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i. Suppose that the claims experienced by a portfolio could be
represented as independent random variables with a distribution
function F (x). The net premium per claim for an excess loss cover
above an amount of L is then

P(L) = J[i-F(x)]dx. (i)

If we have no information about F (x) except a number M of
independent claims, we might compute the observed ,,staircase"
distribution function SM {x) which is for every x an unbiased
estimate of F (x), and could thus compute an unbiased estimate
for P (L) with the variance [7] *)

jjj J F(x)[i—Fty)]dydx.

2. In real life we have some qualitative knowledge of ,F (x) and
very limited information about the claims. In his introduction to
this .subject Beard treats the case where the only information
about F (x) consists of the largest claim x% and the number of
claims «< (i = 1, 2, . . ., N) observed during N periods (Reference
No 2). It is known from the theory of extreme values [3] that for
large ni the distribution of xi depends mainly on the parameters
uni and xn( defined by

F («„) = 1 — - ; v.n = nF' («„). (2)

Beard further assumes that F (x) belongs to what is called by

See list of references.
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Gumbel ,,the exponential type" of distribution functions, which
have an unlimited tail and finite moments. This class is strictly
defined by Gnedenko's necessary and sufficient condition [4, p. 68]:

lim n\z—Flun + ^-)\ = er-v. (3)
re^-oo [ \ a « / J

If F (x) satisfies (3), the normed variable

yt = aBl (xt — uni) (4)

has, for m -> 00, the asymptotic distribution function

O (y) = exp (— e-v) (5)

and the moments
E (yt) ^ C (Eulers constant ~ 0.5772) and Var (y() QZ —.- (6)

3. If all W4 s » (the case treated by Beard) we may estimate un

and xn from the observed ^-values, either by use of a probability
paper, especially constructed from (5) or from the first and second
order moments of the xj-values [1].

Note. There exist distributions with infinite tails and finite moments of
all orders which are not of "the exponential type" (Reference No. 4, page
66). If F(x) belongs to these distributions, the above estimation method
leads nowhere.

4. If the wj-values differ but represent ,,equally exposed inter-
vals", we may under certain conditions use a technique of estima-
tion, similar to the above-mentioned. Suppose that the number of
claims in the time interval (0, T) constitutes a Poisson process
with the intensity It depending only on the time t. Introducing the

T

operational time S = J X< it we get for the largest claim %s in the
0

operational interval (0, S) the distribution function [5, p. 416]

Fs {x) = \ — e~s [F (x)]m = e-s [!-*•<*)] (7)

m-o

If we define us and a.s from (2) it follows from condition (3) that,
for large S-values, 3/5 = as (xs — us) has the asymptotic distri-
bution function O (y) given in (5). The assumption ,,equally ex-
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posed intervals" implies that we may use for all i a common

S-value, tentatively S* = — ) n%, and we may thus estimate us

and as as in the preceding paragraph.

Note. This somewhat astonishing result, that in this case we may use
identical estimation methods with equal or unequal w^-values, depends on
the elastic nature of all asymptotic relations. Thus (3) does not imply that
<S> (y) is an acceptable approximation for any realizable M-value. The
approach to <J> (y) is slow for F(x) normal but fast for F(x) exponential
(Reference No 5). In the special case of F(x) = 1—e~ax—b, <D (y) happens to
be the exact distribution function for ys, as (3) is then an identity.

5. In the general case with different wj-values from unequally
exposed time intervals, we are forced to introduce a more precise
specification, and for reasons appearing later we choose the following
model. Let G (z) be an at least numerically known distribution
function from which we may calculate the function

P(k) = j[i—G(z)]dz (8)
t

and the constants vn and (3B defined by

G(vn) = i — \ ; pn = nG'(vn). (9)

We now introduce the specified assumption

F(«) = = G ( Y * + 8), (10)

where y and S are unknown parameters. From (1) and (8) we con-
clude that

P(L) = ±p(-rL + t). (11)

From (2), (9) and (10) we may express y and S in terms of un and
am (and vice versa) by means of the known constants vn and $n:

un = - (vn — 8) «.„ = $„ y (12a)

Y = jT 8 = vn — ^un. (12b)
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If we introduce (12a) in (4) we have

Vt = ?>n(Xi T + Pn48 — ?>ntVn{- (13)

As the yj : s have (asymptotically) the mean C and identical
variance, the least squares estimates for y and 8 are those values
which minimize

Q (Y. 8) =

Thus to obtain the estimates y* and 8* we have only to solve a
system of two linear equations. The resulting value of Q could be
roughly compared to the ^-distribution with N-2 degrees of
freedom in order to get at least a vague idea about the applicability
of the model.

6. Returning to (n) we get from (12b)

p(L — un) + vn\ (15)
?n J

where the only unknown quantities un and a.n may be estimated as
hinted in paragraph 3.

Let us apply (15) to G(z) — 1 — e~z. From (8) we get f{k) =
= e—k and from (9) vn = Ign and (Sw = 1. Thus we have in this case

P(L) = - ^ e - M L - « » ) . (16)

Formula (16) is exactly the result deduced by Beard in [1 and 2]
in quite another way. Beard does not explicitely assume F(x) to
be an exponential distribution, but makes use of certain relations
between the largest values in one sample, which relations charac-
terize this distribution. However, some of the approximations used
cancel out and the practical implication of Beards result could
therefore be described thus: ,.Calculate P(L) as if F(x) were equal
to 1 — Q—yx—s wjth those constants y and 8 which make un and an

equal to. the values un* and oc«* estimated from the extremes Xi".
7. The premium P*(L) determined by this method involves

errors of two kinds. The estimation errors <xre* — aM and un* — un

depend on
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1) the assumption that F (x) belongs to the exponential type,

2) the sample size n and the rapidity of convergence towards
O (y) for the distribution of yi and

3) the estimation method used.

If 1) is correct, the estimation error could be made small by a
careful estimation from many observations.

00

The structure error [1 — F (x) — e—°»(*—un)—ig «] dx

L

depends on our use of the exponential function for the integral
appearing in P(L). This error is completely governed by the
behaviour of the unknown F (x).

8. The bare fact is that we cannot get much out of little, and two
parameters cannot without further assumptions be sufficient to
calculate an infinite integral over an unknown function. In most
applications we have a fairly good idea about the general shape of
the distribution of the claims. It seems obvious to me that we
should use this knowledge to choose a basic function G(z) which
describes the distribution of the claims better than 1 — e~z. If we
apply (15) to this function G{z), we should get a reasonable estimate
of P(L).

Nevertheless, there remains the difficulty of drawing reliable
conclusions about P(L) from two parameters involving the value
of F(x) and its derivative at one single point. If the layer to be
covered is limited by two limits L\ and Li and if our observed
a^-values give an estimate u* between L\ and L% we may get
reliable results. In the case where Lz — 00, however, the estimated
premium will depend mainly on our assumptions about F(x) in the
extreme right tail, where we have no or few observations.

The scarcity of claims above L is inherent in the problem, and
no statistical method can overcome this fundamental difficulty. It
is therefore necessary to use all available data and to avoid un-
necessary dissipation of the information. If we have no prior in-
formation about F(x), the claims above L together with the number
of claims below L form a ,,sufficient statistic" for P(L). On the
other hand the rate ot convergence towards the asymptotic
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distribution <t> (y) depends on the behaviour of F(x) when x tends
to infinity, about which behaviour we can conclude very little from
finite samples. The loss of information when passing to the asymp-
totic distribution may be considerable. It is possible, that for
certain branches of insurance experience will justify the method
discussed. Until then we should use the utmost discretion and take
the trouble to register all relevant claims. If this is possible and
if the limit of self-retention L is independent of the claims, the
wellknown and approved method of the first paragraph gives an
unbiased estimate of P(L).

Even if our registration is incomplete, there are still conservative
methods, which can make use of all our observations, e.g. the
general theory of order statistics [4]. But this is outside todays
subject.

"Thus conscience does make cowards of us all
and thus the native hue of resolution
is sicklied o'er with the pale cast of thought,
and enterprises of great pith and moment
with this regard their current turn awry
and lose the name of action." [6]

9. Conclusions. The use of only extreme values in order to
determine the excess of loss premium for an infinite layer above L
may be dangerous. Pro primo the resu'ts depend largely on our
knowledge of the unknown extreme right tail of the distribution
of the claims. Pro secundo the uncertainty caused by the use of the
asymptotical distribution of "the extremes is almost uncontrollable.

There are no good solutions (as in most tail problems) but if we
want not too bad results, we must try to registrate all relevant
information.

During the winter Beard has spent much time on a stimulating
correspondence about this question. As most authors like to quote
themselves, I'll finish by quoting a passage in one of my letters:
"There is a natural law which states that you can never get more out
of a mincing machine than what you have put into it. That" is: If
the reinsurance people want actuarially sound premiums, they must
get a decent information about the claim distributions".
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