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A SHORT PROOF OF AN INTERPOLATION 
THEOREM 

BY 

EDWARD HUGHES 

In this note we give a simple proof of an operator-interpolation theorem (Theorem 
2) due originally to Donoghue [6], and Lions-Foias [7]. 

DEFINITION. Let ^ be the complex plane, ^+ the open upper half-plane, ^ the 
real line, 0t+ and 0t~ the non-negative and non-positive axes. Denote by JT the 
class of positive functions on 0£+ which extend analytically to ^— 0t~, and map 
^ + into itself. Denote by X' the class of functions cp such that cp(x1/2)2 is in Jf. 

Let cp G Jf. By reflection cp takes the lower half-plane to itself, and is increasing 
and concave (i.e. cp"<G) on 01+. Turner [5] proves the following generalisation of a 
matrix theorem of Lôwner [4] (see also Heinz [2]) : 

LEMMA 1. Let cpbea positive function on 0t+. Then cp e X if and only if for any 
positive self adjoint operators A and B on a Hilbert space which satisfy 0<A<B, 
we have cp(A)<<p(B). 

By a simple exercise with harmonic functions one proves : 

LEMMA 2. Let (p e X. Then if ze ^+, 

0 < arg <p(z) < arg z, 

If (p G X or X', let (pc(x)=x/(p(x). It follows from Lemma 2 that cp e X (or X') 
implies cpc e X (or X'). The following theorem was first proved by Heinz [3] 
for the functions cp(x)=xd (d e [0,1]). 

THEOREM 1. Let A and B be positive operators on Hilbert spaces Hx and H2. Let 
Q be a closed, densely defined linear map from H1 to H2, such that D(A) <=D(0, 
D ( 5 ) ç i ) ( Ô * ) , and for all feD(A), geD(B), we have: \\Qf\\<\\Af\\; and 
||e*£ll <\\Bgl Let cp e X'. Then for fe D(A), g e D(B), 

\(Qf,g)\^\\<p(A)f\\W<Pc(B)g\\. 

In proving this theorem it suffices to assume that Hx—H^ Then Q has the "polar" 
representation Q=PS, where S>0 and P is a partial isometry [1, p. 1249]. The 
rest of the proof is a straightforward use of Lemma 1. 
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We now have the main interpolation result: 

THEOREM 2. Let A>0, B>0 be positive operators on Hx and H2. Let cp e Jf'. 
Suppose T is a bounded linear map from H1 to H2 which takes D(A) into D(B), and 
satisfies 

\\BTf\\ < C± \\Af\\ (feD(A) 

\\Tg\\ <C2\\g\\ (geflj. 
Then iffe D(A), 

\\<p(C2B)Tf\\ < C 2 | ^ ( C ^ ) / | | . 

Proof. Assume first that A>e>0, B>e. Let Q=BT. Then g* is the closure of 
T*B, and hence the hypotheses of Theorem 1 are satisfied. Thus, 

KG/, g)\ < \\<p(CiA)f\\ \\<pc(C2B)gl f o r / e D(A), g e D{B). 

Since B>e, <pc(C2B) is invertible. Let h = <pc(C2B)g. Since 

^ ( C 2 5 ) - 1 g / = C-'tpiC^Tf, 
the above becomes 

\(cp(C2B)Tf, h)\ < C2 \\cp(C2A)f\\ \\h\\, 

from which the conclusion follows. A limiting argument removes the assumptions 
on A and B. 

The concavity of cp implies 

COROLLARY. 

\\<p(B)Tf\\ <d1d2\\(P(A)fl 

where rf~max(Q, 1). 

Theorem 2 has a converse, which is an easy consequence of Lemma 1, and which 
states that W is the largest class of functions enjoying the property stated in 
Theorem 2 for all A, B, and T. 
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