).
The Halász method, in the form due to Huxley [2], Theorem 1, yields
(9) $\quad R \ll\left(G W V^{-2}+Q^{2} T G^{3} W V^{-6}\right)(Q T)^{\epsilon}$,
under the condition
(10) $V \gg G^{1 / 2} W^{1 / 4} l^{2}$.

We use this to prove (3).
For the proofs of Theorems 1 and 3 we use the method of Jutila [6]. We may divide the range $-T \leqq \operatorname{Re}(\rho) \leqq T$ into $1+\left[2 T / T_{0}\right]$ subintervals of length at most T_{0} and apply (1.3) of Jutila [6] to each. This shows that, for a given positive integer k, each subinterval contains

$$
\ll\left(G W V^{-2}+Q^{2} T_{0}\left(G^{4} W^{2} V^{-8}\right)^{k}+\left(Q^{2} T_{0} G^{2} V^{-4}\right)^{k}\right)(Q T)^{\epsilon}
$$

points. Hence, under the condition $1 \leqq T_{0} \leqq T$, we have
(11) $R \ll\left(T / T_{0}\right)\left(G W V^{-2}+Q^{2} T_{0}\left(G^{4} W^{2} V^{-8}\right)^{k}+\left(Q^{2} T_{0} G^{2} V^{-4}\right)^{k}\right)(Q T)^{\epsilon}$.

This estimate will be used to prove Theorem 1.
Finally, the proof of Theorem 3 requires, in addition to the ideas which lead to (11), a variation in Jutila's method. We postpone the description of this to § 4 .
3. The proofs of Theorems 1 and 2 . In this section we specify U in each of the cases corresponding to Theorem $1,(2)$ and (3). We then verify that the above mentioned estimates do indeed follow from (7), (9) and (11). We shall write $D=Q^{2} T$ for brevity.

For the proof of Theorem 1 we choose $U=D^{2 \alpha} l^{6}$. We distinguish two cases, $T \leqq Q$ and $T>Q$. If $T \leqq Q$ we may take $a=3$, since

$$
\left(l^{2} Y\right)^{3}=l^{6}(Q T)^{3 \alpha} \leqq l^{6}\left(Q^{2} T\right)^{2 \alpha}=U<l^{8}(Q T)^{4 \alpha}=\left(l^{2} Y\right)^{4}
$$

Otherwise $T>Q$ and we have $a=2$ similarly.
For the case $T \leqq Q, a=3$ we have by (6)

$$
D^{3 / 4} \leqq W \ll D^{1+\epsilon}
$$

We use (11) with $T_{0}=T, k=3$, whence, by (8),

$$
R \ll\left(W^{2-2 \sigma}+D W^{18-24 \sigma}+D^{3} W^{6-12 \sigma}\right) D^{\epsilon} .
$$

Using the bounds for W, we have, assuming $11 / 14 \leqq \sigma \leqq 1$,

$$
\begin{aligned}
R & \ll\left(D^{2-2 \sigma}+D^{(29-36 \sigma) / 2}+D^{(15-18 \sigma) / 2}\right) D^{\epsilon} \\
& \ll D^{2-2 \sigma+\epsilon}
\end{aligned}
$$

This proves Theorem 1 in the case $T \leqq Q$.
When $T>Q$ and $a=2$ we set $T_{0}=T(W / D)^{2-2 \sigma}$ unless $W \geqq D$, when $T_{0}=T$. Then, for $3 / 4 \leqq \sigma \leqq 1$, (6) yields

$$
T(W / D)^{2-2 \sigma} \geqq T D^{-(2-2 \sigma) / 3} \geqq T D^{-1 / 6} \geqq T^{5 / 6} Q^{-1 / 3} \geqq 1
$$

Hence $T_{0} \geqq 1$; and clearly $T_{0} \leqq T$ also. Thus we may apply (11) with $k=3$, whence

$$
R \ll\left(D^{2-2 \sigma}+D W^{18-24 \sigma}+D^{4 \sigma-1} W^{10-16 \sigma}\right) D^{\epsilon} .
$$

From (6) we have

$$
D^{2 / 3} \leqq W \ll D^{1+\epsilon} .
$$

Thus, for $11 / 14 \leqq \sigma \leqq 1$, we have

$$
R \ll\left(D^{2-2 \sigma}+D^{13-16 \sigma}+D^{(17-20 \sigma) / 3}\right) D^{\epsilon} \ll D^{2-2 \sigma+\epsilon} .
$$

This completes the proof of Theorem 1.

We turn now to the proof of Theorem 2. We shall prove (2) for $\sigma_{0} \leqq \sigma \leqq 1$ where σ_{0} is any number in the interval $1 / 2<\sigma_{0} \leqq 1$. Hence we have, on recalling our convention in the use of ϵ,

$$
Y=(Q T)^{1 / 2+4 \epsilon /(2 \sigma-1)} \ll(Q T)^{1 / 2+\epsilon} .
$$

This avoids difficulties that arise when σ is close to $1 / 2$. We may then take σ_{0} arbitrarily close to $1 / 2$, and use the trivial estimate

$$
\sum(Q) \ll D^{1+\epsilon}
$$

for the remaining range $1 / 2 \leqq \sigma \leqq \sigma_{0}$. In this way we obtain an estimate valid uniformly for $1 / 2 \leqq \sigma \leqq 1$.

For the proof of (2) we choose

$$
U=\left(Q^{5} T^{3}\right)^{1 /(3-\sigma)}(Q T)^{20 \epsilon /(2 \sigma-1) l^{10}} .
$$

The estimate (7), together with (6) and (8) yields

$$
R \ll\left(U^{2-2 \sigma}+D U^{(1-2 \sigma) a /(a+1)}\right) D^{\epsilon}
$$

under the condition

$$
\left(l^{2} Y\right)^{a} \leqq U<\left(l^{2} Y\right)^{a+1} .
$$

The case $a=1$ is clearly impossible. If $a=2$ then $U<\left(l^{2} Y\right)^{3}$, whence

$$
\left(Q^{5} T^{3}\right)^{1 /(3-\sigma)} \leqq(Q T)^{3 / 2},
$$

which simplifies to yield

$$
\begin{equation*}
Q^{(3 \sigma+1) /(3-3 \sigma)} \leqq T . \tag{12}
\end{equation*}
$$

Then

$$
D U^{(1-2 \sigma) 2 / 3} \leqq Q^{2} T\left(Q^{5} T^{3}\right)^{(2-4 \sigma) /(9-3 \sigma)} \leqq\left(Q^{5} T^{3}\right)^{(2-2 \sigma) /(3-\sigma)}
$$

using the inequality (12). This proves (2) in case $a=2$. For $a=3$ we have $U<\left(l^{2} Y\right)^{4}$, whence

$$
Q^{(2 \sigma-1) /(3-2 \sigma)} \leqq T .
$$

As before we have

$$
D U^{(1-2 \sigma) 3 / 4} \leqq Q^{2} T\left(Q^{5} T^{3}\right)^{(3-6 \sigma) /(12-4 \sigma)} \leqq\left(Q^{5} T^{3}\right)^{(2-2 \sigma) /(3-\sigma)},
$$

and (2) follows. Finally, if $a \geqq 4$,

$$
D U^{(1-2 \sigma) 4 / 5} \leqq Q^{2} T\left(Q^{5} T^{3}\right)^{(4-8 \sigma) /(15-5 \sigma)} \leqq\left(Q^{5} T^{3}\right)^{(2-2 \sigma) /(3-\sigma)},
$$

for all $Q, T \geqq 1$. This completes the proof of (2).
The proof of (3) is very similar. (3) follows from Theorem 1 for $11 / 14 \leqq \sigma \leqq 1$, and from (2) for $1 / 2 \leqq \sigma \leqq 3 / 4+2 \epsilon$. For the remaining range we use the estimate (9), which yields by (6) and (8),

$$
R \ll\left(U^{2-2 \sigma}+D U^{(4-6 \sigma) a /(a+1)}\right) D^{\epsilon} .
$$

By (8) the condition (10) becomes

$$
W^{\sigma-3 / 4} \gg D^{\epsilon} .
$$

We shall take

$$
U=\left(Q^{2} T^{6 / 5}\right)^{10 / 9}(Q T)^{20 \epsilon /(2 \sigma-1)} l^{10},
$$

whence $W^{\sigma-3 / 4} \geqq W^{\epsilon} \geqq U^{\epsilon / 2}$, so that the required condition always holds.
It remains to show that

$$
D U^{(4-6 \sigma) a /(a+1)} \leqq\left(Q^{2} T^{6 / 5}\right)^{20(1-\sigma) / 9}
$$

always. Since

$$
\left(l^{2} Y\right)^{a} \leqq U<\left(l^{2} Y\right)^{a+1}
$$

the case $a=1$ is impossible. If $a=2$ then

$$
\left(Q^{2} T^{6 / 5}\right)^{10 / 9} \leqq(Q T)^{3 / 2},
$$

whence

$$
Q^{13 / 3} \leqq T .
$$

Hence

$$
D U^{(4-6 \sigma) 2 / 3} \leqq Q^{2} T\left(Q^{2} T^{6 / 5}\right)^{20(4-6 \sigma) / 27} \leqq\left(Q^{2} T^{6 / 5}\right)^{20(1-\sigma) / 9}
$$

as required. If $a=3$ then

$$
\left(Q^{2} T^{6 / 5}\right)^{10 / 9} \leqq(Q T)^{2},
$$

whence $Q^{1 / 3} \leqq T$. In this case

$$
D U^{(4-6 \sigma) 3 / 4} \leqq Q^{2} T\left(Q^{2} T^{6 / 5}\right)^{15(2-3 \sigma) / 9} \leqq\left(Q^{2} T^{6 / 5}\right)^{20(1-\sigma) / 9}
$$

also.
Finally, if $a \geqq 4$ we have

$$
D U^{(4-6 \sigma) 4 / 5} \leqq Q^{2} T\left(Q^{2} T^{6 / 5}\right)^{8(4-6 \sigma) / 9} \leqq\left(Q^{2} T^{6 / 5}\right)^{20(1-\sigma) / 9},
$$

for all $Q, T \geqq 1$. This completes the proof of (3).
4. The Proof of Theorem 3. In this section we develop the method of Jutila [6]. We denote the zeros counted by $R, \rho_{r},(1 \leqq r \leqq R)$, their imaginary parts γ_{r}, and their associated characters χ_{r}. By a further subdivision of the zeros in § 2, we may suppose that $\left|\gamma_{r}-\gamma_{s}\right| \geqq l^{4}$, if $\chi_{r}=\chi_{s}$. We define $h=l^{2}$,

$$
e_{n}=e^{-(n / W)^{h}}-e^{-(n / K W)^{h}}, B=K W
$$

and

$$
H(s, \chi)=\sum_{n=1}^{\infty} e_{n} \chi(n) n^{-s} .
$$

In Jutila's work, the constant K is replaced by $1 / 2$, but clearly this is not essential.

We begin by applying Lemma 1.7 of Montgomery [7], from which it follows that
(13) $R^{2} V^{2} \ll G R W+G \sum_{r, s \leqq R, \tau \neq s}\left|H\left(\rho_{r}+\bar{\rho}_{s}-2 \sigma_{s} \chi_{\tau} \bar{\chi}_{s}\right)\right|$.

We now apply Lemma 1 of Jutila [6]. For ease of reference we quote the lemma here.

Lemma 1. Let χ be a character $(\bmod q), q \leqq Q$, and let $0 \leqq \sigma \leqq 1,|t| \leqq T$. If χ is principal let $|t| \geqq h^{2}$ also. Then, for $B \leqq q T$ and $q\left(|t|+h^{3}\right)(\pi B)^{-1}$ $\leqq M \leqq(q T)^{2}$,

$$
H(s, \chi) \ll 1+B^{1 / 2} Q^{\epsilon} \int_{-h^{2}}^{h^{2}}\left|\sum_{1}^{M} \bar{\chi}(n) n^{-1 / 2+i(t+\tau)}\right| d \tau
$$

It is clear from the proof of the lemma that the conditions $B \leqq q T$ and $M \leqq(q T)^{2}$ may be dropped.

Lemma 1 yields

$$
\begin{aligned}
H\left(\rho_{r}+\bar{\rho}_{s}-2 \sigma,\right. & \left.\chi_{r} \bar{\chi}_{s}\right) \\
& \ll\left(W^{1 / 2} \int_{-h^{2}}^{h^{2}}\left|\sum_{1}^{M} \bar{\chi}_{r} \chi_{s}(n) n^{-1 / 2+i\left(\gamma_{r}-\gamma_{s}+\tau\right)}\right| d \tau+1\right) D^{\epsilon},
\end{aligned}
$$

where $M=h^{3} D /(K W)$. We now write

$$
\sum_{n=1}^{M}=\sum_{1 \leqq q \leqq 2 \log M} \sum_{M / 2^{q<n \leqq M / 2 q-1}}
$$

$N=M / 2^{q}$, and

$$
\sum(\tau)=\sum_{r, s=1}^{R}\left|\sum_{N<n \leqq 2 N} \bar{\chi}_{r} \chi_{s}(n) n^{-1 / 2+i\left(\gamma_{r}-\gamma_{s}+\tau\right)}\right|
$$

Thus (13) shows that, for some integer q,

$$
\begin{equation*}
R^{2} \ll\left(G R W+G R^{2}+G W^{1 / 2} \int_{-h^{2}}^{h^{2}} \sum(\tau) d \tau\right) D^{\epsilon} \tag{14}
\end{equation*}
$$

By Hölder's inequality we have, for any integer k,

$$
\begin{equation*}
\sum(\tau) \leqq R^{2-1 / k}\left(\sum_{\tau, s=1}^{R}\left|\left(\sum_{N<n \leqq N}\right)^{k}\right|^{2}\right)^{1 / 2 k} \tag{15}
\end{equation*}
$$

We shall apply Lemma 2 of Jutila [6] to the right hand side of the above inequality. We quote the lemma here.

Lemma 2. Let a_{n} be complex numbers such that $\left|a_{n}\right| \leqq A$. Then

$$
\sum_{r, s=1}^{R}\left|\sum_{n=1}^{N} a_{n} \bar{\chi}_{r} \chi_{s}(n) n^{-1 / 2+i\left(t_{r}-t_{s}\right)}\right|^{2} \leqq A^{2} \sum_{r, s=1}^{R}\left|\sum_{n=1}^{N} \bar{\chi}_{r} \chi_{s}(n) n^{-1 / 2+i\left(t_{r}-t_{s}\right)}\right|^{2}
$$

This yields

$$
\begin{equation*}
\sum_{r, s=1}^{R}\left|\left(\sum_{N<n \leqq 2 N}\right)^{k}\right|^{2} \ll D^{\epsilon} \sum_{T, s=1}^{R}\left|\sum_{N^{k}<n \leqq(2 N)^{k}} \bar{\chi}_{T} \chi_{s}(n) n^{-1 / 2+i\left(\gamma_{r}-\gamma_{s}\right)}\right|^{2} \tag{16}
\end{equation*}
$$

Alternatively, writing

$$
f_{n}=e^{-\left(n /(2 N)^{k}\right) h}-e^{-\left(n / N^{k}\right)^{h}}
$$

and

$$
J(s, \chi)=\sum_{n=1}^{\infty} f_{n} \chi(n) n^{-s}
$$

we have, also by Lemma 2,

$$
\begin{equation*}
\sum_{\tau, s=1}^{R}\left|\left(\sum_{N<n \leq 2 N}\right)^{k}\right|^{2} \ll D^{\epsilon} N^{-k} \sum_{\tau, s=1}^{R}\left|J\left(i\left(\gamma_{\tau}-\gamma_{s}\right), \chi_{\tau} \bar{\chi}_{s}\right)\right|^{2} \tag{17}
\end{equation*}
$$

We now apply Lemma 3 of Jutila [6], which we also quote here.
Lemma 3. For each $r,(1 \leqq r \leqq R)$, let χ_{r} be a primitive character of conductor at mosi Q and let t_{r} be a real number satisfying $\left|t_{r}\right| \leqq T$. Suppose that $\left|t_{r}-t_{s}\right| \geqq 1$ whenever $\chi_{r}=\chi_{s}$. Then

$$
\sum_{r=1}^{R}\left|\sum_{n=1}^{N} \chi_{r}(n) \chi(n) n^{-1 / 2+i t r}\right|^{2} \ll\left(N+(R D)^{1 / 2}\right) D^{\epsilon}
$$

where χ is any character of modulus at most Q.
Lemma 3, in conjunction with (15) and (16) yields

$$
\begin{aligned}
& \sum(\tau) \ll R^{2-1 / k}\left(R\left(N^{k}+(R D)^{1 / 2}\right)\right)^{1 / 2 k} D^{\epsilon} \\
& \ll\left(R^{2-1 /(2 k)} N^{1 / 2}+R^{2-1 /(4 k)} D^{1 / 4 k}\right) D^{\epsilon}
\end{aligned}
$$

We now have, by (8) and (14),

$$
\begin{aligned}
& R^{2} \ll\left(R W^{2-2 \sigma}+R^{2} W^{1-2 \sigma}+R^{2-1 /(2 k)} N^{1 / 2} W^{3 / 2-2 \sigma}\right. \\
&\left.+R^{2-1 /(4 k)} D^{1 /(4 k)} W^{3 / 2-2 \sigma}\right) D^{\epsilon}
\end{aligned}
$$

whence
(18) $R \ll\left(W^{2-2 \sigma}+\left(N W^{3-4 \sigma}\right)^{k}+D W^{(6-8 \sigma)^{k}}\right) D$.

Alternatively we may estimate the expression on the right hand side of (17) by repeating the procedure of the preceding paragraphs. Lemma 1 yields

$$
\begin{aligned}
& \left|J\left(i\left(\gamma_{\tau}-\gamma_{s}\right), \chi_{r} \bar{\chi}_{s}\right)\right|^{2} \\
& \lll\left(1+N^{k} \int_{-h^{2}}^{h^{2}}\left|\sum_{n=1}^{p} \bar{\chi}_{r} \chi_{s}(n) n^{-1 / 2+i\left(\gamma_{r}-\gamma_{s}+\tau\right)}\right|^{2} d \tau\right) D^{\epsilon}
\end{aligned}
$$

for $B=N^{k}$. Here $r \neq s$, and $P=D h^{3} / N^{k}$. Hence, on writing

$$
S(\tau)=\sum_{\tau, s=1}^{R}\left|\sum_{n=1}^{P} \bar{\chi}_{\tau} \chi_{s}(n) n^{-1 / 2+i\left(\gamma_{r}-\gamma_{s}+\tau\right)}\right|^{2}
$$

we have
(19) $\sum_{\tau, s=1}^{R}\left|J\left(i\left(\gamma_{\tau}-\gamma_{s}\right), \chi_{\tau} \bar{\chi}_{s}\right)\right|^{2} \ll\left(R N^{2 k}+R^{2}+N^{k} \int_{-h^{2}}^{h^{2}} S(\tau) d \tau\right) D^{\epsilon}$.

By Hölder's inequality we have, for any integer j,

$$
S(\tau) \leqq R^{2-2 / j}\left(\sum_{r, s}\left|\left(\sum_{n \leqq p}\right)^{j}\right|^{2}\right)^{1 / j} .
$$

Moreover, by Lemma 2,

$$
\sum_{r, s}\left|\left(\sum_{n \leqq P}\right)^{j}\right|^{2} \ll D^{\epsilon} \sum_{\tau, s}\left|\sum_{n \leqq P^{j}} \bar{\chi}_{r} \chi_{s}(n) n^{-1 / 2+i\left(\gamma_{r}-\gamma_{s}\right)}\right|^{2}
$$

We apply Lemma 3 to the right band side, whence

$$
\sum_{r, s}\left|\left(\sum_{n \leqq P}\right)^{j}\right|^{2} \ll R\left(P^{j}+(R D)^{1 / 2}\right) D^{\epsilon}
$$

This yields

$$
S(\tau) \ll\left(R^{2-1 / j} P+R^{2-1 /(2 j)} D^{1 /(2 j)}\right) D^{\epsilon},
$$

whence, by (15), (17) and (19)

$$
\begin{aligned}
\sum(\tau) \ll\left(R^{2-1 /(2 k)} N^{1 / 2}+R^{2} N^{-1 / 2}\right. \\
\left.+R^{2-1 /(2 k j)} p^{1 /(2 k)}+R^{2-1 /(4 k j)} D^{1 /(4 k j)}\right) D^{\epsilon}
\end{aligned}
$$

Thus, by (8) and (14)

$$
\begin{aligned}
R^{2} \ll\left(R W^{2-2 \sigma}\right. & +R^{2} W^{1-2 \sigma}+R^{2-1 /(2 k)} W^{3 / 2-2 \sigma} N^{1 / 2}+R^{2} W^{3 / 2-2 \sigma} N^{-1 / 2} \\
& \left.+R^{2-1 /(2 k j)} W^{3 / 2-2 \sigma} P^{1 /(2 k)}+R^{2-1 /(4 k j)} W^{3 / 2-2 \sigma} D^{1 /(4 k j)}\right) D^{\epsilon}
\end{aligned}
$$

which reduces to
(20) $\quad R \ll\left(W^{2-2 \sigma}+\left(N W^{3-4 \sigma}\right)^{k}+\left(D N^{-k} W^{(3-4 \sigma) k}\right)^{j}+D W^{(6-8 \sigma) k j}\right) D^{\epsilon}$.

We now choose $U=\left(l^{2} Y\right)^{4}$, whence $a=4$ and

$$
(Q T)^{8 / 5} \leqq W \ll(Q T)^{2+\epsilon} .
$$

We distinguish two cases, according as $N \leqq D^{(1-\sigma) / 2} W^{4 \sigma-3}$, or not. In the first case we use (18) with $k=4$. This yields

$$
\begin{aligned}
& W^{2-2 \sigma} \ll(Q T)^{4-4 \sigma+\epsilon}, \\
& \left(N W^{3-4 \sigma}\right)^{k} \ll\left(D^{(1-\sigma) / 2}\right)^{4} \ll(Q T)^{4-4 \sigma+\epsilon},
\end{aligned}
$$

and, for $129 / 167 \leqq \sigma \leqq 1$,

$$
D W^{(6-8 \sigma) k} \ll Q^{2} T^{2}(Q T)^{32(6-8 \sigma) / 5} \ll(Q T)^{4-4 \sigma},
$$

since $3 / 4<91 / 118<129 / 167$. This deals with the first case.

We now suppose that $N>D^{(1-\sigma) / 2} W^{4 \sigma-3}$. We use the estimate (20) with $k=3$ and $j=2$. For the first term of (20)

$$
W^{2-2 \sigma} \ll(Q T)^{4-4 \sigma+\epsilon}
$$

For the second term of (20) we note that $N \leqq M \ll D^{1+\epsilon} W^{-1}$. Hence

$$
\left(N W^{3-4 \sigma}\right)^{k} \ll\left(D W^{2-4 \sigma}\right)^{3} D^{\epsilon} \ll\left(Q^{2} T^{2}\right)^{3}(Q T)^{24(2-4 \sigma) / 5} D^{\epsilon} \ll(Q T)^{4-4 \sigma+\epsilon},
$$

where, in the final estimate, we have used the inequalities $3 / 4<29 / 38<$ $129 / 167 \leqq \sigma$. For the third term of (20) we have, using the fact that $N>D^{(1-\sigma) / 2} W^{4 \sigma-3}$,

$$
D^{j} N^{-k j} W^{(3-4 \sigma) k j} \leqq D^{2} D^{3 \sigma-3} W^{-6(4 \sigma-3)} W^{6(3-4 \sigma)}
$$

Since $\sigma \geqq 129 / 167$, this expression is

$$
\ll\left(Q^{2} T^{2}\right)^{3 \sigma-1}(Q T)^{-96(4 \sigma-3) / 5} \ll(Q T)^{4-4 \sigma} .
$$

Finally, the fourth term of (20) is

$$
D W^{6(6-8 \sigma)} \ll Q^{2} T^{2}(Q T)^{48(6-8 \sigma) / 5} \ll(Q T)^{4-4 \sigma},
$$

since $139 / 182<129 / 167 \leqq \sigma$. This completes the proof of Theorem 3 .

References

1. M. N. Huxley, On the difference between consecutive primes, Invent. Math., 15 (1972), 164-170.
2. Large values of Dirichlet polynomials, III, Acta Arith., 26 (1974), 435-444.
3. - An imperfect hybrid zero-density theorem, J. London Math. Soc., (2) 13 (1976), 53-56.
4. A. E. Ingham, On the difference between consecutive primes, Quart. J. Math. Oxford Ser., 8 (1937), 255-266.
5. M. Jutila, On a density theorem of H. L. Montgomery for L-functions, Ann. Acad. Sci. Fenn. Ser. A I (1972), No. 520.
6. Zero-density estimates for L-functions, Acta. Arith. 32 (1977), 55-62.
7. H. L. Montgomery, Topics in multiplicative number theory (Springer, Berlin, 1971).

Trinity College,
Cambridge, England

[^0]: Received August 31, 1977.

